
CS183 Review Linguistie L2. Tasks, Data, Evaluation - Tasks and Evaluation Metric closed set · Task: Classification: input text data, output label from E.g. Part of Speech Tagging (河性游注) tor this task, metric can be? Prediction class Diagonal: Correct! Def-Confusion Matrix: Taget class > Accuracy: For a particular class, how many of the model's predictions of that class are accurate? (how precise is the model?) Class: singular noun (NN) 27 correct 2 true positive => Precision: 27/31 -87.1% accuracy Target Class => Recall: model accurately predict that label? (how well does the model recall the items for a particular class?) Class: singular noun (NN) **Predicted Class** 2 true positive With Precision & Recall => Fi Score: 100% 2 x P x R P + R2 x 0.4 x 1.0 0.4 + 1.0 = **0.57 F1** · Task: Automatic Speech Recognition: Utterance => bext Metric: Word Error Rate (WER) Possible Error: Substitution (S), Deletion (D) & Insertion (I) WER = (S+D+I)/N. N is the # of words in GT script Key. Calculate Correct S+D+I'=> Levenshtein Distance

Hypothesis (i)

"Grow" the edit matrix iteratively, by accumulating the cost for each element d [i,j]

, local (i.j) =

) I, if HuiJ≠RTj) o, else

d[i, j] = min(d[i-1, j] + 1,

d[i, j-1] + 1,

 $d[i-1, j-1] + local_substitution(i, j))$

Insertion # Deletion

Substitution

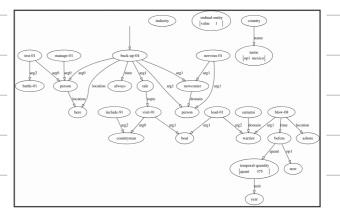
		Hypothesis (i)						
		0.	1. Take	2. me	3. to	4. you	5. see	6. campus
Reference (j)	0.	0	1	2	3	4	5	6
	1. Take	1	Q	1	2	3	4	5
	2. me	2	1	0	1	2	3	4
	3. to	3	2	1	0	① ¹ ↓:	2	3
	4. UC	4	3	1	12	1	2	2
	5. campus	5	4	2	2	2	2	2
				subs	/ titutio	n in	। sertion	

You≠UC ∴ local(i,j)=1

Optimal path: tells us what the errors were

· Task: Structured Prediction: text data of labels from a closed set E.g. Syntactic Parsing (Pependency)

Battle-tested industrial managers here always buck up nervous newcomers with the tale of the first of their countrymen to visit Mexico, a boatload of


Eq. Semantic Parcina (1782/1746)

E.g. Semantic Parcing (1764) (Abstract Meaning Representation)

Metric: For them: Task - specific

E.g. Semantic Text
Parsing: V:

match accuracy execution accuracy

Information Extraction	on , Question Answering
·	ased Text Generation: like machine translation \hat{y}
Metric: OBLEU!	• System outputs / candidates y \hat{y}_1 The most common form of language use is conversation
	\hat{y}_2 The most common form of language is speech.
Gn(A), n-gram	(里面天重复不孝)
	• $G_n(x)$ is the set of <i>n</i> -grams in sequence x
(15,1%)	$G_1(y)=\{$ the, most, natural, form, of, language, use, is, dialogue, . $G_2(y)=\{$ the most, most natural, natural form, form of, $\}$
	• $C(s,x)$ is the number of occurrences of <i>n</i> -gram s in x
	C(the, y) = 1 $C(most, y) = 1$ $C(natural form, y) = 1$
<i>n</i> -gram precisio	n
_	<i>n</i> -grams actually occur in the reference?
_	$\sum_{s \in C} \min(C(s, \hat{y}), C(s, y))$
$P_n(\hat{y},y)$	$=\frac{\sum s \in G_n(y) \text{ min}(c(s,y),c(s,y))}{\sum s \in G_n(y) \text{ min}(c(s,y),c(s,y))}$
10 (0 / 0 /	$= \frac{\sum_{s \in G_n(\hat{y})} \min(C(s, \hat{y}), C(s, y))}{\sum_{s \in G_n(\hat{y})} C(s, \hat{y})}$
	ural form of language use is dialogue.
	nmon form of language use is conversation.
74:	所有 n-gram 元组,有重复,的数量,在GT中出现
分子:	对于每一个内层组, min (C(s, \hat{y}), c(s, \hat{y}))
-	n-gram precision
	How many of the <i>n</i> -grams actually occur in the reference?
Calculation Example	$P_n(\hat{y}, y) = \frac{\sum_{s \in G_n(\hat{y})} \min(C(s, \hat{y}), C(s, y))}{\sum_{s \in G_n(\hat{y})} C(s, \hat{y})} \qquad \qquad \dots$
Translo	
Example	$egin{array}{cccccccccccccccccccccccccccccccccccc$
这是取出的 Gn(A)	$G_1(\hat{y}_1) = \{$ the, most, common, form, of, language, use, is, conversation, . $\}$
这是取出的 Gn(A) 来自于 prediction!	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Maril Lices con	most 1 1 1 common 1 0 0 form 1 1 1
	of 1 1 1 language 1 1 1
	use 1 1 1 is 1 1 1 conversation 1 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

· Task: Text Comprehension: Text -> Short piece of text

To prevent rather short sentences for BLEU score' stealing'

$$BP(\hat{y}, y) = \begin{cases} 1, & |\hat{y}| \ge |y| \\ e^{1 - \frac{|y|}{19}}, & \text{else} \end{cases}$$

n-gram precision

How many of the *n*-grams actually occur in the reference?

$$P_n(\hat{y}, y) = \frac{\sum_{s \in G_n(\hat{y})} \min(C(s, \hat{y}), C(s, y))}{\sum_{s \in G_n(\hat{y})} C(s, \hat{y})}$$

y The most natural form of language use is dialogue. \hat{y}_3 language

$$\underbrace{\mathrm{BP}(\hat{y}, y)}_{} = \begin{cases} 1 & |\hat{y}| \ge |y| \\ e^{(1 - (|y|/|\hat{y}|))} & |\hat{y}| < |y| \end{cases} -$$

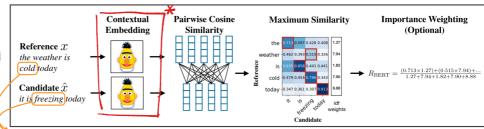
In practice: Average n-gram precision, for up to N = 4

$$P_n(\hat{y}, y) = \frac{\sum_{s \in G_n(\hat{y})} \min(C(s, \hat{y}), C(s, y))}{\sum_{s \in G_n(\hat{y})} C(s, \hat{y})}$$

$$BP(\hat{y}, y) = \begin{cases} 1 & |\hat{y}| \ge |y| \\ e^{(1 - (|y|/|\hat{y}|))} & |\hat{y}| < |y| \end{cases}$$

BLEU = BP(
$$\hat{y}, y$$
) exp $\left(\sum_{n=1}^{N} \frac{1}{N} \ln P_n(\hat{y}, y)\right)$

2 Representation Similarity: Synonyms should work or suffice, but this can't be reflected on BLEU


Need Semantic or

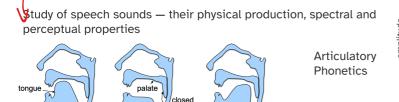
Contextual Representation

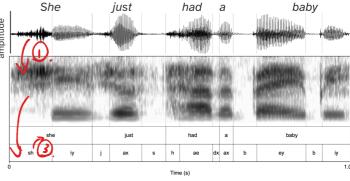
> Embedding

Then colcutate

similarity ----

No *n*-gram overlap, but should still get some credit!


BERTScore, Zhang et al. 2020


- 3 Human Eval, Especially for long-text generation.
 - There've been study showing that automatic metric can reflect human judgemen!
- @ LLM-as-a-Judge: Use LLM to score or judge

· Task: Communicative Suc	recs: System take action	via longuago.
	Output referring expression	July
Easy to eval since they t		plect!
· Task: Dialogue & Interactive	· ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•	_	o overecivitu
Hard to eval () Def	ine slot filling task, but reduce another model as simulater rathen	Haple bumps les
1 036	unother model as simulatel racker	Way raman us
- Building Language Technology Task - Implementation Tasks (in General)	logy — A paradigm: (Training included) — Eval (u How can we implement a classification model)	vith Dæta!)
Most tasks can be thought of as a mapping from some input X to some output Y , where one or both of these have to do with language	<pre>def classify(x: str) -> str: sports_keywords = ["baseball", "soccer", "f if any(keyword in x for keyword in sports_k</pre>	(ootball", "tennis") eywords):
Task Input (X) Output (Y) Text classification Text Label from a fixed class Automatic speech recognition Audio signal Text	Prompting a model without training	
Dependency parsing Text Dependency tree Code generation Text Executable code Question answering Document and question (both text) Answer (text)	If the following text is about sports, reply "Cal football is set to lose its entire starting"	→ □
Translation Text (in source language) Text (in target language) Open-ended NLG Optional prompt (text) Text Referring expression generation Image and target object Referring expression (text) Dialogue Conversation history (text) Next utterance (text)	Machine learning I love to play baseball. The stock price is going up. He got a hat-trick yesterday. He is wearing tennis shoes. Training Training Other Sports Other Other Sports Other	Model
How can we estimate performance on new documents?	Data	
• Simulate it using held-out data just for evaluation!	Before pretrained models, nearly came with splits, assumed to	
- Benchmark and Model Eval	Training data	Development data For performing ablations, choosing hyperparameters, etc.
Really important: • Estimating how well our models will work on real-world	For updating model parameters directly Validation data For deciding when to stop training	Public Private test data test data
Shared understanding of model performance with standardized evaluations Building trust within a community in proving how well a new model does		

• Driving progress towards specific tasks and capabilities

语言学: phonetics

- Spectrogram reveals some segmental structure with distinct properties
- These are phonemes perceptually distinct speech sounds

Consonants are characterized by place and manner of articulation

音位一音节一单词

International Phonetic Alphabet (IPA)

 Phoneticians compiled a common set of sounds used to codify different speech sounds (across languages)

bat [ae]

CONSONAN	TS (PU	LM	ONIC)											
	Bilal	laie	Labiodo	ental	Den	cul.	Alvec	lar Post	alveolar	Retr	oflex	Pal	atal	V
Plosive	p	b					t	1		t	d	С	J	k
Nasal		m	1	ŋ				1			η		n	
Trill		В			r									
Tap or Flap				v				r			τ			
Fricative	φ	β	f	v	θ	ð	s	1 3	3	s	Z.	С	i	x

Acoustic Phonetics

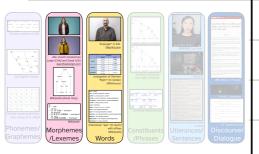
> /p/ is caused by constriction at lips (labial) (nasc /p/ is caused by sudden release of air (plosive) dent

Place of articulation

wels are characterized by jaw position and tongue shape

贴之进行区分!!

• Some vowels also use lips (eg. sound uw in cool)


IPA:一省一省一音

着证学

Phonology is the study of rules that govern the organization of sounds in a language (Phonemes → Syllables → Words)

 Pronunciation dictionaries (often made by linguists) give the syllables and phonemes within each word in vocabulary

Conclusion: —

- Words are composed of atomic units based on sound (for spoken languages)
- Sounds are a function of how we move our vocal tracts and mouth anatomy
- Languages have distinct sets of possible sounds (phonemic inventory)
- And "rules" governing which sound sequences are likely (syllable structure)

接下来介绍 Morphemes/Lexemes (语素/词值(字典词))

• Text data can be viewed as a sequence of words

 First step in building a language technology: building a function that maps from arbitrary text data to that sequence

['The', 'most', 'natural', 'and', 'basic', 'form', 'of', 'language', 'use', 'is', 'dialogue', '!', 'Every', 'language', 'user', ',' 'including', 'young', 'children', 'and', 'illierate', 'adults', ',' 'can', 'hold', 'a', 'conversation', ',', 'whereas', 'reading', ',' writing', ',', 'preparing', 'speeches', 'and', 'even', 'listening', 'to', 'speeches', 'are', 'far', 'from', 'universal', 'skills, '.']

okonized toyt

Type-token distinction:
 word type)

Type: a unique word in a text corpus

Token: an instance of a word type, appearing in a particular context

Example

{\',',',\'\',\'Every', \The', \a', \adults', \and', \are', \basic',
\can', \children', \conversation', \dialogue', \even', \far', \form',
\form', \hold', \illiterate', \including', \is', \alungue', \illiterate', \including', \is', \alungue', \illiterate', \including', \is', \alungue', \illiterate', \including', \is', \illiterate', \including', \is', \including', \is', \including', \inclu

instances (tokens) of wordtype ','

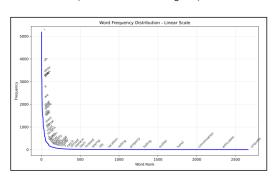
['The', 'most', 'natural', 'and', 'basic', 'form', 'of', 'language',
'use', 'is', 'dialogue', ':', 'Every', 'language', 'use', 'l.',
'including', 'young', 'children', 'and', 'lillterate', 'adults', ',
'can', 'hold', 'a', 'conversation', 'N, 'whereas', 'reading', ',
'writing', ', 'preparing', 'speeches', 'and', 'even', 'listening', '

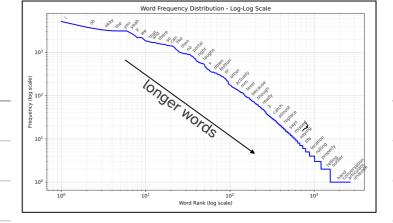
tokenized text

 Simplest tokenizer (for English): splitting on spaces BXJ token, how to tokenize? Simplest: white pace!

punctuations mixed,

maybe need rules for snow ['The', 'most', 'natural', 'and', 'basic', 'form', 'of', 'language', 'use', 'is', 'dialogue:', 'Every', 'language', 'user,', 'including', 'young', 'children', 'and', 'illiterate', 'adults,', 'can', 'hold', 'a', 'conversation,', 'whereas', 'reading,', 'writing,', 'preparing', 'speeches', 'and', 'even', 'listening', 'to', 'speeches', 'are', 'far', 'from', 'universal', 'skills.'] But this gets us some weird wordtypes: Not really words different from dialogue, user, skills • nltk tokenizers, with special rules for punctuation Once you've "trained" your tokenizer, you're stuck with it import nltk
tokenized = nltk.word_tokenize(s) vocab = ['.', ',', ':', 'Every', ..., 'writing', 'young']
vocab.index('ChatGPT') -> not found! ['The', 'most', 'natural', 'and', 'basic', 'form', 'of', 'language', 'use', 'is', 'dialogue', ':', 'Every', 'language', 'user', ',', 'including', 'young', 'children', 'and', 'illiterate', 'adults', ',', 'can', 'hold', 'a', 'conversation', ',', 'whereas', 'reading', ',', 'writing', ',', 'preparing', 'speeches', 'and', 'even', 'listening', 'to', 'speeches', 'are', 'far', 'from', 'universal', 'skills, '.'] vocab = ['.', ',', tokenized indices = ':', 'Every', ..., 'writing', 'young', '<UNK>'] [vocabulary, index(token) for token in tokenized_text add a special token if token in vocabulary. if token in vocabulary
else vocabulary.index('<UNK>')] for unknown words · But this still loses similarity between wordtypes Lexically similar to, but Not Robust enaugh morphologically distinct from skill, read, speech Character Unit -> Encode, using Unicode: Strings are sequences of characters (bytes)! But: 1 · But: individual characters are not meaningful ['.', ',', ':', 'A', 'B', 'C', ..., 'a', 'b', 'c', ..., '7', '8', '9'] Now our vocabulary is a fixed size (all possible Unicode · But: input sequences are much longer characters) Compromise: Character ← > word How to set the subparts vocab Modern standard for building a tokenizer Main principle: words are (often) composed of subparts (morphemes) • Inputs: collection of texts and target vocabulary size · Our vocabulary should have entries for • Initial vocabulary is the set of all bytes (characters) across the frequent words kept whole, because we have a lot of data about those words Until the target vocabulary size is reached, repeat the But it should also have entries following: Adamla tanıştım indicator of subject for parts of less-frequent words, so our ML models can learn • Tokenize all of the texts using the current vocabulary I met with the man how to compose parts of words • Find the most common bigram in the tokenized texts, then into whole words (especially Adamın kitabı add it to the vocabulary as a new wordtype unfamiliar words!) 智神的 letter level 等行形, 看 2-gram frea, Documents + frequencies: ('hug', 10), ('pug', 5), ('pun', 12), ('bun', 4), ('hugs', 5) vocabulary tokenized texts 拉freq max, 世vocab, 之后提 updated 'u', 'g', 'p', 'n', 'b', 's') ('h' 'u' 'g', 10), ('p' 'u' 'g', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'u' 'g', 5) bigrams + frequencies vocab fokenize, 找2-gram, 有freq 'h' 'u' most frequent bigram; add to vocabulary 直至Vocab中token数量降至目标的下 'p' 'u' 'u' 'n' 'b' 'u' * Begin: Every letter is a token \(\Delta : \Delta = >)2 tokens 'g' 's' Documents + frequencies: ('hug', 10), ('pug', 5), ('pun', 12), ('bun', 4), ('hugs', 5) vocabulary tokenized texts ('h', 'u', 'g', 'p', 'n', 'b', 's') ('h' 'u' 'g', 10), ('p' 'u' 'g', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'u' 'g' 's', 5) ('h' 'ug', 10), ('p' 'ug', 5), ('p' 'u' 'n', 12), ('b' 'u' 'n', 4), ('h' 'ug' 's', 5) ('h', 'u', 'g', 'p', 'n', 'b', 's', 'ug')


('h' 'ug', 10), ('p' 'ug', 5), ('p' 'un', 12), ('b' 'un', 4), ('h' 'ug' 's', 5)


('hug', 10), ('p' 'ug', 5), ('p' 'un', 12), ('b' 'un', 4), ('hug' 's', 5)

('h', 'u', 'g', 'p', 'n', 'b', 's', 'ug', 'un')

('h', 'u', 'g', 'p', 'n', 'b', 's', 'ug', 'un', 'hug')

Long-tail ("Zipfian") distribution of wordtypes (from Portal 2 dialogues)

词汇freq基本规律:Zipfian Dist: 只有少数词汇会被frequently使用,绝大多数用得非常少

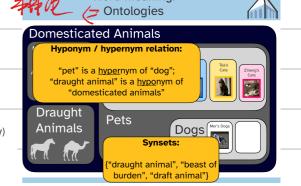
Word Meaning:

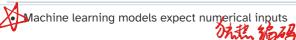
Core question: if a machine learning system is processing text, how should words be <u>represented</u> as input to and within the ML system?

(指移语义学)

Denotational semantics: the symbol *refers to* something in the context in which the language is used

一个词或符号的意义,就是它在现实世界或特定语境中的指代


的那具件事物、概念或实体


Hypernym: 上Xi司

敌点

Hyponym:下兴问 更狭窄

- Missing context-dependence (polysemy)
- Missing meaning of new words
- Requires human labor
- Subjective and culturally dependent

 Represent each word as a unique one-hot vector (vector with values 0, except for one value of 1)

• Vector dimension: the same size as the vocabulary

roblem: no notion of similarity

How can I make my house safe for a new kitten?

How can I make my house safe for a new cat?

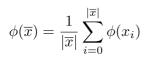
 (Is there some way we could use WordNet to get more informative numerical representations of words?) • Instead: represent words as continuous vectors

Implicitly provides notions of similarity:

 $||\phi(\text{cat}), \phi(\text{kitten})|| < ||\phi(\text{cat}), \phi(\text{dog})||$

- Similarity is learnable from text at scale:
 - ... feeding time in multiple cat households can often be ...
 ... is to relieve the cat from the stress of ...
 ... effect on the feral cat population in rural areas ...
 - ... So I wrapped the kitten up in a towel they noticed that the kitten population was getting high were looking for a kitten , hoping that someone ...

Meaning 从 Context中面来


Core principle: distributional hypothesis

- Words that are used in similar contexts have similar meanings
- Context: typically, other words in a text, but really anything can be context!

• Input: corpus D including pairs $(w,\ c)$ where w is a word and c is a context,	Objective: find
e.g.: • "Everybody likes tesgüino" $(w = \text{"tesgüino"}, c = \text{"tikes"})$ $(w = \text{"tesgüino"}, c = \text{"everybody"})$ e.g., context is every word in the sentence	$\arg\max_{\theta} \prod_{(w,c) \in \mathcal{D}} p(c \mid w; \theta)$
ullet We want to model: given that we observe word w , what's likely in the context c ?	where $\exp(\operatorname{score}(c,w))$
$p(c \mid w; \theta)$	$p(c \mid w; \theta) = \frac{\exp(\operatorname{score}(c, w))}{\sum_{c' \in \mathcal{C}} \exp(\operatorname{score}(c', w))}$
Our objective: find parameters that maximize the corpus probability	score: similarity of
$rg \max_{ heta} \prod_{c} p(c \mid w; heta)$	we use cosine similarity because, representations of in contrast to dot product, it is word and context
$(w,c){\in}\mathcal{D}$ • (There are other methods for word2vec (e.g., GloVe, CBOW), but we will only \bigcap	
look at Skip-Gram in this class)	magnitude: $score(c,w) = cos(\phi(c),\phi(w)) = \frac{\phi(c)\cdot\phi(w)}{ \phi(c) \ \phi(w) }$
Training Paradigm: maximize prob o	f (c,w) pair, and prob is evaluated via
exp(score(c w))	is intractable! Vocab (C) is
$\underset{\theta}{\operatorname{arg max}} \prod_{(w,c)\in\mathcal{D}} \sum_{c'\in\mathcal{C}} \exp(\operatorname{score}(c',w))$ huge! So	o, instead of multiclass classification
sum over all contexts (Don't need prob o	list of w over the entire vocab) Magazine Sampling
we do binary classification => Gi	iven cc'.w, where they don't form
a context and cc.w) from D,	tell each sample form context or not,
* Solution: negative sampling	NEW objective: find
$ ^{st}$ Instead of summing over all possibly contexts in which a $ rg$	$g \max_{\theta} \prod_{c} p((w,c) \in \mathcal{D}) \prod_{c} p((w,c) \notin \mathcal{D})$
* Approximate via learning from contexts in which a word doesn't appear	$(w,c)\in\mathcal{D}$ $(w,c)\in\mathcal{D}'$ What is D ?
* Model whether or not a word-context pair is likely to exist in the dataset	$p((w,c) \in \mathcal{D} = \frac{1}{1 + \exp(-\operatorname{score}(c, w))}$
$p((w,c) \in \mathcal{D} = \frac{1}{1 + \exp(-\operatorname{score}(c, w))}$	
similarity of representations of word and context	$p((w,c) \notin \mathcal{D}) = 1 - p((w,c) \in \mathcal{D})$
Binary Classification Prob Represent	otien: Sigmoid
NEW objective: find $\arg\max_{\theta} \prod p((w,c) \in \mathcal{D}) \prod p((w,c) \not\in \mathcal{D}) \longleftarrow \underbrace{f}$	
$(w,c)\in\mathcal{D}$ $(w,c)\in\mathcal{D}'$	large corpus they are almost not from conserve.
$w' \sim n(W)$ $c' \sim n(C)$	
unigram prior unigram prior over words over contexts	$a:b::c:?\equiv d=\arg\max_{i\in\mathcal{W}}\frac{(\phi(b)-\phi(a)+\phi(c))\cdot\phi(i)}{ (\phi(b)-\phi(a)+\phi(c))\cdot\phi(i) }$
now to train?	cosine the expected and some
* Gradient descent * In practice, we work with log probabilities, not direct	similarity of representation of the other word
probabilities, to avoid float underflow	analogy word i
With embedding, we can even ou	vector arithmetic (AZJB, 40CZJ?)
2 Translation Key Assumption	• What if we have embeddings in different languages and want to align them? Given: $ \bullet \ \phi^A : \text{language A's embedding function} $
	• ϕ^B : language B's embedding function • $\mathcal{D}=\{w_i^A,w_i^B\}_{i=1}^M$: dataset pairing \emph{M} word translations
Two Language Embedding is the diffe	$W \longrightarrow W$
napping of the same semantic space	$\overline{i=1}$
THE STATE STATE OF THE STATE OF	X Protential Auto

But still has challenge:

- If we have representations for parts of sentences (wordtypes), then can we get a representation of the whole sentence?
- · One option: bag-of-words representation

Try to represent a sentence, but

miss a lot of things. (Syntax, Senantic.) But we don't do this anymore

Word Embedding Today

Polysemy (一词多义)

Word Embeddings in the Age of LLMs

- Building a language technology pre-LLMs, for a target task:
 - Download some pre-trained word embeddings from the Internet
 - Initialize your language model with these word embeddings (all other parameters randomized)
 - Use your task-specific data to fine-tune the other parameters (possibly also fine-tuning the word embeddings)
 - Having a good starting point via word embeddings is really important, especially with little task-specific data

- Language models still learn embeddings specific to each wordtype
- $\bullet\,$ But we don't download them from the Internet we download the whole language model 👍 Download as a whole

L4. Syntax

· Grammaticality judgments are not universal!

Grammati cality

- No such thing as "bad grammar" disagreements over what feels grammatical or not are due to language
- · Grammatical sentences don't need to be meaningful
- Our main task: we have some language L, and we want to know whether a new sentence $x \in L$
- Should we represent ${\it L}$ as a finite-sized set of possible sentences? Apparently no !
- What about a regular expression?

Some sentences sound grammatical Some not

Can regular expression work?

- Can't handle center - embedding

-Lack of Memory

=> No !

The cat that thinks the cow thinks the rabbits hid are wrong.

The rabbits hid.

DT N VB

(DT N VB) *

The cow thinks the rabbits hid.

The cat that thinks the cow thinks the rabbits hid is wrong. VB VB VB JJ VB DT N

DT N IN (DT N VB) * VB JJ?

Is there another formalism that tells us whether a string is "accepted" in a language or not?

> Introducing: Context-Free Grammar

Context-Free

词汇,不能再写单

为定义如何用nonterminal

k terminal to re-write

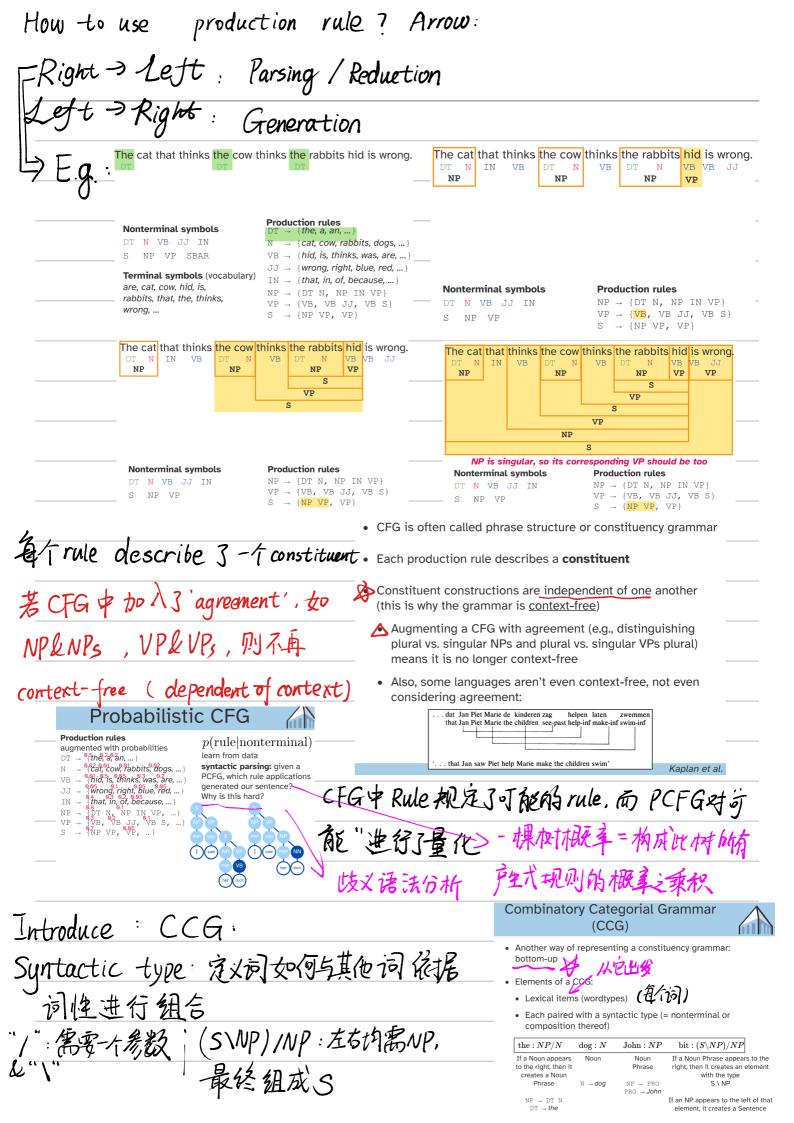
non-terminal

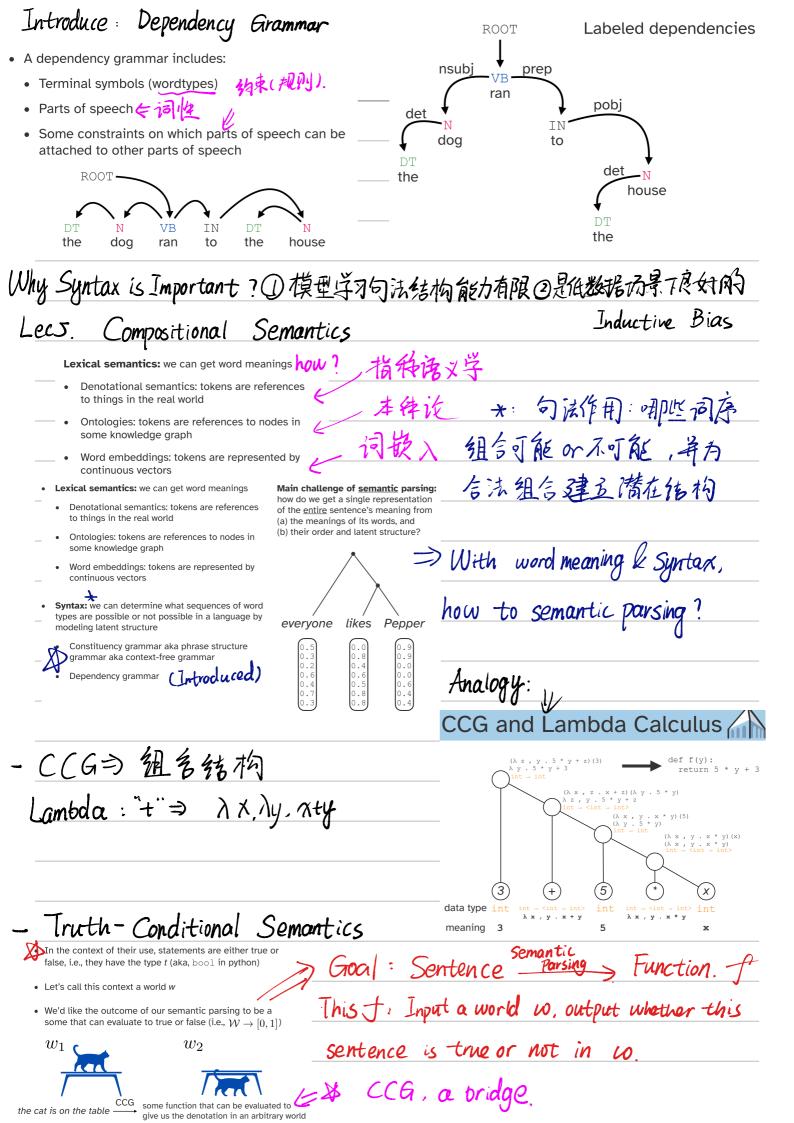
Can be re-written as --- 1

- Set of nonterminal symbols 非经结构集合
- Set of terminal symbols (wordtypes)
- Set of production rules defining how nonterminal symbols could be expressed via the composition of other nonterminal and terminal symbols

Nonterminal symbols

VB JJ IN VP SBAR


Terminal symbols (vocabulary) are, cat, cow, hid, is, rabbits, that, the, thinks, wrong, ...


 $DT \rightarrow \{ the, a, an, ... \}$ $\mathbb{N} \rightarrow \{ cat, cow, rabbits, dogs, ... \}$ $VB \rightarrow \{$ hid, is, thinks, was, are, ... $\}$ $JJ \rightarrow \{wrong, right, blue, red, ...\}$

IN \rightarrow { that, in, of, because, ... }

 $NP \rightarrow \{DT N, NP IN VP\}$

 $VP \rightarrow \{VB, VB JJ, VB S\}$ {NP VP, VP}

everyone

s / (s \ NP)

< e - t > - t

\(\lambda \ f \ \ \ \ \ x \\

(person(x) - f(x))

likes $(S \setminus NP) / NP$ $e \rightarrow \langle e \rightarrow t \rangle$ $\lambda x, y . likes (y, x)$

Pepper
NP
e
Pepper

e → t . likes (y, Pepper)

S \ NP

		λy . likes (y, Pe	epper)	
	everyone	likes	Pepper	
Syntactic type	S / (S \ NP)	(S \ NP) / NP	NP	
Semantic type	<e t="" →=""> → t</e>	e → <e t="" →=""></e>	e / .	
λ-expression	$\lambda f \cdot \forall x$ $(person(x) \rightarrow f(x))$	λ x, y . likes (y, x)	Pepper C	

Example:

Penner i和 L为宝体

7-exp =) function

 $\begin{array}{c} S \ \backslash \ NP \\ e \to t \\ \lambda \ y \ . \ likes \ (y, \ Pepper) \end{array}$

Final Result

nai kesult.

Formal Semantics

- Logical operators, like ∨, ∧, and ¬
 Pepper is clever and curious
- Quantifiers like ∀ and ∃
 Some cats like water
- Relationships between functions ⇒ and ⇔
 Squares are rectangles (∀x(square(x) ⇒ rectangle(x)))
- Verbs can have tenses, and can be modified with adverbs
- We can talk about beliefs others have
- Some combinations of meanings are nonsensical (unevaluable) green ideas
- Sentences aren't just statements sometimes they are commands, questions, etc.
- Sentences exist in the context of previous sentences and their meanings

Modern: 1/

• In NLP, nobody is really mapping from sentences to lambda calculus representations anymore

. $\forall x (person(x) \rightarrow f(x)) (\lambda y . likes (y, Pepper))$

 \forall x (person(x) \rightarrow (λ y . likes (y, Pepper))(x)

 \forall x (person(x) \rightarrow likes (x, Pepper))

 However, many of our problems still take the form of mapping from language to some meaningful structured representation

Lecs: Dialogue / Conversation & Interaction

- Pragmatic: 语用学,研究语言在特定情晕(context)中如何被倾

理解和产生意义

What color is Pepper?

 $[\![\lambda f.(\operatorname{Color}(f) \wedge f(\operatorname{Pepper}))]\!]^i$

三个核心机能。Speech Act, Presupposition&Implication(f) \(f(Pepper) \)

{black}

言语行为

预设

隐含

Semantics: mapping from surface form (sequence of tokens) to formal executable representation Pragmatics: executing the logical form against some context to acquire its denotation

Speech Acts

- Our interpretation of utterances used in context often goes beyond the literal (formal) meaning
- By interpreting speech as action, we can ascribe intent to utterances that isn't obvious from their formal representation

Do you mind if I sit next to you?

Yeah (go ahead)

No (I don't mind)

Sorry, someone is coming

》 当我们将言语诠释为行动时,我们 食够推断潜在查图

Presupposition

- Propositions that must be true about a world in order to compute the denotation of a particular sentence
- In other words: implicit assumptions made by utterances

Pepper owns a house Can be true or false

Pepper's house is big

Computing the truth value requires that, in our world, there is an entity x such that house (x) and owns (Pepper, x)

Awareness of presupposition in speech is very useful for critical analysis of persuasive speech, e.g. in politics

Implicature

- Propositions suggested by an utterance, but not explicitly expressed
- Meaning is determined by reasoning about alternatives

Do you know what they weather will be like today?

You should bring your umbrella.

no

ves low 60s

Alternatives:

chance of precipitation is 30%

Context: in San Francisco

Principles behind Implicature: **Gricean Maxims**

- . General principles we believe we mutually hold about how what kinds of utterances we should add to conversation given what's been said so far:
 - Quantity: utterances should contain just the right amount of information - not too little or too much
 - Truth: utterances should not contain falsehoods
 - Relation: utterances should be relevant to what's been said
 - Manner: utterance form and meaning should be clear
- What happens when we contribute utterances that

Principles behind Implica **Gricean Maxims**

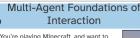
- Flouting conversation maxims is "breaking" them under the assumption the listener knows the speaker is intentionally breaking them
 - E.g., flouting relevance:

now what they weather wil be like today?

You should bring your umbrella.

Violating maxims is breaking them under the assumption the listener won't believe a maxim has been broken

My dog ate my homework.


上面是四项会话原则分打破倒的两种方式。 下面介绍文话中的共同基础:(Common Ground)

During interaction, we maintain some representation of what we believe is mutually known by conversation participants

- Mutually known: I know it. I believe you know it. I believe you believe I know it, I believe you believe I believe you know it, ...
- · What can be in the common ground?
 - Principles guiding how we interact with one another (e.g., Gricean maxims, shared lexicon)
 - Propositions about the world, values and beliefs
 - Things in our shared environment, including things we are paying attention to

- This allows us to reason about what is not in the common ground
 - E.g., facts, beliefs, etc. that we believe the other does not know
- By maintaining models of others' beliefs, we can reason about how they might interpret our utterances
- If we want to bridge a belief gap between ourselves and another conversation participant, we can rely on the the rules governing language use and interpretation that (we believe) are in the common ground

Cooperative Interaction:

- . But there's also stochasticity (e.g., animals, er villagers appear and might destroy your house, but their behavior is predictable)
- But what happens when another player comes to the game?
- Maybe they will take some of your resources from your
- Their behavior is not completely stochastic, though!

Let's assume my partner and I share the same (high-level) goal, and it's in the common ground

- · Goal: build a house
- · It's likely optimal for me to choose actions in a way that depends on my partner's actions, to avoid redundancy and execute the goals
 - I'll gather wood while my partner places it in the right spots to
- · Some environments might require that I and my partner take different actions at the same tim
 - . E.g., pressing paired switches

To best model another player, we may want to keep track of their:

- Beliefs: what information are they using to make decisions? How do they perceive the world, and how do they build an internal model of the world as they act in it?
- Goals: what do they want to get done? Do they share the same goals, are their goals orthogonal, or are they trying to sabotage mine?
- Intentions: how will they attempt to execute their goals? What skills do they have and what strategies are they likely to take?
- Model of me: if it's useful for me to reason about them, they are probably reasoning about me, too - how does this influence their actions?
- How can we more successfully coordinate with one another, especially under uncertainty over how the environment works?
- How can I better model my partner?
 - · What they observe and know?
 - What they are trying to do?
 - What are their plans to act?
- How can I influence my partner?

• By telling them what to do?

- By sharing information with them?
- · By teaching them about how to act?

在multi-agent 环境中:

- At the beginning of an interaction, we might have significant uncertainty over other agents
- Over their goals, beliefs, and skills
 - And also over how they use language
- But over time, we converge to more similar representations
 - By building models of one another from observing their behavior
 - By explicitly resolving uncertainties via language use
 - This refines our expectations of other agents
 - Certainty in our expectations allows us to take communicative shortcuts

Observation space now includes utterances made by other agent(s)

Action space now includes the ability to produce an utterance

E Dynamic Interaction

The influence of learning on interaction dynamics:

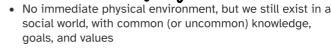
- · Agent policies adapt as they learn about other agents
- This influences the observations other agents make of them
 - · Which in turn influences how other agents adapt

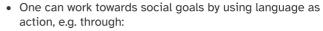
• Challenges for learning in multi-agent environments:

- Agents need to learn their first-order policy (goal, observation action)
- But they also might need to model how their adaptations influence the behavior of other agents, including the introduction of new shared abstractions (i.e., words and conventions)!

• Challenges for evaluating multi-agent systems:

- Dynamics depend heavily on initial conditions: (uncertainty over) variation across agent partners' beliefs, goals, and intentions
- E.g., in teaching contexts, a teacher will adapt their language and pedagogical strategy to the learner's existing knowledge and skills


Simple Multi-Agent Scenario:


- Environment: set of candidate referents, available to both players
- Players
 - Speaker: knows the identity of a target object
 - Listener: no privileged information
- Shared goal: listener picks out the target object
- Actions:
- Speaker: natural language
- · Listener: selection of candidate referent
- Communication channel: unidirectional, single utterance (no dialogue)

Element of Scenarios

- Interaction dynamics also depend heavily on the properties of the context itself:
 - Incentive structure
 - Environment design perception and action, novelty
 - Participants how many, any existing structures among them, roles, a priori asymmetries
 - Communication channel
- Work in computational linguistics, psycholinguistics, and cognitive science aims to characterize the relationship between scenario design and linguistic behavior

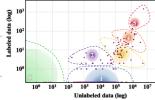
Conversation os a mutti agent game.

- Education
- Persuasion
- Hate speech and dogwhistles

Lec 6: Multilingual NLP

- For any task we expect out of language technologies, they should work for any language __
 - Question answering, information retrieval, summarization
 - Dialogue systems and chatbots
- Language generation
- Language technologies can also support cross-language communication
 - Machine translation
 - Language learning

Challenges



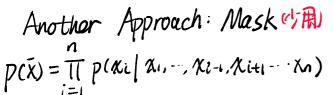
Modality

- Not all languages have writing systems, with many languages where:
 - Only audio recording is possible or available
 - Developing a consistent writing system is difficult, and finding or creating written records is extremely timeconsuming relative to how much the language is used
- Some languages are rarely written or have inconsistent uses of writing systems, and only used conversationally
- Some writing systems are not-yet digitized, or all documents are handwritten

3 Data Scarcity

- For most languages, very little data is available for training or evaluating language technologies
- There's even less labeled or parallel data!

1.2B total speakers, virtually no available data for building language technologies


Variation

- The same languages can vary significantly depending on who is speaking it where
- Regional differences
- Formality differences

- What can vary? Any linguistic features!
- Speakers often mix different dialects with one another in the same conversation (code-mixing)

← @Speech System In some languages, syllables may be Synthetic languages denote distinguished not only by which specific vowel is syntactic relationships between (J) Morphology =) used, but also by: words using inflection Syllable length • Pitch contour (spectrogram) (modification of a word, e.g., 6 Lexical Semantics conjugating a word) or agglutination (adding particles · Pitch height (like how to express to a word) • Phonation (breathy, creaky, etc.) Differences between vowels may be more subtle Issues with tokenization Syntax: (E.g. English & Chinese. English & Japanese) Semantics: Wide variety of possible language feature Idioms & Figurative Speech @ Difference in Language use Change over time Sequence Modeling How to mode a sentence, i.e., For now: let's assume utterances are sequences of tokens from our vocabulary A sequence model imposes a probability distribution over \mathcal{V}^+ Our vocabulary has a fixed size and consists of discrete wordtypes (we'll get to modeling continuous language sequence? $p(\overline{X}) \in \Delta^{V^+}$ $\overline{x} \in \mathcal{V}^+$ signals, like speech, in a few weeks!) 词汇表大小固定,且 • Why is this useful? Bayes' rule $\overline{x}^* = \arg \max_{\overline{x}} p(\overline{x} \mid a)$ $=\arg\max_{\overline{x}}\frac{p(a\mid \overline{x})p(\overline{x})}{p(\overline{x})}$ • A sequence is denoted as: Inductive Bias $\overline{x} = \langle x_1, \dots, x_n \rangle \quad x \in \mathcal{V} \quad x_n = \text{EOS}$ $= \arg\max_{\underline{a}} p(a \mid \overline{x}) p(\overline{x})$ We can also consider writing out all possible sequences acoustic language given our vocabulary (though this set is infinitely large): \mathcal{V}^+ model Example: Count-Based Language Model noisy channel $\mathcal{D} = \begin{array}{l} (\text{'hug', 10}), \; (\text{'pug', 5}), \\ (\text{'pun', 12}), \; (\text{'bun', 4}), \\ (\text{'hugs', 5}) \end{array}$ Documents + frequencies: Count-Based => frequency $\mathcal{V} = \{b,g,h,n,p,s,u\}$ $\mathcal{V}^+ = \{b, g, h, \dots, bb, bg, \dots, bug, bun, \dots, sssssss, \dots\}$ Training Data => Corpus, Learning problem: we want a to estimate the probability distribution $p(\overline{X}) \in \Delta^{\mathcal{V}^+}$ _that generated our observations ${\cal D}$ 5/36 = 0.14 Language Modeling is Hard · One simple option: just count based on $p(\overline{x}) = \frac{C(\overline{x})}{}$ $p(\overline{X}) \in \Delta^{\mathcal{V}^+}$ $\overline{x} \in \mathcal{V}^+$ 0/36 = How might we go about assigning a probability to any possible sequence, even ones we've never seen before? · One intuition: sentences have internal consistencies! Sampling from an Autoregressive language modeling: **Autoregressive Language Model** • The probability of a sequence is a product of local token probabilities . The probability of a token depends on the ones that came before it $p(\overline{x}) = \prod p(x_i \mid x_1, \dots, x_{i-1})$ $p(\overline{x}) = \prod p(x_i \mid x_1, \dots, x_{i-1})$ $= p(x_1)p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1})$ Let's sample a sequence from this approximation: Introduce: Autoregressive Language $p(X_2 \mid x_1 = \text{the})$ • Sample the first word $x_1 \sim p(X_1) \in \Delta^{\mathcal{V}}$ Sample the second word $x_2 \sim p(X_2 \mid x_1) \in \Delta^{\mathcal{V}}$ Modeling PEOS, 停止 0.02 impact line 0.02 $\overline{x}=\langle$ the, same mcedure. P(x) = TT P(xi | Xi. ..., Xi1)

Key question: 什么是:

p(//i/ X1: -, Xi-1)?

$$p(\overline{x}) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1})$$

$$= p(x_1) p(x_2 \mid x_1) \dots$$

probability that the first word is x_1 the second word is x_2 , given that the first word is x_1

 $= p(x_1)p(x_2 \mid x_1) \dots p(x_n \mid x_1, \dots, x_{n-1})$

probability that the sentence ends after the sequence $\langle x_1,\ldots,x_{n-1}\rangle$

Core modeling challenge:

How do we compute these conditional probabilities?

 $\approx p(x \mid x_{i-n+1}, \dots, x_{i-1})$

Preceding (n-1)-gram

$$pprox rac{C(x_{i-n+1},\ldots,x_{i-1},x)}{C(x_{i-n+1},\ldots,x_{i-1})}$$
 count of prev (n-1)-gram

Masked language modeling: The probability of a sequence is a product of local token

- The probability of a token depends on the ones that came before and after it

$$p(\overline{x}) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1}, x_{i+1} \dots x_n)$$

The name anteater refers to the species' which consists mainly of ants and termites.

Lec7: N Grams

How to model it? Core challenge:

i can be any number !!

=>Markov property assumption

Let's make a Markov assumption:

The probability of word at index i only depends on the n - 1 words that came before it

可见与之在nor(n-1) gram 中的 count 挂钩

$$\begin{array}{ll}
\mathbf{n} = \mathbf{1} \; \mathsf{Cleft} \; \mathsf{,aka} & p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_n) \\
\mathsf{bag} \; \underline{\mathsf{of}} \; \; \mathsf{word} \;) & \approx \prod_{i=1}^{|\overline{x}|} p(x_i) \\
\mathsf{n} = \mathbf{1} \; \mathsf{Cright} \;) & p(\mathsf{yellow} \; \mathsf{suitcase} \; \mathsf{and} \; \mathsf{red} \; \mathsf{hat}) = p(\mathbf{r})
\end{array}$$

p(yellow suitcase and red hat) = p(red suitcase and yellow hat)

Word order does not matter! This is why it's called "bag of words"

$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$	
$=\frac{C(x_{i-1},x_i)}{C(x_i)}$	
$C(x_{i-1})$	

$$p(\overline{x}) \approx \prod_{i=1}^{|\overline{x}|} \frac{C(x_{i-1}, x_i)}{C(x_{i-1})}$$

n-gram

Summary

Generalization of *n*-gram Language Model

to model

As *n* increases, we get more fluent text

But also more sparsity: $p(X_{10} = -) = \frac{C(\text{Liberals, Third Parties, Left-})}{C(\text{Liberals, Third Parties, Left})}$

(in a corpus of 1.4T tokens!) conditional prob view were dropped Liber -find -als -coloa off Third place -ical topics related achiev -ies -ement intelligence -weet Canadian Left Resource niet viewfind a never were dropped her off at place of a

topics related Canadian

to Tweet niet Resource

For an *n*-gram language model, we need to store counts

Also, there can be corner cases:

- All sequences of length $n(\mathcal{V}^n)$
- All sequences of length $n 1(\mathcal{V}^{n-1})$

$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$

intelligence

has in . "

Missing data (sparsity)

- What if the count of the target n-gram is 0?
 - Solution: add a small number to the count for every *n*gram (aka "smoothing")

Missing data (sparsity)

What if the count of the target n-gram is 0?

Liberals, Third

Parties, Left-

- Solution: add a small number to the count for every ngram (aka "smoothing")
- - Solution: condition on a shorter *n*-gram prefix (e.g., the previous n-2, or n-3, etc.) instead (aka "backoff")

$p(X_i = x) \approx \frac{C(x_{i-n+1}, \dots, x_{i-1}, x)}{C(x_{i-n+1}, \dots, x_{i-1})}$ Shortback: Without a big n, cannot handle long-distance dependencies What if the count of the target n-gram is 0?→ smoothing What if our n-1-gram prefix has a count of 0? → backoff Storage is at worst exponential wrt $|\mathcal{V}|$ Can't learn anything from the counts of *n*-grams containing similar words N-Gram works, but we dream of $p(\text{bike} \mid \text{I bought a}) \approx p(\text{bicycle} \mid \text{I purchased a})$ · Likelihood: probability of the data under our model O' can be NN! Let's say we have a language model that can give us a probability of any text $p_{\theta}(\overline{x})$ Negative log likelihood (fixes float underflow) M = M = Nullet We created this language model using a corpus $\mathcal{D} = \{\overline{x}_i\}_{i=1}^M$ We care how well this generalizes to some held-out dataset \mathcal{D}^{\prime} · Perplexity: inverse probability of data, normalized by number of tokens in the dataset $\frac{1}{\sum_{i=1}^{M} |\overline{x}^i|} \sum_{i=1} \sum_{i=1} \log p_{\theta}(x_j^i \mid x_1^i, \dots, x_{j-1}^i) \right)$ Generation In this section, we explore more possible way to generate sequence in a proper and effective manner. As we generate, we build our output sequence $\overline{\boldsymbol{x}}$, which Sequence sampling method in Lec 6 => peration: \ /emperature; before computing probabilities Sneak peek: computing probabilities over wordtypes using pretty much any modern language model unsoftmaxed: logits Score each wordtype independently $s(w) = f(w \mid x_1, \dots, x_{i-1}; \theta)$ \leftarrow logits · Renormalize using softmax $\bigvee p(X_i = w \mid x_1, \dots, x_{i-1}) = \frac{\exp(s(w))}{\sum_{w' \in \mathcal{V}} \exp(s(w'))}$ tmax operation E>Bring in Temperature! τ = 1: no changes to the probability distribution Temperature parameter controls the "smoothness" of this distribution: unform distribution. $\tau \rightarrow 0$: relative probability assigned to highestprobability item in distribution increases $p(X_i = w \mid x_1, \dots, x_{i-1}) = \frac{\exp(s(w))}{\sum_{w' \in \mathcal{V}} \exp(s(w))}$ in practice, setting a temperature of 0 recovers "argmax", putting all of the mass on the highest-probability item TI) Entropy T Temperature allows us to control the entropy of the output distribution without changing its relative ranking of items are more deterministic Higher temperature: closer to a uniform distribution (T=0, argmax) Lower temperature: "peakier" distribution (in the limit, gives all probability mass to the most probable item)

Suppose we have task:

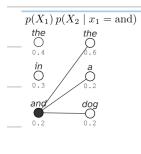
Finding the Most **Probable Sequence**

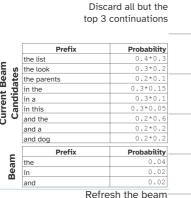
Operation: find $\arg \max p(\overline{x})$

• Why is this hard?

An approximation: greedy "sampling"

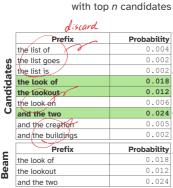
 $\overline{x_i \leftarrow \arg \max_{x \in \mathcal{V}} p(X_i \mid x_1, \dots, x_{i-1})}$


guarantee global optima!


Just choose the most probable wordtype at each generation step (no random sampling needed)

Operation: choose $x_i \leftarrow \arg\max_{x \in \mathcal{V}} p(X_i \mid x_1, \dots, x_{i-1})$

- Why isn't this guaranteed to get us the highest-probability sequence?
- A better approximation for global argmax: beam search
 - During generation, we maintain a "beam" of n sequences instead of just
 - At each generation step i,
 - We select the n most likely next tokens \mathcal{X}_i for each prefix, and create
 - Then we look at all the n^2 sequences so far, and discard all but the n^2 most likely sequences
 - At the end, we select the sequence that has the highest probability among the set


>Beam Search to ease this issue! Example:

Prefix	Probability
the list	0.12
the look	0.06
the parents	0.02
in the	0.05
in a	0.03
in this	0.02
and the	0.12
and a	0.04
and dog	0.04

 $p(X_3 \mid \overline{x} = \text{the look})$ $p(\overline{x})$ the_list two 0.12 the look creation 0.06 buildings and the

How do we know when to stop?

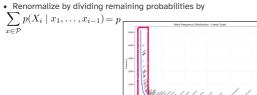
Current Beam

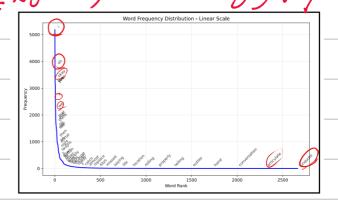
- When all of the items in the beam have EOS (we don't expand these prefixes, just keep them around for the end)
- Or, when we've reached a maximum sequence length
- Let's say we're done sampling at this point
- We'll select the sequence with the highest probability in the beam But: length may matter! Item < 1!

What if our sequences have different lengths?

 $\sum \log p(x_i \mid x_1, \dots, x_{i-1})$

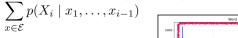
Argmax can be problematic!


Argmax produces repetitive, less diverse, and overall tooprobable output sequences


What's missing?

* Argmax" only chouse

=> Change picking Strategy


- Identify the set of n tokens $\mathcal P$ that have the highest probabilities under $p(X_i\mid x_1,\dots,x_{i-1})$ and their cumulative probability is p-
- Set the probabilities of all but these tokens to 0

Operation: 6 sampling

- Identify the set of *n* tokens \mathcal{E} such that $\forall x \in \mathcal{E}$, 只考虑本版章高于《cthreshold, normalize. $p(x \mid x_1, \dots, x_{i-1}) \ge \epsilon$
- Set the probabilities of all but these tokens to 0 and then sample
- Renormalize by dividing remaining probabilities by

- For some tasks, we have additional information about what wordtypes can or cannot be next
- E.g., in code generation, I can't generate more) than I 对于任意输出空间上的需求, 红取出
- While modern LLMs can learn these patterns from data at scale, it can sometimes still be useful to constrain our CEV,并用三PCXi | X1, ···, Xin)进行renoma output space
- Similar to before: given a set of possible continuations $\mathcal{C} \subseteq \mathcal{V}$ we will set the probabilities of all other tokens to 0, then renormalize using $\sum p(X_i \mid x_1, \dots, x_{i-1})$

Lec 8 · Neural Sequence Modeling

Previously, We've mentioned the p(Xi=xi) = II p(Ailxi, --, xi-1) we dream

$$p(\overline{x}) = \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_1, \dots, x_{i-1})$$

$$\approx \prod_{i=1}^{|\overline{x}|} p(x_i \mid x_{i-n+1}, \dots, x_{i-1})$$

$$\approx \prod_{i=1}^{|\overline{x}|} \frac{C(x_{i-n+1}, \dots, x_{i-1}, x_i)}{C(i_{i-n+1}, \dots, x_{i-1})}$$

Formulation approximation \leftarrow

- Care about previous N-1 words

Count-based < Use nk (n-1) gram to calculate

Neural n-grams = What we dream or

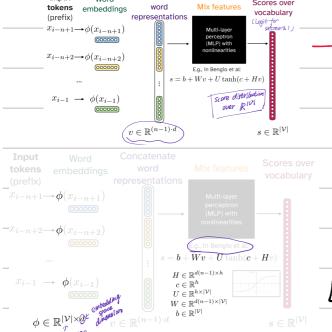
 $p(x_i \mid x_{i-n+1}, \dots, x_i; \theta)$ $\frac{\exp(s(x_i|x_{i-n+1},\ldots,x_{i-1};\theta))}{\sum_{x'\in\mathcal{V}}\exp(s(x'|x_{i-n+1},\ldots,x_{i-1};\theta))}$

can

Word

 $\approx \prod p(x_i \mid x_{i-n+1}, \dots, x_i; \theta)$

Softmax over_ wordtype scores


Utilize softmax-logit paradigm'

L Embedding to bring in semantic information

 $s(x \mid x_{i-n+1}, \dots, x_{i-1}; \theta) = f_{\theta}(\phi(x_{i-n+1}), \dots, \phi(x_{i-1}))[x]$ takes n-1 embeddings Neural of each inputs:

prefix wordtype

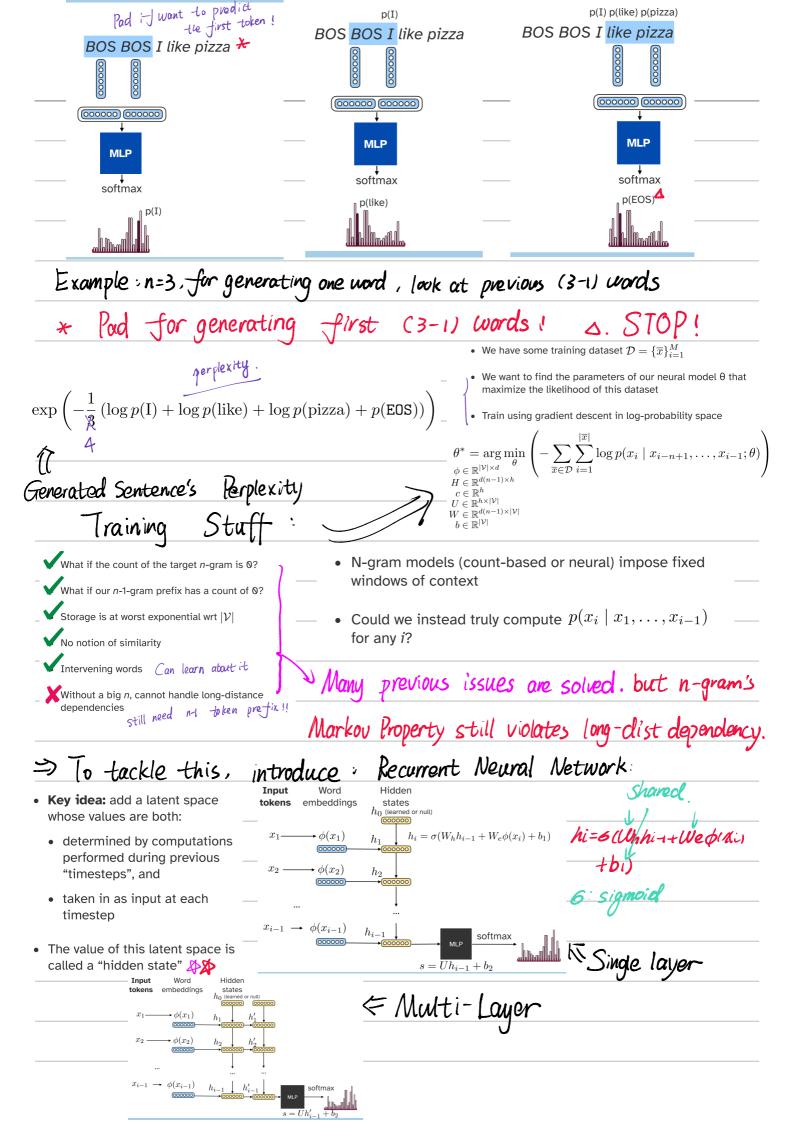
model can be:

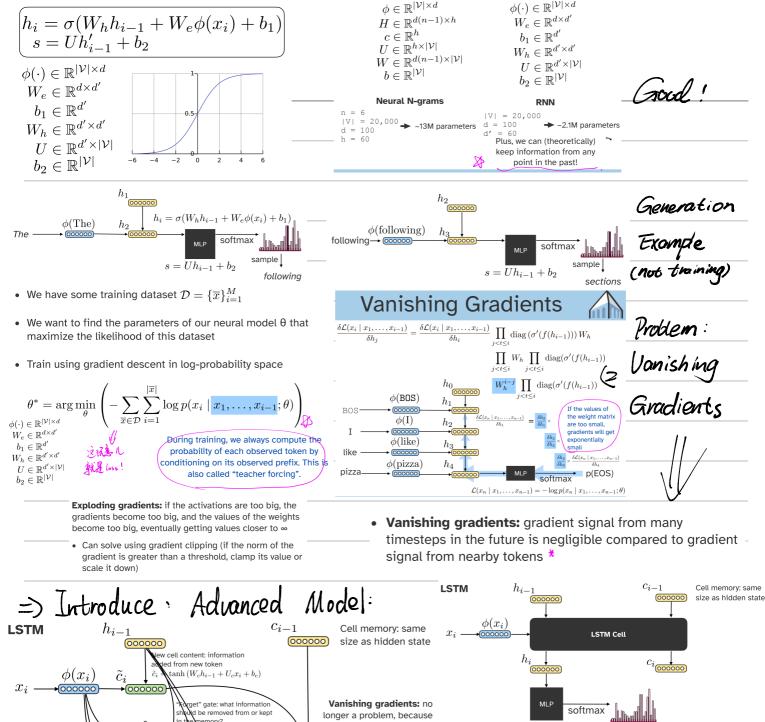
 $\phi \in \mathbb{R}^{|\mathcal{V}| \times d}$ $H \in \mathbb{R}^{d(n-1) \times h}$ $c \in \mathbb{R}^h$ $U \in \mathbb{R}^{h \times |\mathcal{V}|}$ $W \in \mathbb{R}^{d(n-1)\times |\mathcal{V}|}$ $b \in \mathbb{R}^{|\mathcal{V}|}$

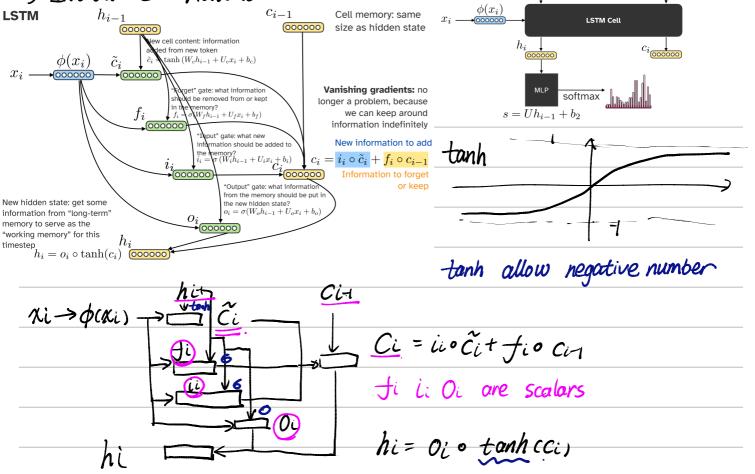
 $C_n \in \mathbb{N}^{|\mathcal{V}|^n}$ $C_{n-1} \in \mathbb{N}^{|\mathcal{V}|^{n-1}}$

Neural N-grams

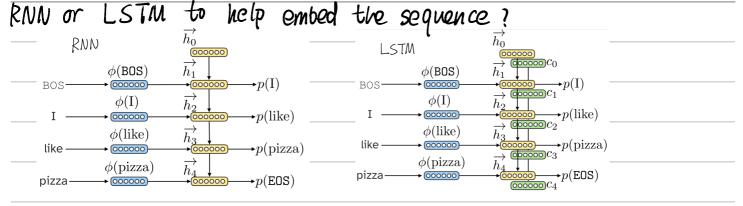
> softmax → sample.


|V| = 20,000 \rightarrow ~13M parameters Save parameter Count-based **N-grams**


6.4 x 10²⁵...


Looks nice. Moreover, it even can

Save storage


(learnable parameters)

Lec 8: Sequence Embedding We have word embedding, what about sentence? Can we use

$$\phi(\overline{x}) = \phi(I \text{ like pizza})$$

$$= \frac{1}{|\overline{x}|} \sum_{i=1}^{|\overline{x}|} \phi(x_i)$$

Option 0: average word embeddings

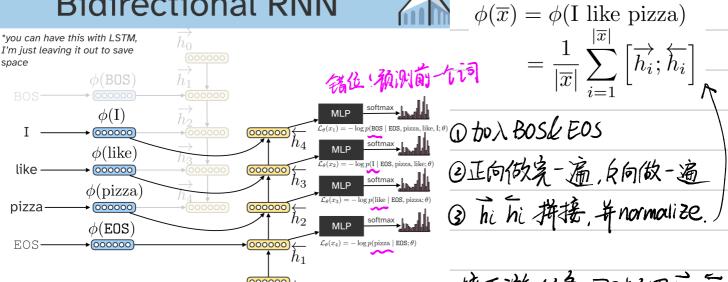
But we lose all notions of order

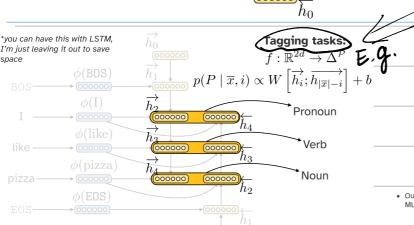
$$\phi(\overline{x}) = \phi(I \text{ like pizza})$$
$$= h_{-1}$$

Option 1: take the last hidden state

But this is overly weighted by information from later tokens

$$\phi(\overline{x}) = \phi(I \text{ like pizza})$$


$$= \frac{1}{|\overline{x}|} \sum_{i=1}^{|\overline{x}|} h_i$$


Option 2: average hidden states over time

But earlier states have no information about later ones, while later ones have full information of the sequence

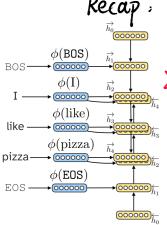
* To tackle this => Bidirectional RNN

- 接下游任务(同时利用hi hi
- et's say we have some embedding function (aka **encoder**)
- $oldsymbol{\mathsf{y}} \quad \operatorname{Enc}: \mathcal{V}^+
 ightarrow \mathbb{R}^n$ And we want to learn to classify text

Note: $\mathrm{Enc} \equiv \phi$ is the notation we'll use for encoding sequences

- E.g.: spam vs. not spam
- We want to learn the optimal parameters of some function $f_\theta:\mathbb{R}^n\to\Delta^{\{\mathrm{spam},\mathrm{not\ spam}\}}$

such that for some labeled dataset $\mathcal{D} = \{\overline{x}_i, y_i\}_{i=1}^M$

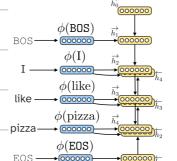

 $\theta^* = \arg\max_{\theta} \prod_{i=1}^{M} f(y_i \mid \operatorname{Enc}(\overline{x}_i); \theta)$

- Our classifier might just look like a linear transformation or
 MIP e.g.
 - $f_{\theta}(\overline{x}) = \sigma(W \text{Enc}(\overline{x}) + b)$ $\theta = \{W, b\}$

And we can train this classifier by fixing the parameters of the Encoder

- Or, we could also backpropagate into the encoder itself $\theta = \{W,b\} \cup \theta_{\mathrm{RNN}}$

ec9. Sequence to Sequence Modeling



 Maintains a latent "hidden state" updated after each new token

Hidden states can be used to:

- Get a distribution over the next token's value
- Get a vector representation of the entire sequence

 $\operatorname{Enc}(\overline{x}) = \operatorname{Pool}(h_1, \dots, h_{|\overline{x}|}) \in \mathbb{R}^d$

 $\operatorname{Enc}(\overline{x}) = \operatorname{Pool}(h_1, \dots, h_{|\overline{x}|}) \in \mathbb{R}^{d-1}$

"Pooling" functions map from a sequence of items of type t to a single item of type t

Pool: $\mathbb{R}^{d \times n} \to \mathbb{R}^d$

n vectors of length d single vector of length d

$$\operatorname{MeanPool}(h_1,\dots,h_{|\overline{x}|}) = \frac{1}{|\overline{x}|} \sum_{i=1}^{|\overline{x}|} h_i$$

 $\overrightarrow{\text{BidirMeanPool}}(\overrightarrow{h_1},\ldots,\overrightarrow{h_{|\overline{x}|}};\overleftarrow{h_1},\ldots,\overleftarrow{h_{|\overline{x}|}}) = \frac{1}{|\overline{x}|}\sum_{i}^{|x|}\left[\overrightarrow{h_i};\overleftarrow{h_i}\right]$ $\overrightarrow{\text{BidirLastPool}}(\overrightarrow{h_1}, \dots, \overrightarrow{h_{|\overline{x}|}}; \overleftarrow{h_1}, \dots, \overleftarrow{h_{|\overline{x}|}}) = [\overrightarrow{h_{|\overline{x}|}}; \overleftarrow{h_{|\overline{x}|}}]$

利上一个新 Sequence Embedding 的应用

Natural Language Inference $f: \mathcal{V}^+ \times \mathcal{V}^+ \to \Delta^{\text{\{entailment, contradiction, neutral\}}}$

Output 刚种新

- · Aka: recognizing textual entailment
- Given two sentences $\overline{x}_p(premise)$ and $\overline{x}_h(hypothesis)$, determine the following:
 - If \overline{x}_p is true, then is \overline{x}_h always true?
 - 3 possible labels:
 - Entailment: $\overline{x}_p \vDash \overline{x}_h$
 - Contradiction: $\overline{x}_p \vDash \neg \overline{x}_h$
 - Neutral: $\overline{x}_p \nvDash \overline{x}_h$

 $f: \mathcal{V}^+ \times \mathcal{V}^+ \to \Delta^{\{\text{entailment,contradiction,neutral}\}}$

- How might we use sentence embeddings to implement f?
- What can we do with sequence embeddings?
 - Text classification

$$f_{\theta}(\overline{x}) = \sigma(W \operatorname{Enc}(\overline{x}) + b) \qquad f: \mathcal{V}^+ \to \mathcal{C}$$

· Multi-sentence classification, e.g., natural language $f: \mathcal{V}^+ \times \mathcal{V}^+ \to \Delta^{\{\text{entailment,contradiction,neutral}\}}$

 $f(\overline{x}_p, \overline{x}_h) = \operatorname{softmax}(W \left[\operatorname{Enc}(\overline{x}_p); \operatorname{Enc}(\overline{x}_h)\right] + b)$

- $\arg \max_{\overline{x}' \in \mathcal{D}} \operatorname{sim}(\operatorname{Enc}(\overline{x}), \operatorname{Enc}(\overline{x}'))$
- Conditional sequence generation!
 - Aka "sequence transduction"
 - E.g., machine translation, response generation in dialogue
- What do we get from sequence models? Recall
 - · Autoregressive (token-by-token) generation

Sentence embeddings $\operatorname{Enc}(\overline{x})$

• Key idea: encode some input into a vector, decode it using autoregressive generation

• Aka: sequence-to-sequence, encoder-decoder, sequence transduction, conditional language model...

We can use RNN to encode ldecode: vector concatenation

 $f(\overline{x}_p, \overline{x}_h) = \operatorname{softmax}(W[\operatorname{Enc}(\overline{x}_p); \operatorname{Enc}(\overline{x}_h)] + b)$

text encoding text encoding of premise of hypothesis

Train using labeled data

 $\overline{x}_p, \overline{x}_h, y \in \{\text{entailment, contradiction, neutral}\}$

Can be used to measure quality of sentence Important!

Wont to implement a new task!

Task: map from text in one language (L1) to a distribution over texts in another language (L2), assigning high probability to texts that preserves the input text meaning

$$f: \mathcal{V}_{\mathrm{L}1}^+ \to \Delta^{\mathcal{V}_{\mathrm{L}2}^+}$$

 $\overline{x}_{
m English} =$ Oula A. Alrifai is a Syrian emigrant to the United States and writer for various Washington-based think tanks.

Google Translate

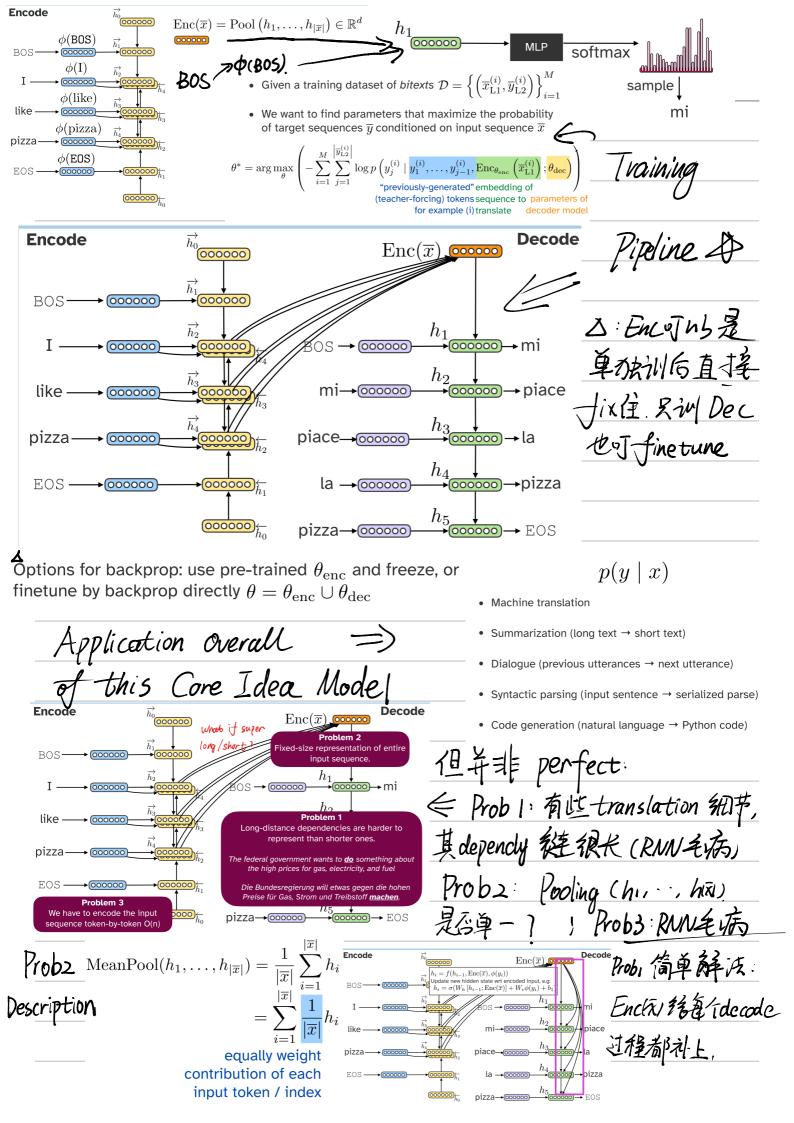
 $\overline{x}_{ ext{Malay}} =$ Oula A. Alrifai ialah seorang pendatang Syria ke Amerika Syarikat dan penulis untuk pelbagai badan pemikir yang berpangkalan di Washington.

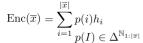
End-to-end, we can think about the translation problem as generating an output sequence token-by-token by

mapping from some input word to the target vocabulary,

Encode input sentence: $\operatorname{Enc}(\overline{x}_{L1})$

2. Generate output sequence token-by-token, conditioning on previously-generated tokens and the input sentence embedding: parameters of

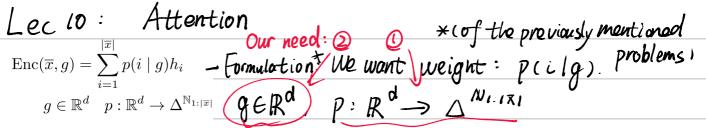

 $\overline{y}_{\mathrm{L}2} = \langle y_1, \dots, y_n \rangle \ y_n = \mathrm{EOS}$


decoder model (e.g., RNN

 $y_i \sim p(Y_i \mid y_1, \dots, y_{i-1}, \operatorname{Enc}(\overline{x}_{L1}); \theta_{\operatorname{dec}})$

previously-generated tokens embedding of (empty when starting translation) sequence to typically, we use y to denote translate

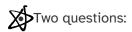
(you can condition on other things, too! e.g., images) output tokens

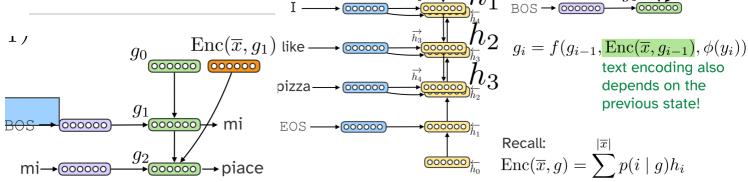


assign a probability distribution over input indices, and compute weighted sum over hidden states need:①

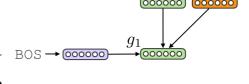
With respect to prob 2, can we average with weight? And the weight can be in prob dist?

 What if this probability distribution could change during generation?


Attention. Coming Soon


Compute a new distribution over input indices depending on some other vector g

9 can be modeled as hidden state:


000000

- Where does g come from?
- How to implement p?

Encode

 $\operatorname{Enc}(\overline{x},g) = \sum_{i=1}^{n} p(i \mid g) h_i$

Update decoding hidden state based on an updated version of the input sequence encoding

$$g_i = f(g_{i-1}, \operatorname{Enc}(\overline{x}, g_{i-1}), \phi(y_i))$$

The updated sequence is determined via a weighted sum • A query is some search over input hidden states

$$\operatorname{Enc}(\overline{x}, g) = \sum_{i=1}^{|\overline{x}|} p(i \mid g) h_i \qquad p : \mathbb{R}^d \to \Delta^{\mathbb{N}_{1:|\overline{x}|}}$$

Next time: how do we compute $p(I \mid g)$?

-One solution:

· An analogy: databases

- · A table has keys paired with values
- · We want to return the values of the kevs most related to the query
- Query: what are some words for mammals in Turkish?

Decode $\operatorname{Enc}(\overline{x},g_0)$

Key	value
heep	koyun
iver	ırmak
uthor	yazar
ull	boğa
у	sinek
adio	radyo
armer	çiftçi
lant	bitki
ctress	aktris
ome	ev
nail	salyangoz
n	ail

 $p(i \mid q, k_i) \propto \sin(\text{Enc}(q), \phi(k_i))$ Weight of each item is proportional to the similarity of its key with the query

 $p(i \mid q, k_i)(v_i)$

Weight each value accordingly

hidden state

n our RNN Scenario: $p(i \mid q, k_i) \propto \sin(\operatorname{Enc}(q), \phi(k_i)) \equiv p(i \mid \mathbf{g}, \mathbf{h_i}) \propto \sin(\mathbf{g}, \mathbf{h_i})$ $\operatorname{Enc}(\overline{x},g) = \sum_{i=1}^{\infty} p(i \mid g) h_i$ · Query: current decoder hidden Key: encoder hidden state (at There are multiple way to eval $sim(q, ki) - \cdots$ $p(i \mid q, k_i) \propto sim(q, k_i)$ $q \in \mathbb{R}^d$ $sim(q, k) = q^{\mathsf{T}}Wk$ some index i) $q \in \mathbb{K}^{\omega}$ $\mathbf{k} \in \mathbb{R}^{d' \times |\overline{x}|}$ $\sin(q, \mathbf{k}) = q^{\mathsf{T}} W \mathbf{k}$ $p(i \mid q, k_i) \propto \sin(q, k_i)$ Bilinear attention • Value: also the encoder hidden $= \frac{e^{\sin(q,k_i)}}{\sum_{i=1}^{|\overline{x}|} e^{\sin(q,k_{i'})}}$ state at index i $W \in \mathbb{R}^{d \times d'}$ $sim(q, \mathbf{k}) = w_2^{\mathsf{T}} \tanh(W_1[q; \mathbf{k}])$ $p(i \mid \boldsymbol{g}, \boldsymbol{h_i}) \propto \sin(\boldsymbol{g}, \boldsymbol{h_i})$ MLP attention $W_1 \in \mathbb{R}^{(d+d') \times d''}$ Query Key $sim(q, \mathbf{k}) = q^{\mathsf{T}} \mathbf{k}$ Dot product attention $\operatorname{Enc}(\overline{x},g) = \sum_{i=1}^{n} p(i \mid g) h_i$ Value $-\sin(q, \mathbf{k}) = \frac{q^{\mathsf{T}} \mathbf{k}}{\sqrt{d'}}$ Scaled dot product attention 60% Pipeline!! Similarities between query and keys $s_3 = g_0^{\mathsf{T}} h_3$ ___ $s_0 = g_0^{\mathsf{T}} \mathbf{h} \in \mathbb{R}^{|\overline{x}|}$ Weights over keys (weights sum to 1) calculated via s <= $\alpha_0 = p(\cdot \mid g_0, \mathbf{h}) = \operatorname{softmax}(s_0) \in \Delta^{\mathbb{N}_1:|\overline{s_0}|}$ $p(Y_1 \mid \overline{x}) = \operatorname{softmax}(f(c_0, g_0))$ Encoding is weighted sum over values $c_0 = \operatorname{Enc}(\overline{x}, g_0) = \sum_{i=1}^{|\overline{x}|} \alpha_{0,i} h_i \in \mathbb{R}^d$ like pizza 60% Similarities between query and keys $s_1 = g_1^\intercal \mathbf{h} \in \mathbb{R}^{|\overline{x}|}$ $g_1 = g(g_0, c_0, y_1)$ Weights over keys (weights sum to 1) $\alpha_1 = p(\cdot \mid g_1, \mathbf{h}) = \operatorname{softmax}(s_1) \in \Delta^{\mathbb{N}_{1:|\overline{x}|}}|^{\mathbf{I}}$ ()verview: Encoding is weighted sum over values We encoded our input sequence into hidden states: $h_1,\dots,h_{|\overline{x}|}=\mathbf{h}\in\mathbb{R}^{d imes|\overline{x}|}$

- Now we want to predict the next word y_{i+1}
- We have access to the previous decoder hidden state q_i
- First, compute attention scores for each input hidden state using similarity between query (g_i) and keys (\mathbf{h}) : $s_i = a(g_i, \mathbf{h}) \in \mathbb{R}^{|\overline{x}|}$
- Then, take softmax of attention scores to get a distribution over keys: $\alpha_i = \operatorname{softmax}(s_i) \in \Delta^{\mathbb{N}_{1:|\overline{x}|}}$
- Finally, compute a weighted sum of values (h) using this distribution

$$c_i = \sum_{j=1}^{|\mathcal{X}|} \alpha_{i,j} h_j \in \mathbb{R}^d$$

- Use the weighted sum to predict the next word: $p(Y_{i+1} \mid \overline{x}, y_1, \dots, y_i) = \operatorname{softmax}(f(c_i, g_i))$
- Use the weighted sum to update the decoder hidden state: $g_i = g(g_{i-1}, c_{i-1}, y_i)$

Complexity

$$h_1, \dots, h_{|\overline{x}|} = \mathbf{h} \in \mathbb{R}^{d \times |\overline{x}|}$$

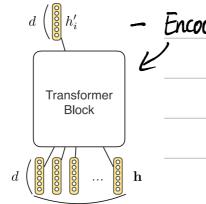
$$\mathbf{O}(\mathbf{n}) \ s_i = a(g_i, \mathbf{h}) \in \mathbb{R}^{|\overline{x}|}$$

$$\alpha_i = \operatorname{softmax}(s_i) \in \Delta^{\mathbb{N}_{1:|\overline{x}|}}$$

$$c_i = \sum_{j=1}^{|\overline{x}|} \alpha_{i,j} h_j \in \mathbb{R}^d$$

$$p(Y_{i+1} \mid \overline{x}, y_1, \dots, y_i) = \operatorname{softmax}(f(c_i, g_i)) \ \mathbf{O}(\mathbf{m})$$

$$g_i = g(g_{i-1}, c_{i-1}, y_i)$$


m: dimension of vocab

n: input length

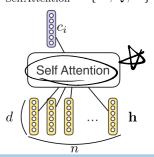
Lec 11: Transformer

- A transformer block takes as input a sequence of input vectors $\mathbf{h} \in \mathbb{R}^{d \times n}$
- It generates a sequence of output vectors $\mathbf{h}' \in \mathbb{R}^{d \times n}$
- For now, let's focus on how it computes the output vector corresponding to the input at index $i, h'_i \in \mathbb{R}^d$

Encoder Compute attention over input vectors

 $\mathbf{k} = K\mathbf{h} \in \mathbb{R}^{d_k imes n}$ $\mathbf{y}q_i = Qh_i \in \mathbb{R}^{d_k}$

 $s_i = \frac{q_i^\mathsf{T} \mathbf{k}}{\sqrt{d_k}} \in \mathbb{R}^n$ $\alpha_i = \operatorname{softmax}(s_i) \in \Delta^{\mathbb{N}_{1:n}}$


 $\mathbf{v} = V\mathbf{h} \in \mathbb{R}^{d_k \times n}$ $c = \sum_{n=1}^{\infty} \alpha_n v_n$

 $c_i = \sum_{i'=1}^{n} \alpha_i v_{i'}$

 $c_i = \text{SelfAttention}(\mathbf{h})_i$

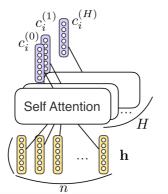
(Single hood)

 $\theta_{\mathrm{SelfAttention}} = \{K, Q, V\}$

MultiHead Attention

Compute attention over input vectors

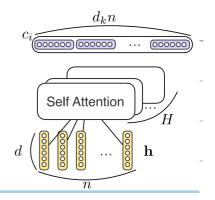
 $\mathbf{k}^{(j)} = K_i \mathbf{h} \in \mathbb{R}^{d_k \times n}$


 $q_i^{(j)} = Q_j h_i \in \mathbb{R}^{d_k}$ $s_i^{(j)} = \frac{q_i^{(j)\mathsf{T}} \mathbf{k}^{(j)}}{\sqrt{d_k}} \in \mathbb{R}^n$

 $\alpha_i^{(j)} = \operatorname{softmax} \left(s_i^{(j)} \right) \in \Delta^{\mathbb{N}_{1:n}}$ $\mathbf{v}^{(j)} = V_j \mathbf{h} \in \mathbb{R}^{d_k \times n}$

 $c_i^{(j)} = \sum_{i'=1} \alpha_i^{(j)} v_{i'}^{(j)}$

 $c_i^{(j)} = \text{SelfAttention}_j(\mathbf{h})_i$


 $\theta_{\text{SelfAttention}_j} = \{K_j, Q_j, V_j\}$

Compute attention over input vectors

$$c_i^{(j)} = \text{SelfAttention}_j(\mathbf{h})_i$$

 $c_i = \left[c_i^{(1)}; \dots; c_i^{(H)}\right]$

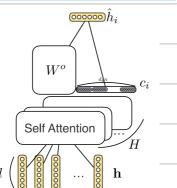
concat

 $\theta_{\text{MultiHeadAttention}^H}$

Compute attention over input vectors

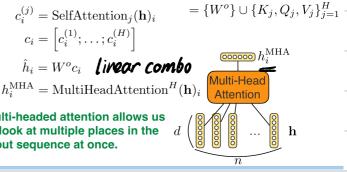
$$c_i^{(j)} = \text{SelfAttention}_j(\mathbf{h})_i$$

 $c_i = \left[c_i^{(1)}; \dots; c_i^{(H)}\right]$


$$\hat{h}_i = W^o c_i$$

 $c_i^{(j)} = \text{SelfAttention}_j(\mathbf{h})_i$

 $c_i = \left[c_i^{(1)}; \dots; c_i^{(H)}\right]$



1. Compute attention over input vectors

$$c_i^{(j)} = \text{SelfAttention}_j(\mathbf{h})_i$$
 $c_i = \left[c_i^{(1)}; \dots; c_i^{(H)}\right]$

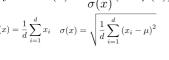
 $\hat{h}_i = W^o c_i$ linear combo

Multi-headed attention allows us to look at multiple places in the input sequence at once.

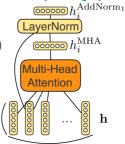
Residual connection allows for

1. Compute attention over input vectors

Layer normalization cuts down on uninformative variation in activations, speeding up training.


 $h_i^{\text{MHA}} = \text{MultiHeadAttention}^H(\mathbf{h})_i$

2. Add and norm


 $h_i^{\text{AddNorm}_1} = \text{LayerNorm}(h_i + h_i^{\text{MHA}})$

LayerNorm: $\mathbb{R}^d \to \mathbb{R}^d$ LayerNorm $(x) = \frac{g}{\sigma(x)}(x - \mu(x))$

 $\mu(x) = \frac{1}{d} \sum_{i=1}^{d} x_i \quad \sigma(x) = \sqrt{\frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2} \quad d$

smoother gradients.

 $h_i^{\text{AddNorm}_2}$

LayerNorm

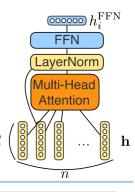
FFN

LayerNorm

Multi-Head **Attention**

1. Compute attention over input vectors

 $h_i^{\text{MHA}} = \text{MultiHeadAttention}^H(\mathbf{h})_i$


2. Add and norm

 $h_i^{\text{AddNorm}_1} = \text{LayerNorm}(h_i + h_i^{\text{MHA}})$

3. Feedforward layer

 $h_i^{\text{FFN}} = \text{ReLU}(h_i^{\text{AddNorm}_1}W_1 + b_1)W_2 + b_2$

Here is a nonlinearity that makes learning easier!

1. Compute attention over input vectors

 $h_i^{\text{MHA}} = \text{MultiHeadAttention}^H(\mathbf{h})_i$

2. Add and norm

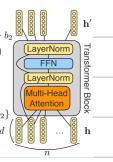
 $h_i^{\text{AddNorm}_1} = \text{LayerNorm}(h_i + h_i^{\text{MHA}})$

3. Feedforward layer

 $h_i^{\text{FFN}} = \text{ReLU}(h_i^{\text{AddNorm}_1}W_1 + b_1)W_2 + b_2$

4. Another add and norm

 $h_i^{\text{AddNorm}_2} = \text{LayerNorm}(h_i^{\text{AddNorm}_1} + h_i^{\text{FFN}})$

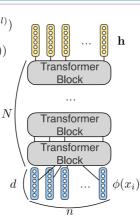

 $\mathbf{h}^{\mathrm{MHA}} = \mathrm{MultiHeadAttention}^H(\mathbf{h})$

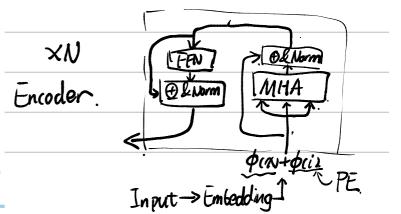
 $\mathbf{h}^{\mathrm{AddNorm}} = \mathrm{LayerNorm}(\mathbf{h} + \mathbf{h}^{\mathrm{MHA}})$ $\mathbf{h}_{i}^{\mathrm{FFN}} = \mathrm{ReLU}(\mathbf{h}^{\mathrm{AddNorm}}W_{1} + b_{1})W_{2} + b_{2}$

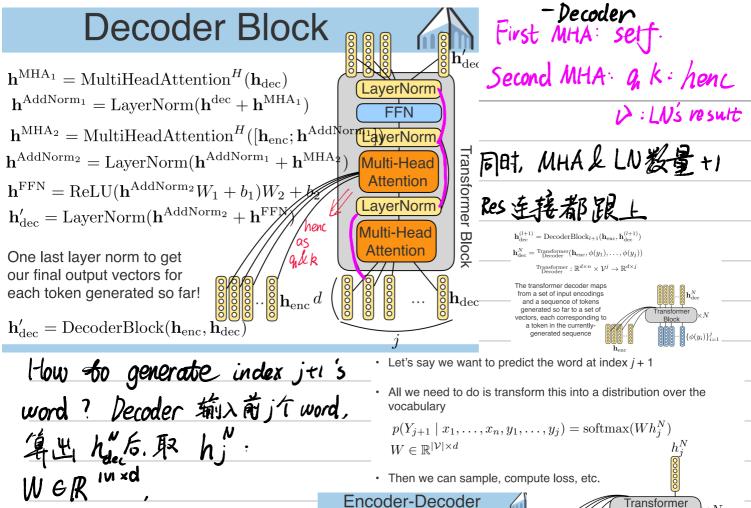
 $\mathbf{h}' = \text{LayerNorm}(\mathbf{h}^{\text{AddNorm}} + \mathbf{h}^{\text{FFN}})$

 $\mathbf{h}' = \mathrm{TransformerBlock}(\mathbf{h})$

 $= \theta_{\text{MultiHeadAttention}^H} \cup \{W_1, W_2, b_1, b_2\}$



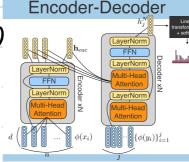

 $\mathbf{h}^{(l+1)} = \mathrm{TransformerBlock}_{l+1}(\mathbf{h}^{(l)})$


 $\mathbf{h}^N = \frac{\text{Transformer}}{\text{Encoder}}(\phi(x_1), \dots, \phi(x_n))$

 $\mathbf{h}^N \in \mathbb{R}^{d \times n}$

Input: $\phi(x_i) = \phi(x) + \phi(i)$ word + position embeddings $\overline{x} = \langle x_1, \dots, x_n \rangle$

prob(Yj+1 ly, yj) = softmax(Whj)

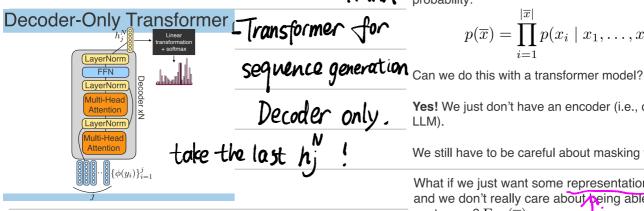

Given some paired data $(\overline{x}, \overline{y})$:

 $\mathbf{h}_{\mathrm{enc}} = \frac{\mathrm{Transformer}}{\mathrm{Encoder}}(\overline{x}) \leftarrow$

 $p(y_{i+1}) = \frac{\text{Transformer}}{\text{Decoder}}(\mathbf{h}_{\text{enc}}, y_1, \dots, y_i)$

Probability of a token should only depend on the ones that come before it! But we still want to take advantage of parallelism...

- When doing the forward pass on the decoder, self-attention
- But we don't want the model to learn to rely on "future" words in
- Solution: during training, set $s_{ij} = -\infty$ if i (query index) < j(key/value index)



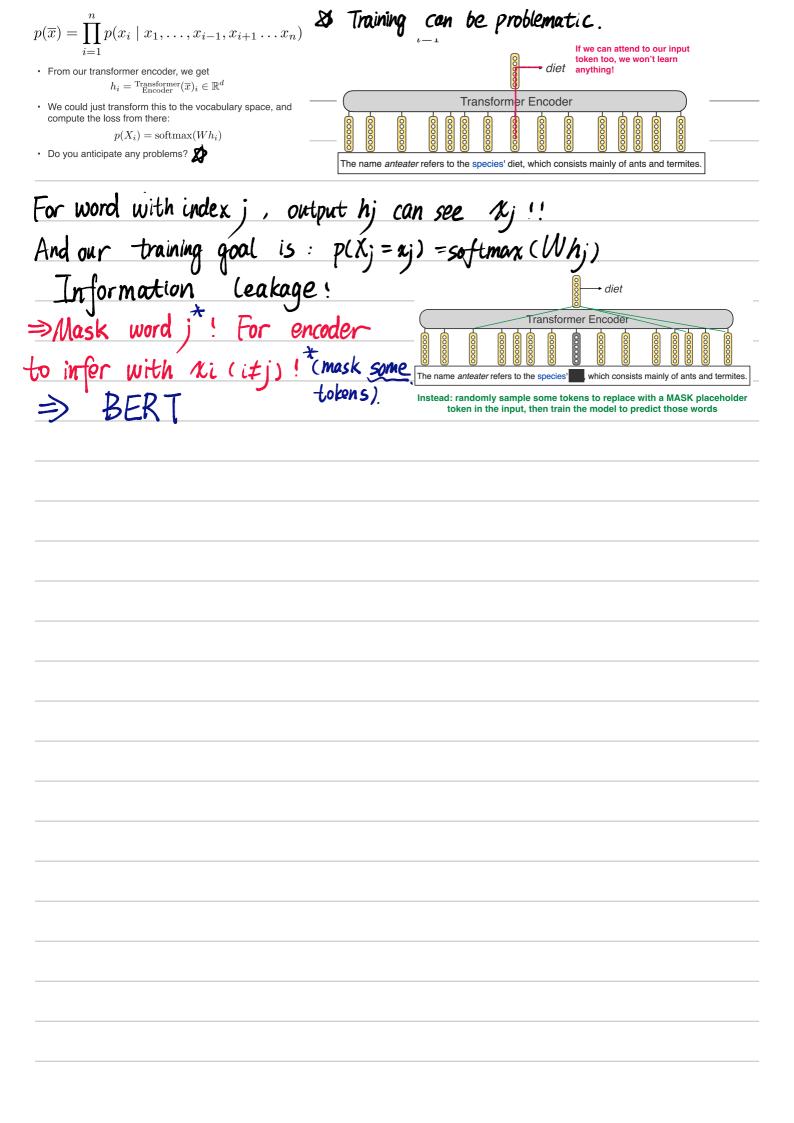
(Training of Encklec),

for pare llelism, masking is Z-Training important !! Mask 用在 Decodor中第

Recall the autoregressive approximation of sequence

 $p(\overline{x}) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1})$

Yes! We just don't have an encoder (i.e., decoder-only LLM).


We still have to be careful about masking while training.

What if we just want some representation of a sentence, and we don't really care about being able to generate sentences? $\operatorname{Enc}(\overline{x})$

We get this with the transformer encoder:

 $\mathbf{h}_{\mathrm{enc}} = \underset{\mathrm{Encoder}}{\mathrm{Transformer}}(\overline{x})$

Transformer for Sequence modeling Encoder only

