
AI Agents for Halma

Zhangzhi Xiong, Tianni Yang, Lingkang Feng
School of Information Science and Technology

ShanghaiTech University
{xiongzhzh2023, yangtn2023, fenglk2022}@shanghaitech.edu.cn

Abstract

Halma is a famous chess board game invented in 19th cen-
tury. Its relatively simple rule and fascinating strategic depth
make Halma popular accross the world. In this project, we de-
ploy several Halma gaming agents using the knowledge and
technique in CS181. We also try to modify the rule and to
see if there is any interesting finding. We practice what we’ve
learned in class, implement them in gaming application and
demonstrate AI’s magic and intelligence in real world.

Introduction
Halma is a strategy board game invented in the late 19th
century, typically played on a checkered board by two play-
ers. The strategic depth of Halma, arising from its branching
factor and long-term planning requirements, makes it an in-
teresting testbed for artificial intelligence research. Figure 1
illustrates a typical Halma game setup in our code imple-
mentation.

Rules
In the original Halma rules, each player has multiple pawns
and the objective is to transfer all of one’s pieces from their
starting corner or region to the diagonally opposite corner or
region before the opponents do. Players take turns to move
one pawn piece. Pieces can move to an adjacent square or
jump over an adjacent piece (friendly or opponent) to the
square immediately beyond it, with multiple jumps allowed
in a single turn.

State Space
In our game formulation, the board is 8×8 and each player
has 10 pawns. This means that the total number of state
space is:(
64

20

)
×
(
20

10

)
=

64!

20! · 44!
× 20!

10! · 10!
=

64!

44! · 10! · 10!
≈ 1028

Motivation
The motivation for this project is to use the knowledge about
various agents in CS181 and deploy them in the scenario
of Halma in practice. Also we seek to explore the impact

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of a Halma game board and setup.

of rules to our agents and see if there are any interesting
findings when changing the rule a little bit.

This report will introduce the design and implementation
of several agents in CS181:

• Baseline agents: RandomPlayer
• Search agents: GreedyPlayer
• Adversary-Search agents: MinimaxPlayer with

alpha-beta pruning and optional local search heuristic.

• Monte Carlo Tree Search: MCTSPlayer(Swiechowski
et al. 2021)

• Reinforcement Learning agents:
– ApproximateQLearningPlayer: Utilizes Q-

learning with linear function approximation based on
a rich set of handcrafted features and a tailored reward
function.

– Neural ApproximateQLearningPlayer: Im-
plements a Deep Q-Network (DQN)(Mnih et al. 2013)
with a convolutional neural network(O’Shea and Nash
2015) for state representation, experience replay, and a
target network.

The competition results between these agents will be pre-
sented in this report. Moreover, we will discuss about how
do we modify the rules and the corresponding interesting
discoveries.

Methodology
In this section, we will introduce our implementation about
our various agents based on the original rules.

State Evaluation
In search and adversarial search, state evaluation function
is extremely important. It provides assessment information
about a state and the agent will utilize it and act accordingly.

In our implementation, our state evaluation function cal-
culate the Euclidean distance from the pawn to every empty
or non-player-occupied position in the player’s goal area. If
there are available goal positions, add the maximum of these
distances to a running total. If there are no available goal po-
sitions for that pawn, add 20 from the total as a penalty, since
it indicates that there are opponents’ remaining pawn in the
area and moving towards the area may prevent them from
leaving because of crowding pawns.

After evaluating all pawns: Multiply the total score by -1,
so that a smaller distance (i.e., pawns closer to the goal) re-
sults in a higher evaluation score. The state evaluation func-
tion equation is as follows:

val = −
∑

p∈Pself

{
maxg∈Gempty dist(p, g), if Gempty ̸= ∅
−20, if Gempty = ∅

(1)
where the distance is Euclidean one:

dist(p, g) =
√
(xp − xg)2 + (yp − yg)2 (2)

RandomPlayer
Every time RandomPlayer takes the turn, it will take a
random valid action.

GreedyPlayer
Every time GreedyPlayer takes the turn, it will take all
the valid moves into account, and use the State Evaluation
function to assess the corresponding following state as ac-
tion score. Then GreedyPlayer will always choose the
move with the maximum action score.

Minimax Agent
The MinimaxPlayer utilizes the classic Minimax algo-
rithm, a recursive search enhanced with alpha-beta pruning
and optional local search technique for efficiency.

Core Algorithm MinimaxPlayer explores the game
tree to a predefined depth due to rather large state space, as-
suming the opponent will always choose moves to minimize
the Minimax player’s score. Alpha-beta pruning is employed
to eliminate branches of the search tree that won’t influence
the final decision but significantly speeding up the search. In
our experiments, Minimax agents has limited depth of two.

Local Search (Optional) If enabled, Local Search Heuris-
tic aims to further prune the search space at each node of
the Minimax tree and reduce the branching factor. Instead of
considering all legal moves, it first evaluates the best possi-
ble move for each individual pawn based on the state eval-
uation score. Only this collection of best individual pawn
moves is then considered by the Minimax algorithm.

Monte Carlo Tree Search Agent
The MCTSPlayer utilizes Monte Carlo Tree
Search(Swiechowski et al. 2021), a probabilistic search
algorithm that balances exploration of new possibilities
with exploitation of known good paths.

Core Process: MCTS iteratively builds a search tree. Each
iteration involves four phases as shown in Figure 2:

Figure 2: Illustration of MCTS Core Process

Selection Starting from the root (current game state), the
algorithm traverses the existing tree by repeatedly choos-
ing child nodes that maximize the Upper Confidence Bound
(UCB) criterion. In our implementation, the UCB formula is
as follows:

UCB =
Q

N
+ c

√
lnNparent

N
+ strategy score (3)

where Q is the cumulative value, N is the visit count, c is
the exploration parameter and the strategy score function
for any move action a is as follows:

StrategyScore(a) = 0.2× direction+ jump (4)

direction =

{
(xe−xs)+(ye−ys)

2 if player Pchild is ”RED”
(xs−xe)+(ys−ye)

2 if player Pchild is ”GREEN”
(5)

jump =

{
0.3 if action a is a jump
0 otherwise

(6)

where (xe, ye) stands for the position of the pawn after the
move and (xs, ys) stands for the one before the move. Note
that in our implementation, Red Player’s goal area is located
at the right-bottom diagon and Green Player’s goal area is
located at the left-up diagon. The item direction and jump
will encourage the agent to explore actions that move toward
the goal area and jump, accordingly.

Expansion If the selection process reaches a leaf node that
is not a terminal game state and has untried actions, one
new child node is added to the tree, corresponding to an un-
tried action. Actions are prioritized for expansion based on
heuristic scores (distance improvement, jump bonus, back-
ward penalty).

Simulation From this new node (or a selected leaf if it’s
terminal), a simulated game (playout) is conducted. Actions
during simulation are chosen using a fast, heuristic policy
that favors moves improving distance to goal, direction, and
jumps, with a small chance of random action selection. The
playout continues until a game end-state or a depth limit.

Backpropagation The outcome of the simulation is prop-
agated back up the tree from the expanded node to the root,
updating the visit counts and value estimates of all traversed
nodes. Under most circumstance, the simulation can’t reach
the end, hence requiring a Simulation Evaluation function.
We will soon introduce that.

Simulation Evaluation If a simulation ends due to depth
limit rather than game completion, this function provides a
heuristic score. In our implementation, we design a com-
prehensive simulation function heuristic which considers the
number of pieces in the goal, the average distance of pieces
to the goal, progressive bonuses for achieving stages of goal
occupation, and penalties for pieces remaining in the starting
area. The comprehensive monte carlo tree search simulation
evaluation funciton is as follows for a state:

Scoreeval = clamp(Scoregoal + Scoredist +Bonusstage+

Penaltyhome,−1000, 1000)
(7)

clamp(x, a, b) = max(a,min(x, b)) (8)
Scoregoal = 100× PG (9)

Scoredist = 90×
(
1− Dnorm sum

NP

)
(10)

Bonusstage =



0 if PG = 0

50 if PG = 1

150 if PG = 2

350 if PG = 3

750 if PG ≥ 4

(11)

Penaltyhome = −100×
PH

NP
(12)

where PG is the number of the player’s pieces in the
goal area, NP is the total number of the player’s pieces,

Dnorm sum is the sum of normalized Manhattan distances
to the goal center for all pieces not in the goal, and PH is
the number of the player’s pieces in the home area and not
moved. The intention of designing complicated simulation
function is to provide a stronger evaluation with more in-
ductive bias which may empirically contribute to the perfor-
mance of our MCTSPlayer.

Final Action Selection After a set number of simulations
or a time limit, the agent chooses the action from the root’s
children that is most promising, based on a weighted combi-
nation of its win ratio, visit count, and a directional score.

score = 0.4× win ratio+ 0.2× visit ratio

+0.4× direction
(13)

win ratio =
child.value

child.visits
(14)

visit ratio =
child.visits

root.visits
(15)

direction =

{
(xe − startx) + (ye − ys) if color is RED
(xs − xe) + (ys − ye) otherwise

(16)
where (xe, ye) stands for the position of the pawn after
the move and (xs, ys) stands for the one before the move.
This mechanism is to enhance our inductive bias and force
MCTSPlayer to behave more wisely. Note that due to the
complicated procedures, MCTSPlayer takes apparently
more time in a turn to decide a move.

Q-learning Agent(Failed)
Unfortunately, we failed to train a Q-learning agent. We tried
letting Q-learning agent fight against random/minimax/Q-
learning agents in limited episodes, but results in unintel-
ligent behaviors. If setting the episodes larger, the q-state
information file will be drastically large. This may caused
by the rather large state space. According to our experiment,
the file containing trained parameters after 200 episodes in
.txt file is 21GB. When loading it into python, the program
will crash.

Approximate Q-Learning Agent
This agent learns to play Halma using Q-learning with lin-
ear function approximation. It utilizes various feature func-
tions use linear combination with learnable weights to score
a state. In short, the Q-value is approximated as a weighted
sum of features: Q(s, a) =

∑
wifi(s, a) where the weights

wi can be learned.

Feature Engineering In our implementation, we design
a set of handcrafted features, fi(s, a), which describe the
state-action pair. These include: normalized count of pieces
in the goal, average distance of pieces to the goal, improve-
ment in distance to goal due to the action, directional score
of the action, and binary indicators for jumps, reaching the
goal, moving backwards, or leaving the home area. Initial
heuristic weights are assigned to these features.

In detail, our implemented feature functions and the final
q-state approximation are as follows:

pieces in goal =
Number of player’s pieces in goal area

4
(17)

avg distance =
1

4Dmax

∑
p/∈G

|xp − xc|+ |yp − yc| (18)

distance improvement =
dstart − dend

Dmax
(19)

direction =

{
(xe−xs)+(ye−ys)

2B , if RED
(xs−xe)+(ys−ye)

2B , otherwise
(20)

is jump =

{
1, if jump move
0, otherwise

(21)

reaches goal =

{
1, (xe, ye) ∈ G

0, otherwise
(22)

is backwards =

{
1, if move is backwards
0, otherwise

(23)

leaves home =

{
1, (xs, ys) ∈ H and (xe, ye) /∈ H

0, otherwise
(24)

Q(s, a) = w1 · pieces in goal + w2 · avg distance+
w3 · distance improvement + w4 · direction+

w5 · is jump + w6 · reaches goal+
w7 · is backwards + w8 · leaves home

(25)

Learning Mechanism
Weights are updated using the Temporal Difference (TD) er-
ror. After taking an action a from state s, observing reward
r and next state s′, the TD error is:

δ = r + γmax
a′

Q(s′, a′)−Q(s, a) (26)

Each weight wi is updated by:

wi ← wi + α · fi(s, a) (27)

where α is the learning rate and γ is the discount factor.
In our implementation, we support two approach for

learning the weights: learning while fighting and specific
training. For learning while fighting, we use an empirically
promising initial weights and use ϵ-greedy strategy to update
the weights and take actions during the competition. For spe-
cific training, we have a specific training script of letting the
agent to fight against minimax when being sente or gote, and
update the weights.

According to our experiments and attempts, learning
while fighting strategy performs much better than specific
training. Hence we solely consider the approximate q-
learning agent with learning while fighting.

ϵ-greedy
The agent balances exploration (trying new actions) and ex-
ploitation (choosing the best-known action). With probabil-
ity ϵ, it explores (choosing a non-backward random move if
possible); otherwise, it exploits by selecting the action with
the highest current Q-value. The exploration rate ϵ dynami-
cally adjusts based on game progress and decays over time.

Reward Function
In approximate q-learning, designing reward is also impor-
tant. The Q-value will be tuned towards the pattern of re-
ward function. We provide a multi-stage and comprehensive
reward function of a state and corresponding action for our
agent as follows:

reward = 1win · (3000 + 500× 4× pieces in goal)

+ 1goal progress>0 ·
[
300× 2current pieces

]
+

{
200× distance improvement, if 4× pieces in goal ≥ 2

100× distance improvement, otherwise

− 1avg distancenew>avg distanceold · 300

+


0, if is jump = 1 and 4× pieces in goal ≥ 3

50, if is jump = 1 and 4× pieces in goal ≥ 2

200, if is jump = 1 and 4× pieces in goal < 2

0, otherwise

−


500, if is backwards = 1 and 4× pieces in goal ≥ 2

200, if is backwards = 1 and 4× pieces in goal < 2

0, otherwise
(28)

In short, it provides large rewards for winning, scaled
bonuses for pieces entering the goal, rewards for distance
improvement (scaled by game stage), penalties for moving
backward, and dynamic bonuses for jumps (larger in early
game). The intention of designing complicated and compre-
hensive reward function is to make the reward more intu-
itively consistent with the real game reward pattern.

Neural Approximate Q-Learning Agent (DQN)
This agent implements a Deep Q-Network (DQN), a more
advanced reinforcement learning technique that uses a neu-
ral network to approximate the Q-function. The unique com-
ponents compared to Approximate Q-learning are Q-value
network and DQN training paradigm.

Network Pipeline
The pipeline of Network is as Figure 5. The input of net-
work is Board state (4 channels) and action (4 dimensional).
Board state has four channels encoding the board states con-
taining player’s pawns, opponent’s pawns, player’s goal area
and opponent’s goal area. The action is four dimensional
since it has four data: xstart, xend, ystart, yend. The board vector
will go through three convolutional layers (Conv2d)(O’Shea
and Nash 2015) and action vector will go through a fully
connected layer. These two processed vector will be con-
catenated and fed into three fully connected layers and even-
tually output Q-value. This is a regression model.

Figure 3: Training figure of sente side

Figure 4: Training figure of gote side

Algorithm 1 Deep Q-learning with Experience Replay
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1,M do
4: Initialize sequence s1 = {x1} and preprocessed se-

quenced ϕ1 = ϕ(s1)
5: for t = 1, T do
6: With probability ϵ select a random action at
7: otherwise select at = maxa Q

∗(ϕ(st), a; θ)
8: Execute action at in emulator and observe re-

ward rt and image xt+1

9: Set st+1 = st, at, xt+1 and preprocess ϕt+1 =
ϕ(st+1)

10: Store transition (ϕt, at, rt, ϕt+1) in D
11: Sample random minibatch of transitions

(ϕj , aj , rj , ϕj+1) from D
12: Set temp = γmaxa′ Q(ϕj+1, a

′; θ)

13: Set yj =
{

rj for terminal ϕj+1

rj + temp for non-terminal ϕj+1

14: Perform a gradient descent step on (yj −
Q(ϕj , aj ; θ))

2

15: end for
16: end for

DQN training paradigm
The overall pseudocode about DQN(Mnih et al. 2013) train-
ing is presented in Pseudocode Algorithm 1.

Figure 5: Pipeline of Network in DQN

Experience Replay Transitions (state, action, reward,
next state, done flag) are stored in a replay memory. Dur-
ing training, mini-batches are randomly sampled from this
memory to update the network. This breaks correlations be-
tween consecutive samples and improves learning stability.

Target Network A separate ”target” neural network, with
the same architecture as the main Q-network, is used to
generate the target Q-values for the TD error calculation
(R + γmaxa′ Qtarget(s

′, a′)). The weights of the target net-
work are periodically copied from the main Q-network, pro-
viding a more stable learning target.

Learning Mechanism The main Q-network is trained by
minimizing the Mean Squared Error (MSE) between its pre-
dicted Q-values and the target Q-values computed using the
target network and observed rewards. The Adam optimizer
is used. The related training figures in our experiments when
training on the sente side and gote side are as Figure 3 and 4.

Experiments
We evaluate our agents via head-to-head matches under
varying rule parameters. Below, we describe the experimen-
tal setup and present the resulting win-rate heatmaps. In all
of our experiments, the board size is 8 and there are two
players.

Experiment Setup
In our tests, there are three key parameters:

• Agent types: All possible pairings of the six agents.

• Maximum turns: 500. If a match exceeds 500 steps, ter-
minate and declare the player with more pawns in their
goal area the winner.

• Total rounds: 100. After 100 matches per pair, calculate
each agent’s win rate. we conducted only 50 matches due
to its higher computational cost.

Winning Condition
A player is declared the winner in a single match based on
the following rules:

• We declare a winner immediately if one player has moved
all the pawns into the goal area.

• If 500 turns elapse without this condition, the player with
more pawns in their goal area wins; if tied, the match is a
draw.

Experiment Results
Under the above settings and winning conditions, we con-
ducted head-to-head matches for every possible pairing of
player types. The outcomes of these matches are summa-
rized and visualized using heatmaps to highlight win rates
and performance differences across agents.

The results are illustrated in Figure 6, where each cell in-
dicates the win rate (in percentage) of the first player (Sente,
row) when playing against the second player (Gote, col-
umn). A higher value indicates a stronger performance of
the row agent when moving first. The color gradient reflects
the win rate, ranging from green (low) to red (high).

Note that win rates exclude drawn games and may there-
fore be non-integral values.

For clarity, the agents are abbreviated as follows. G
(Greedy), M (Minimax), MLS (Minimax Local Search),
MCTS (Monte Carlo Tree Search), AQL (Approximate Q-
Learning), and NAQL (Neural Approximate Q-Learning).

Figure 6: Heatmap of Win Rate

Rule Modification
To encourage forward progress and strategic multi-jumping,
we modified the rule and applied full experiments on it.

Revised Experimental Setup
We introduced two new parameters to encourage progress.

• Maximum turns: 100. If a match exceeds 100 turns, it
ends in a draw to prevent score exploits through repeti-
tive movements.

• Goal entry reward: 10 points per pawn entering the goal.

• Jump reward scalar (jump scalar): For a sequence of
jump count consecutive jumps, award jump count×
jump scalar additional points.
We first evaluate jump scalar ∈

{1.0, 1.2, 1.5, 2.0, 5.0}, then conduct a binary search
to find the value yielding roughly 50% draws.

In Part (1) of the experiment, we evaluate agent perfor-
mance under five different values of jump scalar: 1.0,
1.2, 1.5, 2.0, and 5.0. In Part (2), we apply a binary search
strategy to determine the optimal value of jump scalar
that results in approximately 50% of the matches ending in
a draw.

Revised Winning Condition
• If all pawns enter goal areas within 100 turns, the higher-

scoring player wins.
• Otherwise, the match is a draw.

Revised Experiment Results
Under the revised settings and winning conditions, we con-
ducted head-to-head matches for Greedy, Minimax and Min-
imax Local Search players. Note that we limit our evalu-
ation to G, M, and MLS, as other agent types are unable to
fully exploit the additional rewards introduced by the revised
rules. The outcomes of these matches are summarized and
visualized using heatmaps to highlight win rates and perfor-
mance differences across agents.

The revised results in part (1) are illustrated in the first five
subplots in Figure 7, where each cell indicates the win rate
(in percentage) of the first player (Sente, row) when playing
against the second player (Gote, column).

For clarity, the agents are abbreviated as follows: G
(Greedy), M (Minimax), MLS (Minimax Local Search).

Analysis
Sente vs. Gote Advantage
In Halma, the first player (Sente) and second player roles
can influence outcomes due to the game’s turn-based nature
and board asymmetry. To assess this, we calculate the total
wins for each agent across all matches.

Out of 2,990 games, Sente won 1,184 (≈ 39.6%), and
Gote won 1,806 (≈ 60.4%), showing a substantial Gote ad-
vantage.

The two deterministic, depth-2 search agents (Minimax,
MLS) are the main culprits—Sente never wins against itself,
so every mirror match gives Gote a free +100%. Stochastic
or learning-based agents (Greedy, MCTS, AQL, NAQL) ei-
ther swing the other way or stay close to parity, which is why
the global numbers are not even more skewed.

Strategy Performance Analysis
Greedy (G) The Greedy (G) agent, which selects uni-
formly at random from the set of actions that maximise a
hand-crafted heuristic, achieves an impressive overall win-
rate of roughly 80%. Although it is conceptually simple and
myopic, the stochastic tie-breaking injects a degree of vari-
ability that prevents opponents from over-fitting to a single
deterministic line of play.

Figure 7: Impact of jump scalar

Minimax (M) The Minimax (M) agent employs a two-ply
α − β search with a static evaluation function. Owing to its
fixed depth and the absence of any randomisation in move
selection, its behaviour is fully deterministic. The shallow
search horizon leaves it vulnerable to longer-term tactical
refutations, which is reflected in its comparatively poor em-
pirical performance.

Minimax Local Search (MLS) The Minimax Local
Search (MLS) agent augments the basic Minimax procedure
with a local move-reordering heuristic that slightly improves
the quality of its principal variations. While this modifica-
tion yields a modest gain in win-rate relative to the plain
Minimax player, the agent remains deterministic and inher-
its the same fundamental depth-limitation.

Monte Carlo Tree Search (MCTS) The Monte Carlo
Tree Search (MCTS) agent serves as a mid-level baseline. It
balances exploration and exploitation through UCT and, by
averaging over thousands of playouts, produces solid but un-
spectacular play. Empirically, its win-rate hovers around the
centre of the field, outperforming the deterministic searchers
yet falling short of the learning-based agents and the strong
Greedy heuristic.

Approximate Q-Learning (AQL) The Approximate Q-
Learning (AQL) agent represents each state–action value
as a linear combination of domain-specific features updated
via temporal-difference learning. Against search-based op-
ponents—particularly the Minimax variants—it secures a
clear statistical edge, indicating that even a relatively low-
capacity function approximator can capture strategic pat-
terns that elude shallow search.

Neural Appraoximate Q-Learning (NAQL) The Neural
Approximate Q-Learning (NAQL) agent replaces the linear
approximator with a deep neural network trained through
self-play primarily against the Minimax family. This tar-
geted curriculum yields dramatic gains: NAQL dominates
both Minimax and MLS and remains competitive with
Greedy and MCTS. Its performance underscores the ad-
vantages of high-capacity function approximation combined
with adversarial training.

Key Insights
Collectively, the results demonstrate that no single paradigm
is universally dominant. Simple, well-tuned heuristics
(Greedy) can outperform more sophisticated search when
the heuristic aligns closely with the game’s true value land-
scape. Conversely, shallow deterministic search (Minimax,
MLS) is severely handicapped by its limited horizon, yet still
provides useful sparring partners for reinforcement-learning
agents. Stochastic, simulation-based methods (MCTS)
achieve robust, “average-case” play but may lack the sharp
tactical vision required to break strong heuristic lines. Fi-
nally, learning-based agents (AQL, NAQL) profit substan-
tially from expressive value functions and targeted self-play,
with NAQL’s neural representation delivering the largest
leap in strength—particularly against the opponents it was
trained to exploit.

Impact of jump scalar

To quantitatively analyse the effect of jump scalar, we
evaluated five different parameter settings and observed that
the proportion of draws rises sharply as jump scalar in-
creases, while win-rate shifts are more nuanced.

For low multipliers (≤ 1.2) preserve the original “material
advantage” meta-game. Greedy retains 70–80% win rates
because quickly ferrying a pawn into the goal still outweighs
speculative multi-hop routes.

For mid-range (≈ 1.5) is the tactical “sweet spot”. Search-
based agents can finally monetise deeper look-ahead, top-
pling Greedy without letting games stagnate. Decisive re-
sults remain common (draw-rate only ≈ 10%), so rankings
are statistically meaningful.

For high multipliers (≥ 2) trade decisiveness for fairness.
As hop chains dominate the reward landscape, missing one
key sequence rarely leaves enough turns to recover; thus
draws surge and inter-agent gaps narrow.

For very high multipliers (5) all but eliminate decisive
outcomes, making the system useless for discrimination or
learning feedback. Both of the players are more willing to
jump repeatedly instead of jumping into goal area.

In summary, the analysis confirms that carefully
tuned—but not extreme—jump incentives improve both ef-
ficiency and competitive performance, validating the heuris-
tic design choice and providing a principled default value for
downstream experiments.

External Resource
In this project, the GUI and framework are based on
https://github.com/indrafnugroho/halma.
We modify the code engineering to support using multiple
agents conveniently and classic & score two modes.

Figure 1 is a screenshot of the game GUI in our
project. Figure 2 is borrowed from Paperwithcode.
Pseudocode 1 is borrowed and slightly modified from the
pseudocode in the original DQN paper(Mnih et al. 2013)

The training for Neural Approximate Q-Leaning agent
support torch and CUDA. The Figure 3 4 6 7 are plotted
with Matplotlib.

References
[Mnih et al. 2013] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Graves, A.; Antonoglou, I.; Wierstra, D.; and Riedmiller,
M. A. 2013. Playing atari with deep reinforcement learning.
CoRR abs/1312.5602.

[O’Shea and Nash 2015] O’Shea, K., and Nash, R. 2015.
An introduction to convolutional neural networks. CoRR
abs/1511.08458.

[Swiechowski et al. 2021] Swiechowski, M.; Godlewski, K.;
Sawicki, B.; and Mandziuk, J. 2021. Monte carlo tree
search: A review of recent modifications and applications.
CoRR abs/2103.04931.

https://github.com/indrafnugroho/halma
https://paperswithcode.com/method/monte-carlo-tree-search

	Introduction
	Rules
	State Space
	Motivation

	Methodology
	State Evaluation
	RandomPlayer
	GreedyPlayer
	Minimax Agent
	Monte Carlo Tree Search Agent
	Q-learning Agent(Failed)
	Approximate Q-Learning Agent
	Learning Mechanism
	-greedy
	Reward Function
	Neural Approximate Q-Learning Agent (DQN)
	Network Pipeline
	DQN training paradigm

	Experiments
	Experiment Setup
	Winning Condition
	Experiment Results

	Rule Modification
	Revised Experimental Setup
	Revised Winning Condition
	Revised Experiment Results

	Analysis
	Sente vs. Gote Advantage
	Strategy Performance Analysis
	Key Insights
	Impact of jump_scalar

	External Resource

