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‘ Tasl<= Text Camprehmion :Text = Short /D/'efe 5]‘ Text
Information Extrection , Guestio frsuering. - - -
- Task keference Based [ext Generation - like machine tunslaction

e System outputs / candidates 7
/Metr W @ ‘BLE U \ Y1 The most common form of language use is conversation.
P '
G2 -gam (P@% S kit
e G, () is the set of n-grams in sequence x

G4 (y) = {the, most, natural, form, of, language, use, is, dialogue, }

C(S 1K) ’\ Gy (y) — {the most, most natural, natural form, form of, }

o C(s,x) is the number of occurrences of n-gram g in
C(the,y)=1 C(most,y)=1  C(natural form,y) =1

n-gram precision
How many of the n-grams actually occur in the reference?

p (@ y) o ZSGGn(Q) min(0(87 Q)? O(Sa y))
n\Y; ZSEGn(Q) C(S,ﬁ)

Y The most natural form of language use 1s dialogue.
Y1 The most common form of language use is conversation.

0 i ngam 2 FEY, AT Apem
‘5 - H%’é’/l nz40 , min ( C<S'9)’€(j{'1’)

n-gram precision
How many of the n-grams actually occur in the reference?

M&Ulaﬁw}t N _ ZseGn(gj) min(C(S7 3))7 C(Sv y))
? Fnlory) > _gecn@ C(s:0)

t)(ample Y The most natural form of language use is dialogue.
U1 The most common form of language use is conversation.
&% R ¢ fqﬁ Gn &

G 1 (:&1) = {the, most, common, form, of, language, use, is, conversation, . }
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TO preuz,wt vethor short n-gram precision

How many of the n-grams actually occur in the reference?
sentences for . A
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In practice: Average n-gram precision, forup to N = 4
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Taék . Communicatie uccess : S ystem take action Via IG"M&

8 Input lmajeﬁ Ob} ect . Output referym?, expression
asy 0 evel since ~l:he} —+take actions ~towerd given o{?/ect"
Task ; Dal@m 4 Interactive § | stems

Had to eval « < ) Defie ot fillng tosk, bitt reduce expessivity
Use another mode| as simulaterrathen than human user

— Bwldfng ua e Wchnolo%/ — A pamaéfm

/7— as ﬁ /ememfa-b/m (Trainimn f ncuded) — Eval (with Dedba ! )
Tasks (in General) AN How ca

we implement a classification model?

Most tasks can be thought of as a mapping from some input O Cporte Hemords = ("beseballt, "scccer’, Mioothall®, “cemnist]
X to some output Y, where one or both of these have to do o Manual rules = erliorp B3 8 U3 larmal 63 Gesl armil)s
with language el“;etuzn "other"
Task Input (X) Output ()
Text classification Text Label from a fixed class . Prompting a model W]thOUt training
Automatic speech recognition Audio signal Text
Dependency parsing Text bependency tree If the following text is about sports, reply > D
Code generation Text Executable code “sports”. Otherwise, reply “other”. its entire starting ...”
Question answering Document and question (both text) Answer (text)
Translation Text (in source language) Text (in target language) ° Machine learning
Open-ended NLG Optional prompt (text) Text
Referring expression generation Image and target object Referring expression (text) I love to plax baseba‘|- sports Training Model
Dialogue Conversation history (text) Next utterance (text) LZBQSS? :thgltfc\f yg;;?e%;apy ::)h;;s —_—
He is wearing tennis shoes. other

e How can we estimate performance on new documents? [ ata 1 l 'm

. o ; . - .
e Simulate it using held-out data just for evaluation! Before pretrained models, nearly all datasets

(%@ % %;ﬁ&) came with splits, assumed to be IID:

Development data
For performing
ablations, choosing

BenChmaf I( aMDJ /Mld@/ E l/a/ hyperparameters, etc.

Training data
\K/ For updating model parameters directly

Validation data
For deciding when to
stop training

Reaﬂ%f m porwrt‘ (Subti | Private

o Estimating how well our models will work on real-world
data

e Shared understanding of model performance with
standardized evaluations

e Building trust within a community in proving how well a
new model does

o Driving progress towards specific tasks and capabilities



TW Can b@ lt‘fﬂ a aQ S Wl( ' Does the benchmark actually evaluate what we want it to?

Dataset contamination occurs when actual test data is used in
any of the previous splits (no longer IID). Why is this bad?

What color
is the -> -» Yellow
Development data 5
For performing banana?
ablations, choosing
hyperparameters, etc. Correct 80% of the
.. time without looking
Training data t i .
For updating model parameters directly {%ﬁa% at an image!

Test data
For estimating

e Learned a spurious correlation that gives the model high

rrT—— performance on the accuracy: bananas are yellow
For deciding when to “real” task . . ( )
stop training e Doesn’t actually test visual understanding /(eam
\g/ ¢ ] v \L . M
Male| memorize’ Tegt Data Benchmark ~foil o ewal how vell modef
Defining “Human Performance” (1|0 The Long-Tail Paradox i
Is the task actually evaluable? “Gold” label: e Which of the following words is most rare?
o m myriad, solipsist, anachronistic, apricate

o Is there an objectively correct

labet WK ¢ Human performance: o Can you think of a rarer word than these? (Check in the Google Books Ngram
fatos e Ve
our Berkeley t-shirts?

20 annotators

¢ Do annotators disagree? If so, e LLMs can look really impressive when we are trying to challenge them with
how are we processing their ] tricks, but maybe this is because we're bad at coming up with long-tail (rare)
disagreements? challenging tasks out of the blue!

e Can seem even more impressive when the task is unverifiable, and any model

l& o ‘; = \& response could satisfy you! ; :.‘
Human Eva| Bias We‘focuson -few popular tasks, bat ighowe. (g ~ta!l
And -forlong tailtask, we are @Ay to be conterty
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\gtudy of speech sounds — their physical production, spectral and She
perceptual properties

baby

I

amplitude

Articulatory
Phonetics

tongue palate ML 1 LY ] ”I 'v i
closed - | f ‘
velum ; L | g i m

beet [iY] bat [ae] boot [UW] /7\she just had a baby
\} (3 . ; ‘ )
sh | iy j ax s h ae dx| ax b ey b iy
o Acoustic 0 Tos0
£ . Time (s)
g Phonetics . L
H e Spectrogram reveals some segmental structure with distinct
properties

y ag uw o e These are phonemes — perceptually distinct speech sounds
@ ﬁ“ﬁ <«
Inte rn at-io nal Pho netic Alpha bet (I PA) e Consonants are characterized by place and manner of larticulatioﬂ

SRNATIONAL PHONETIC ALPHABET (n J /p/ is caused by constriction at lips (labial) (! t=el

e Phoneticians compiled a common set
of sounds used to codify different
speech sounds (across languages)

bilabial

/p/ is caused by sudden felease of air (plosive) genal
I 30s 4 GJlx %’é ﬁ

ace of articulation o

? _ F — -Vowels are characterlz d wjaw position and tongue shape
WA -%-% -4-4 Wos $47 2% |

« Some vowels also use lips (eg. sound uw in cool)

505

%0243 241
Phonology is the study of rules that govern the organization of

sounds in a language ( Phonemes — Syllables = Words) ’%szﬁ C WU)

e Pronunciation dictionaries (often made by linguists) give the
syllables and phonemes within each word in vocabulary

COYlC ll/LSiOV\’ ——> [ e Words are composed of atomic units based on sound (for

' spoken languages)
M \_‘_
m e Sounds are a function of how we move our vocal tracts and

mouth anatomy

e Languages have distinct sets of possible sounds
(phonemic inventory)

Morpheme:

\ULexemes

e And “rules” governing which sound sequences are likely
L (syllable structure)

%—%/P%A[% /Vlc/rfbemzs/ Leremes (Vo /A0 CF#37) )

» Text data can be viewed as a sequence of words e Type-token d]st]nct]on %
(Wordh

e First step in building a language technology: building a ° Type: a uni Word in a text corpus

function that maps from arbitrary text data to that

sequence e Token: an instance of a word type, appearing in a
[‘The’, .‘most’ . ‘natural’, ‘and’, ‘basic’, ‘form’, ‘of’ language’ , particular Context
‘use’, ‘is’, ‘dialogue’, ‘:’, ‘Every’, ‘language’, ‘user’ AP
‘including’, ‘young’, ‘children’, ‘and’, ‘illiterate’ adults ,
:car.A’t ‘?olc‘i': ‘a‘x', ‘convefsa%ion’, ‘,:, :Z:efea?;,er“?eacf.lms; en‘;]': —-— 7
P A e e o A WA R e i Example - 1

tokenized text

ng’,
wordtypes (vocabulary)
instances (tokens) of wordtype Y, ’

ls, .
okenized text



e Simplest tokenizer (for English): splitting on spaces

|tokenized s.split (Y V)

3 X Jtoken, how bo Tokanize

[‘The’, ‘most’, ‘natural’, ‘and’,
‘use’, ‘is’, ‘dialogue:’, ‘Every’, ‘language’, ‘user,’,
‘young’, ‘children’, ‘and’, ‘illiterate’, ‘adults,’, ‘can’, ‘hold’,
‘conversation,’, ‘whereas’, ‘reading,’, ‘writing,’, ‘preparing’,
‘speeches’, ‘and’, ‘even’, ‘listening’, ‘to’, ‘speeches’, ‘are’,
‘from’, ‘universal’, ‘skills.’]

‘basic’, ‘form’, ‘of’,

‘language’,
‘including’,

ar

‘far’,

, S/ml?[esf . whitepace !

e But this gets us some weird wordtypes:

<

¢ nltk tokenizers, with special rules for punctuation

‘dialogue:’
‘user,’
‘skills.”’

Not really words different from
dialogue, user, skills

—

import nltk

tokenized = nltk.word_tokenize(s)

[‘The’, ‘most’, ‘natural’, ‘and’, ‘basic’, ‘form’, ‘of’, ‘language’,
‘use’, ‘is’, ‘dialogue’, ‘:’, ‘Every’, ‘language’, ‘user’, ‘,’,
‘including’, ‘young’, ‘children’, ‘and’, ‘illiterate’, ‘adults’, ‘,’,
‘can’, ‘hold’, ‘a’, ‘conversation’, ‘,’, ‘whereas’, ‘reading’, ‘,’,
‘writing’, ‘,’, ‘preparing’, ‘speeches’, ‘and’, ‘even’, ‘listening’,
‘to’, ‘speeches’, ‘are’, ‘far’, ‘from’, ‘universal’, ‘skills, ‘.’]

e But this still loses similarity between wordtypes

Lexically similar to, but
morphologically distinct from
skill, read, speech

‘skills’
‘reading’
‘speeches’

{o]% b Charaeter Unit = bucode, ws

e Strings are sequences of characters (bytes)!

[tokenized = s.encode O |

e Now our vocabulary is a fixed size (all possible Unicode
characters)

F &€ NP RBWDJ

punctuat ions mixeol ,

b need! ywles V‘“’M

e Once you've “trained” your tokenizer, you're stuck with it

vocab A A
vocab.index (‘ChatGPT’)

¢ Once you've “trained” your tokenizer, you're stuck with it

= ‘Every’, ... , ‘writing’, ‘young’]

— not found!

vocab A

tokenized indices .
/N [vocabulary.index (token) for token in tokenized text add a special token

= ‘Every’, ... , ‘writing’, ‘young’, ‘<UNK>']

if token in vocabulary for unknown words
else vocabulary.index (‘<UNK>') ]

Nt fotusts anasgh
/hg/ Unicode -
But: \l

But: individual characters are not meaningful

R

:’, ‘Every’, ... , ‘user’, ’'whereas’, ‘writing’, ‘young’] |

VS.

‘ar, ‘B, ‘¢, ..., ta’, b’y ‘e, ..., 197 |

e But: input sequences are much longer

language’

VS.

1,

“ar, 'n’, ‘g’, ‘u’, ‘a’, ‘g’, ‘e’

[oml?rf;;iﬂl‘ Charactor ¢ 1:>wof0/ Subparts

How to set the subparts vocap 7 = A

Adverb
e Main principle: words are (often) composed of /\
subparts (morphemes) e A
Affix A\dlective
e Our vocabulary should have entries for VAN
frequent words kept whole, because we have a .
lot of data about those words b depend en
e But it should also have entries e
for parts of less-frequent words,
so our ML models can learn
how to compose parts of words
into whole words (especially
unfamiliar words!)
Documents + frequencies: ('hug', 10), ('pug', 5), ('pun', 12), ('bun', 4), ('hugs', 5)
vocabulary tokenized texts
Y, 'g', 'p', 'n', 'b', 's') ==y ('n' 'u' 'g', 10), ('p' 'u' 'g', 5}, ('®' 'u' 'n', 12), ('b' 'u' 'n’

bigrams + frequencies

most frequent bigram;
ot 'v Ty add to vocabulary
'u' 'n' 16
'b' 'u' 4
'g' 's' 5

Documents + frequencies: ('hug', 10), ('pug', 5), ('pun', 12),
vocabulary tokenized texts
'h', 'u', 'g', 'p', 'n', 'b', 'S')—bt‘h' 'u' 'g', 10), ('p' 'u' 'g', 5) ('p' 'u' 'n', 12)
'h', 'u', 'g', 'p', 'n', 'b', 's', 'ug') =Py ('h' 'ug', 10), ('p' 'ug', 5), ('p' 'u' 'n'
'h', 'u', 'g', 'p', 'n', 'b', 's', 'ug', 'un') =Py ('h' 'ug', 10), ('p' 'ug', 5), ('p' 'un'
‘h', 'u', 'g', 'p', 'n', 'b', 's', 'ug', 'un', 'hug')_’('hug'» 10), ('p' 'ug', 5) ('p'

, (R AL/ )
"ﬁ/ﬁﬁﬂ letrer level T8, £
e TSR mak, S voarh o< &

Voab sfokenize, ﬁ‘z—gfwﬂ, fév”éﬂ -
1.7 vocapsoben £ Bo F AT

*Begm:Ewmd letfer s atoken A 3 =Dz Aukons

(

Modern standard for building a tokenizer

Inputs: collection of texts and target vocabulary size

Initial vocabulary is the set of all bytes (characters) across the
texts

Until the target vocabulary size is reached, repeat the
following:
o Tokenize all of the texts using the current vocabulary

e Find the most common bigram in the tokenized texts, then
add it to the vocabulary as a new Wordtypex_

- gt e,
apélmdv

'bun', 4), ('hugs', 5)

('b' 'u' 'n', 4) (*h" 'ug' 's', 5)
12), ('b" 'un', 4) ('h" 'ug' 's', 5)
12) ('b' 'un', 4) ('hug' 's', 5)



Word Frequency Distribution - Log-Log Scale

Long-tail (“Zipfian”) distribution of wordtypes
(from Portal 2 dialogues)

10°
Word Frequency Distribution - Linear Scale
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Word  Meaning: bl

Denotational semantics: the

Core question: if a machine learning system is processing symbol refers to something in
text, how should words be represented as input to and Ihe context in WQICh the
within the ML system? anguage IS use

~ARKAE MR | AR W ¢ B4 g ﬁ) \%ﬁ/ﬁa{t
pactpn madrs LSRR

Hj pernym’ v EX75 7 Hy ly por ym 7%‘;51 Huporym / hypermym retation:

“pet” is a hypernym of “dog”;
“draught animal” is a hyponym of

? ]/ 2 E ?% “domesticated animals”

Draught Pets

Synse—t .. I-g'] >‘< ‘ib'-] _ﬁ o Missing context-dependence (polysemy) &nimals

E e Missing meaning of new words {“draught animal”, “beast of
T Q—;— . burden”, “draft animal”}
b e Requires human labor

e Subjective and culturally dependent

ﬁ)’lachme learning models expect nur%ncal in EUt e Instead: represent words as continuous vectors
e Represent each word as a unique one-hot vector ¢(Cat) = [ -0.6 1.3 -0.1 0.3 ]

(vector with values ®, except for one value of 1) d(kitten) =[ -0.7 -1.5 0.0 0.3 ]
Plcat)= [ 000010000 ]

mplicitly provides notions of similarity:

|lp(cat), p(kitten)|| < [|¢(cat), p(dog)]

e Similarity is learnable from text at scale:
... feeding time in multiple cat households can often be ...

How can I make my house How can I make my house ... Is to relieve the cat from thg str.ess of ...
... effect on the feral cat population in rural areas ...

d(kitten)=[ 0 0 1 0 0 0 0 O O ]

e Vector dimension: the same size as the vocabulary

roblem: no notion of similarity

safe for a new kitten? safe for a new cat?
... So I wrapped the kitten up in a towel ...
e (Is there some way we could use WordNet to get more ... they noticed that the kitten population was getting high ...
informative numerical representations of words?) ... were looking for a kitten , hoping that someone ...

x) Core principle: distributional hypothesis

/meanma /7A C@'n:th #@% e Words that are used in similar contexts have similar

meanings

¢ Context: typically, other words in a text, but really
anything can be context!



Input: corpus D including pairs (w, ¢) where w is a word and ¢ is a context, Objective: find
eg.

o “Everybody likes tesgiino” arg maaX H p(c ‘ w; 9)
(w = “tesgliino”, ¢ = “likes”) e.g., context is every (w,c)€D
(w = “tesgiiino”, ¢ = “everybody”) word in the sentence
where
¢ We want to model: given that we observe word w, what's likely in the context ¢? ( | 9) exp(score(c, w))
. plc|w;0)= 7
p(c | w;0) > erec exp(score(c/, w))
e Our objective: find parameters that maximize the corpus probability T
score: similarity of
arg max H p(c| w; ) we use cosine similarity because, representations of
(w,c)eD in contrast to dot product, it is word and context
. unbiased towards vector b(c) - p(w)

magnitude: score(c,w) = cos(¢(c), p(w))

(There are other methods for word2vec (e.g., GloVe, CBOW), but we will only l’-‘ .
look at Skip-Gram in this class) \\

~ e[ [[e(w)]] 9-

Wramm% Parad(gm L makimize prob of c.w) pair, ord prob s emluerted via
Objective: find B(Ift /ﬁ_a l's I'n_mc_tab[e l Z/OCach) L.)

H exp(score(c, w)l) . ' |
w.o)ep 2erec exp(score(¢, w)) }wﬁ@ ' So . mg-éeao[ @E multiclass classifucaion '

Problem: intractable to

sum over all contexts (Dm,(-t negd ,?fob dts‘t Oj w over meﬁtlve [/Dmb)j/%y?z&

/ W
we do bi cla/};[-fzavl;ion =) Given CC.W) Whee %o»‘t V%m\
@ context and Cc.w) Qamm D, tell each sample<form contest or rob,

NEW objective: find

arg max
(

* Solution: negative sampling

* Instead of summing over all possibly contexts in which a arg mgux H p((w’ C) e D) H p((w7 C) Q/ D)

word could appear

* Approximate via learning from contexts in which a word (w,c)eD (w,c)eD’
doesn’t appear What is D?
where
* Model whether or not a word-context pair is likely to exist 1
in the dataset p((w7 C) ecD =
(w.0) €D 1 1 + exp(—score(c, w))
p((w, c =
1 + exp(—score(c, w))
/\— similarity of representations of p((w7 C) g D) =1- p((w7 C) € D)
({ word and context

Binary Clossfication [ob Represtation: ngd/

/ -
arg max H p((w,c) € D) H p((w,c) € D) <:: ///OM) cw.c) 50 ‘:S é“ll%

(w,c)eD (w,c)eD’

* Negative samples: sample and train on [ * | D| pairs (ujz’)ﬁ)lﬂ {a’je COfPuS m‘y aré a/ijt ﬂot‘vrom W&,

'UJ/ ~ W C/ ~ C )
unigranZ:E)rior) unigraﬁI:(Dl’iO)r a:bzc:?= d= arg max (¢(b) -~ ¢(a) + d)(C)) : QS(Z)
over words over contexts ieW "(¢(b) - ¢(a) + ¢(C)) . ¢(Z)||
cosine and some

similarity of other word
i

* How to train?
* Gradient descent

* In practice, we work with log probabilities, not direct
probabilities, to avoid float underflow

With omsedding. we can even @ veebr arethmetic VA7 wocis 1)

o What if we have embeddings in different languages and

@ TTranS lation : keg A%umf_ﬁm - ‘:vaq;‘;t:olaar:?una;le:: :::Z;jding function

. ¢7B: language B’s embedding function
; M. ﬁ Ch’gwg& %W /5 Ww -D= {wﬁw?}ﬁ] : dataset pairing M word translations
M
. . . Ay By||2
e Find a matrix W such that n‘}l/n; [[Wo(wi™) — ¢(w;)]]
/nap/mf q‘ e same. Somant.c s/mea -




But still has challenge - like  Folysem (-TP%X)
e If we have representations for parts of sentences Word Embeddings in the

(wordtypes), then can we get a representation of the whole Age of LLMs "'
sentence?

e Building a language technology pre-LLMs, for a target task:

* One option: bag-of-words representation e Download some pre-trained word embeddings from the Internet

—— T e
1 |Z| o Initialize your language model with these word embeddings (all
=\ ) other parameters randomized)
o(T) = |T’ § o(xi)
T i—=0 e Use your task-specific data to fine-tune the other parameters
{(\ (possibly also fine-tuning the word embeddings)

¢ [Having a good starting point via word embeddings is really
important, especially with little task-specific data

represent o sentence , but
Try -to P ) ¢\ But we don’t do this anymore @
miss o (ot o’f ‘{)’Vllﬂgs. ( Symfnyo S"ewmt/o) Y, .

e Language models still learn’embeddings specific to each wordtype

W 0' — bd&i (21 _,> e But we don’t download them from the Internet — we download the
or tm aﬂ —/ whole language model & Down[oace as a m

[4 %ntm

. [ 4 o No such thing as “bad grammar” — disagreements over
Girammat: caLcha(‘r

what feels grammatical or not are due to language o Should we represent L as a finite-sized set of possible

variation sentences? Ap})afe[rtyﬂp 1

e Grammatical sentences don’t need to be meaningful

e Grammaticality judgments are not universal! e Our main task: we have some language L, and we want to know
whether a new sentence z € L

e What about a regular expression?

v
Some sentences  sound ﬁmmlmftca/ , Some not. Jlﬂt]/%if

The cat that thinks the cow thinks

Can I’egulaf QKF’BSSion Wﬂrk 7 the rabbits hid are wrong.x

The rabbits hid. Regex:

- CanLE l’landle center - meQOHir\lg DI N VB DT N VB
The cow thinks the rabbits hid.
--Lacl< q‘- /Mgmofg/ DT N VB DT N VB (DT N VB)*

The cat that thinks the cow thinks the rabbits hid is wrong.
:> A}O ( DT N IN VB DI N VB DI N VB VB JJ

DT N IN (DT N VB)* VB JJ?
Is there another formalism that tells us whether

:> Inﬂoducmg . Con-th - Fyee &VMW a string is “accepted” in a language or not?
Context-Free Grammars (|

%W&i‘#[@éﬁz(ﬁo Set of nonterminal symbols Ellff’gég’{a% g\é‘
7;5]2[’ Zﬁz ﬁ'/ﬁ é; (< e« Set of terminal symbols (wordtypes) %é%}%

Set of production rules defining how nonterminal symbols could be

Xp %{(‘Q‘?{{I‘tﬂ nottermival expressed via the composition of other nonterminal and terminal

symbols
Z termina| to re-write . % Production rules
Nonterminal symbols DT — {the, a, an, ...}
@ hon-termina| DT N VB JJ IN N - {cat cow, rabbits, dogs, ...}
! S NP VP SBAR VB - {hid, is, thinks, was, are, ...}
A. Can be re-written . JJ — {wrong, right, blue, red, ...}
I Terminal symbols (vocabulary) IN - {that, in, of because, ..}
s --- are, cat, cow, hid, is, S
. . NP - {DT N, NP IN VP}
rabbits, that, the, thinks, VP - {VB, VB JJ, VB S)
wrong, ...

S @4{NP VP, VP)



How -to use  production rule 7 Arrow:
—Right /L?«jt : Parsing / Peduetion
9% > ﬁ’ﬂ . Crereraction

The cat that thinks the cow thinks the rabbits hid is wrong. The cat|that thinks the cow|thinks|the rabbits hid is wrong.

E DT DT DT N| IN VB DT N VB DT N VB VB JJ
NP NP NP VP

Production rules

Nonterminal symbols DT - {the a an, ..}
DT N VB JJ IN N - {cat, cow, rabbits, dogs, ... }
S NP VP SBAR VB - {hid, is, thinks, was, are, ...}

JJ - {wrong, right, blue, red, ...}

Terminal symbols (vocabulary) IN - {that, in, of, because, ...}

arz,b th,tzovt% tf;,id, t’; B} NP . {DT N, NP IN VP} Nonterminal symbols Production rules
rabbits, that, the, thinks, VP - {VB, VB JJ, VB S} DT N VB JJ 1IN NP - {DT N, NP IN VP}
wrong, ... S . {NP VP, VP} s NP vp VP - {VB, VB JJ, VB S}

S - {NP VP, VP}

[The cat|that thinks the cow/|thinks the rabbits|hid|is wrong.

- = IThe cat|that thinks the cow thinks|the rabbits|hid|is wrong}
N| IN VB DT N VB DT N VB VB JJ

DT N| IN| VB |D N VB | DT N VB VB JJ
NP e Ly VE; NP NP NP ve| ve
S s
vP VP
s S
vP
NP
S
. . NP is singular, so its corresponding VP should be too
Nonterminal symbols Production rules Nonterminal symbols Production rules
DT N VB JJ IN S; - ESE N{;BN;INV;P;} DT N VB JJ IN NP - {DT N, NP IN VP}
S NP VP - 4 ’ VP - {VB, VB JJ, VB S}
S - {NP VP, VP} S NP VP 4 !

S - {NP VP, VP}

e CFG is often called phrase structure or constituency grammar

%/l- rlﬂle OIGSCJAI 66 3 ’/i— constituent . each production rule describes a constituent
' , Constituent constructions are independent of one another
% C}G \12 7}7‘7 /\K agmemen’t ' ‘él? %(this is why the grammar is context-free)

AAugmenting a CFG with agreement (e.g., distinguishing

NPﬁNpﬁ , V Pﬁ I/P} , lﬂj Z\_ﬂi. plural vs. singular NPs and plural vs. singular VPs plural)

means it is no longer context-free

_ e Also, some languages aren’t even context-free, not even
COY"te?d:' 'ffeé ( o(eFe/lofeyrt '0]‘ (’Oﬂ'tel('t) considering agreement:
Probabilistic CFG /[ T it e e e gt b i
e

Production rules :
augmented with probabilities p(rU‘le‘nontermlnal) -
DT - SGh&%En, ...} learn from data ) ) . . .
N ) s(%a?,séovy %bblts %gs, syntactic parsing: given a ... that Jan saw Piet help Marie make the children swim Kaplan et al.
B L S(GHI'(?, st?pmks was, are, “} PCFG, \tlvr:jich rule ;ipplications S
R > sr generated our sentence? —_ e
e R ¥ Rule AL fehd rule., @ PCEG2L s
0.8 8.1 , \y
NP - é?T I\GI),2 NP IN VP A..) N\ N
vVp - {VB, VB JJ, VB S, ..}
s - e ve, B, . NN N

| - PRI % = A v aop by
it oA PR A

Combinatory Categorial Grammar /%
i

Tbroduce = CCG - (CCG)

e Another way of representing a constituency grammar:

Sﬁrrta(:ttc type FAPI{TE I5iem] i ooy e

Elements of a

‘\ I Q N# i /‘ o Lexical items (wordtypes) ’g/-‘bﬂ)
”/9 iJ o Each paired with a syntactic type (= nonterminal or
composition thereof)

%g/_’f/ﬁ (S\/UP) //V/7 qu%/\/l) the: NP/N  dog:N  John:NP  bit: (S\NP)/NP|

If a Noun appears Noun Noun If a Noun Phrase appears to the

& < “ to the right, then it Phrase right, then it creates an element
ﬁ& creates a Noun with the type
? Phrase N - dog NP - PRO S\ NP
6 PRO - John
NP - DT N If an NP appears to the left of that

DT - the element, it creates a Sentence



Introduce - Dependency  Girammar

e A dependency grammar includes:
e Terminal symbols (wordtypes) %ﬁ;( f’lzﬂd ).
e Parts of speech& 15[ Il{_{ é

e Some constraints on which parts of speech can be
attached to other parts of speech

ROOT
~NANA S
DT N VB IN DT N
the dog ran to the house

ROOT Labeled dependencies
nsubj VB rep
ran bi
det oD
N IN
dog to
DT
the det__y
ﬁ)use
DT
the

Why Syntax is Tmportant 1D T B ER0)inbedh feh BR @ 2tsksT R TRAAAN

Lecs. Cowpos‘rtional Semantics

Lexical semantics: we can get word meanings MW 7

Denotational semantics: tokens are references
to things in the real world

Ontologies: tokens are references to nodes in
some knowledge graph

Word embeddings: tokens are represented by
continuous vectors

Main challenge
how do we get a

Lexical semantics: we can get word meanings

Denotational semantics: tokens are references
to things in the real world

Ontologies: tokens are references to nodes in
some knowledge graph

Word embeddings: tokens are represented by

continuous vectors

Syntax: we can determine what sequences of word
types are possible or not possible in a language by

modeling latent structure everyone

Constituency grammar aka phrase structure
grammar aka context-free grammar

Dependency grammar (MVO(J u,[QJ)

CC6D %4419
Lgmbda = 7\7(,/\y,f2(’cg—

— Truth- Conditional Semontics

In the context of their use, statements are either true or

false, i.e., they have the type t (aka, bool in python/7

o We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e, Y} — [[)7 1})

wlj

. CCG
the cat is on the table ——

e Let’s call this context a world w

W2

Ll 22 s
some function that can be evaluated to

give us the denotation in an arbitrary world

Inductive Bias

A%

AG1L x QRGE): ARG
RN B or ATRE A
ARG D BT I19

of semantic parsing:
single representation

of the entire sentence’s meaning from
(a) the meanings of its words, and
(b) their order and latent structure?

= Weth word neaning £ Sprtar

likes Pepper

how -to Semartic Famhg L

/malow

CCG and Lambda Calculus (/]

def f(y):
return 5 *

5%y +z2)(3)

—_

y + 3

data type x x + A x x *
meaning 3 . ’ 5 o ! x
Semantic
Cioar| = Sertence —Persity S Function. 7‘*

“"léd_ ,nplﬁ Q word n, owl:pwt whetier ths

Sentence is trug or Wit in Lo

cCa, a Or&‘afge,



everyone likes Pepper

S / (s \ Np) (S \ NP) / NP NP
<e-t>-t e~ <e-t> e

S \ NP

everyone Pepper

(S \ NP) /

Syntactic type S / (S \ NP) NP NP — PePPa{\ %X _1:4_7 Z'%
Semantic type <e - t> -5 t - <e - t> . _ - y
yp e e e e - A QXI) /> VW‘O/I

AL Vx A x, y . likes <C lik P
N . ~ ’ . everyone ikes epper
expression (person (x) (v, %) Pepper , 57 (5 \ ¥B) (s \ Np) / NP Wb
£(x)) <e-t>_t e-<e-t> €

Final Result, = T A
Formal Semantics o

e Logical operators, like v, A, and = -
Pepper is clever and curious

o

¢ Quantifiers like v and 3

Some cats like water MU oler n- Q}

* Relationships between functions = and « e In NLP, nobody is really mapping from sentences to

Squares are rectangles (Vx (square (x) = rectangle (x))) lambda calculus representations anymore

¢ Verbs can have tenses, and can be modified with adverbs « However, many of our problems still take the form of

mapping from language to some meaningful structured

e We can talk about beliefs others have .
representation

e Some combinations of meanings are nonsensical (unevaluable)
green ideas

e Sentences aren't just statements — sometimes they are commands,
questions, etc.

e Sentences exist in the context of previous sentences and their meanings

LecS: Dialogw, r Comersation & Interaction
- Bugnatic:  BRY . 27 33547 HHE corter) HGHRER.

B fpk EX T —

, i , ¥ ¥
=1 7[5\,0/‘{%@; SPeeCh Act. Presup}?osftiw& Lmplicaction coon(s) 1 sPerpen) {black}
T

- N / 7\ Semantics: mapping Pragmatics:
% ﬁﬁﬁ ﬁ iz g‘/é’ from surface form the logical form against

(sequence of tokens) to some context to acquire
S eeC h ACtS formal executable its denotation
p il representation

e Our interpretation of utterances used in context often goes
beyond the literal (formal) meaning

o By interpreting speech as action, we can ascribe intent to :_) g % {- . > _ — _ N
utterances that isn’t obvious from their formal LJ” Z #) 4\’] ﬁ]b ﬂq ’ {[\J
representation
Do you mind if I sit next to you? ﬁﬂg%’ﬁ (ﬁ[ L%{ié @
Yeah (go ahead)

No (I don’t mind)

Sorry, someone is coming



Presupposition N

e Propositions that must be true about a world in order to
compute the denotation of a particular sentence

o In other words: implicit assumptions made by utterances

T oI MTEIENIIEN Can be true or false
Pepper’s house is big Computing the truth value requires that,

in our world, there is an entity x such

that house (x) and owns (Pepper, x)

Awareness of presupposition in speech is very useful for critical
analysis of persuasive speech, e.g. in politics

—*h@%ﬁfm o S o £ 20008 AL R

Principles behind Implicature:
Gricean Maxims

4?

o General principles we believe we mutually hold about how what
kinds of utterances we should add to conversation given what's
been said so far:

Quantity: utterances should contain just the right amount of
information — not too little or too much

Truth: utterances should not contain falsehoods

o Relation: utterances should be relevant to what’s been said
before

e Manner: utterance form and meaning should
be clear

o What happens when we contribute utterances that
break these principles?

LAl

Implicature A

e Propositions suggested by an utterance, but not explicitly
expressed

e Meaning is determined by reasoning about alternatives

Do you know what they weather will [E2EEGEEH
be like today? ® no
e yes
You should bring your umbrella. [EEIS
e chance of precipitation
Context: in San Francisco is 30%

: &
(758

Finciples behind Imphcature

Gricean Maxims il

o Flouting conversation maxims is “breaking” them under
the assumption the listener knows the speaker is
intentionally breaking them

o E.g, flouting relevance:

Do you know what they weather will
be like today?
You should bring your umbrella.

¢ Violating maxims is breaking them under the assumption
the listener won'’t believe a maxim has been

broken
My dog ate my homework.

LA 2 o4k T ssganenssd

T@ 98 469 hY =RALEAY:

During interaction, we maintain some representation of what we
believe is mutually known by conversation participants

e Mutually known: I know it, I believe you know it, I believe you
believe I know it, I believe you believe I believe you know it, ...

e What can be in the common ground?

e Principles guiding how we interact with one another (e.g.,
Gricean maxims, shared lexicon)

e Propositions about the world, values and beliefs

e Things in our shared environment, including things we are
paying attention to

Coopemtwe Tnteraction: -

Multi-Agent Foundations of

‘ ) Interaction A7)
v

« You're playing Minecraft, and want to
build a house

« Your actions influence the state of
the world

« But there’s also stochasticity (e.g., animals, enemies,
villagers appear and might destroy your house, but their
behavior is predictable)
« But what happens when another player comes to the game? L4
« They also want to build a house
« Maybe they will take some of your resources from you

« Their behavior is not completely stochastic, though!

Let's assume my partner and I share the same (high-level) goal,
and it's in the common ground

e Goal: build a house

It's likely optimal for me to choose actions in a way that depends
on my partner’s actions, to avoid redundancy and execute the goals
more efficiency

o I'll gather wood while my partner places it in the right spots to
create a foundation

Some environments might require that I and my partner take
different actions at the same time

e E.g. pressing paired switches

C Common C'}VDW\O[)

e This allows us to reason about what is not in the common
ground

e E.g, facts, beliefs, etc. that we believe the other does not
know

e By maintaining models of others’ beliefs, we can reason
about how they might interpret our utterances

o If we want to bridge a belief gap between ourselves and
another conversation participant, we can rely on the the
rules governing language use and interpretation that (we
believe) are in the common ground

To best model another player, we may want to keep track of their:

Beliefs: what information are they using to make decisions?
How do they perceive the world, and how do they build an
internal model of the world as they act in it?

Goals: what do they want to get done? Do they share the same
goals, are their goals orthogonal, or are they trying to sabotage
mine?

Intentions: how will they attempt to execute their goals? What
skills do they have and what strategies are they likely to take?

Model of me: if it's useful for me to reason about them, they
are probably reasoning about me, too — how does this
influence their actions?

e How can we more successfully coordinate with one another, especially
under uncertainty over how the environment works?

e How can I better model my partner?
o What they observe and know?
e What they are trying to do?

e What are their plans to act?

e How can I influence my partner?
e By sharing information with them?
e By telling them what to do?

e By teaching them about how to act?



J mult-agent k.

o At the beginning of an interaction, we
might have significant uncertainty over
other agents

agent(s)

utterance
o Over their goals, beliefs, and skills

e And also over how they use language
e But over time, we converge to more similar
representations

e By building models of one another from
observing their behavior

°
o By explicitly resolving uncertainties via
language use °
e This refines our expectations of other
agents °

e Certainty in our expectations allows us
to take communicative shortcuts

¢ Challenges for learning in multi-agent environments:

e Agents need to learn their first-order policy (goal, observation —
action)

e But they also might need to model how their adaptations
influence the behavior of other agents, including the introduction
of new shared abstractions (i.e., words and conventions)!

¢ Challenges for evaluating multi-agent systems:

e Dynamics depend heavily on initial conditions: (uncertainty over)
variation across agent partners’ beliefs, goals, and intentions

e E.g,in teaching contexts, a teacher will adapt their language and
pedagogical strategy to the learner’s existing knowledge and
skills

Simple Multi- Agent 5cenario:

« Environment: set of candidate referents, available to both players
¢ Players
e Speaker: knows the identity of a target object
e Listener: no privileged information
o Shared goal: listener picks out the target object
e Actions:
e Speaker: natural language
o Listener: selection of candidate referent

o« Communication channel: unidirectional, single utterance (no
dialogue)

Lec b Muttilingual WL

e For any task we expect out of language technologies, they
should work for any language

e Question answering, information retrieval, summarization
o Dialogue systems and chatbots

Q@ Data

e Language generation

e Language technologies can also support cross-language
communication

e Machine translation

e Language learning

@ Duta
Scarci’ﬂj/

Labeled data (log)
2

e There's even less labeled or
parallel data!

s J \
10 100 102 10° 104 105 10° 107
Uslabeled data (log) available data for building

language technologies

Conversaction 05 a mttf‘agerrt

Challengas :

Modla lzty

e For most languages, very little
data is available for training or

evaluating language technologies @ Pta/ed(m/

1.2B total speakers, virtually no

Observation space now includes utterances made by other

Action space now includes the ability to produce an

< Djl}’lavm(, Intoraction
The influence of learning on interaction dynamics:
Agent policies adapt as they learn about other agents
This influences the observations other agents make of. them

Which in turn influences how other agents adapt

Elemontof Sconoris)

e Interaction dynamics also depend heavily on the
properties of the context itself:

e Incentive structure
e Environment design — perception and action, novelty

e Participants — how many, any existing structures among
them, roles, a priori asymmetries

e Communication channel

e Work in computational linguistics, psycholinguistics, and
cognitive science aims to characterize the relationship
between scenario design and linguistic behavior

9ame\

¢ No immediate physical environment, but we still exist in a
social world, with common (or uncommon) knowledge,
goals, and values

e One can work towards social goals by using language as
action, e.g. through:

e Education
e Persuasion

e Hate speech and dogwhistles

o Not all languages have writing systems, with many languages
where:

o Only audio recording is possible or available

o Developing a consistent writing system is difficult, and
finding or creating written records is extremely time-
consuming relative to how much the language is used

« Some languages are rarely written or have inconsistent uses of
writing systems, and only used conversationally

e Some writing systems are not-yet

digitized, or all documents are handwritten

e The same languages can vary significantly
depending on who is speaking it where
e Regional differences %
V . - o Formality differences
ariaton
o What can vary? Any linguistic features!
o Speakers often mix different dialects with

one another in the same conversation
(code-mixing)



In some languages, syllables may be G—. @SPCeGh g)’ Swm

distinguished not only by which specific vowel is

used, but also by: @ /MWPI‘OIO?%/ =>
® lexical Semantics

(like how 1o express

' /
Differences between vowels may be more subtle ? 2 ‘ )

e Synthetic languages denote
syntactic relationships between
words using inflection
(modification of a word, e.g.,
conjugating a word) or
agglutination (adding particles
to a word)

e Syllable length
« Pitch contour CS(W’M?
e Pitch height

e Phonation (breathy, creaky, etc.)

e Issues with tokenization
@ Synten : (Eg. English Chiese. Englishd Joparese)

@ Semantics: Wide voriety ff‘ possible Laﬂguaje featwe
@ Tolioms £ Figurativa Sfeed, (i Dference in Layueje use
© Language Charnge over time.

Leck: Seqmce Mode| Ing

e For now: let’s assume utterances are sequences of tokens
from our vocabulary

How +v mode| a sentence ,:.e. a tofen

e Our vocabulary has a fixed size and consists of discrete
wordtypes (we'll get to modeling continuous language
signals, like speech, in a few weeks!) &) (Z %« [B7, A

2 5l
. L%j{%«
e A sequence is denoted as:
rey

We can also consider writing out all possible sequences
given our vocabulary (though this set is infinitely large): y+

T = (w1,

Example: Count-Based
Language Model

Documents + frequencies: ("hug', 10), (
= ('pun', 12),
(‘hugs', 5

'y 5),

VY ={b,g,h,n,p,s,u}
vt ={b,g h,...,bb,bg,...,

* Learning problem: we want a to estimate
e - . v v
the probability distribution p(X) € A
_that generated our observations D

Count -
bug, bun, ..., sssssss,...} .
o0 lraniyg

(@)
10/36

hug

o One simple option: just count based on
document occurrence-

p(@) = ﬁ‘gl’

[ hugs
e Vh\1

p(X)

TR AREA R Auntt

Autoregressive language modeling:

e The probability of a sequence is a product of local token
probabilities

e The probability of a token depends on the ones that came before it

% B n
p(x) = Hp(xz | Llyew- 711:2'71)
=1

Lrtroducefﬁwwmg?w (ve .Languaje,
MOde“’lg :
SamFlm8 cheoﬂﬂ‘&

n

pexy=TT

|

seqwlce?

& Inductive Biap
AR A -

N - 42 BB

¢ Sample the second word zo ~ p(Xg \ a:l) e AY :{r} po(xo)s

~ - o 0.02

g *é\# tOS, ’{ﬁjl‘_ ’ i:j:;it 0.02
E — <the, same line 0.02

o A sequence model imposes a probability distribution over Y+

4 ) p(X) e AV’

p(T)

ze VTt

7" = argmax p(T |
T

a)
pla | T)p(z)
p(a)

= argmax p(a | Z)p(T)

acoustic signals a: .
acoustic language

o o ”

O
Qnoisy channel

e Why is this useful?

G
9

Bused s)g%yuencf

Peta. D Corpus , But -
Language Modeling is Hard (/|

pX)e AV zevt  p@

¢ How might we go about assigning a probability tolany
possible sequence} even ones we've never seen before?

N

Bayes’ rule -
= arg lI]@X
T

e One intuition: sentences have internal consistencies!

Sampling from an
Autoregressive Language Model

p(f) = Hp(wl | Ll '7371'—1)
i=1
=p(z1)p(ze | 1) ... p(Tp | T1,. ., Tr_1)

Let’'s sample a sequence from this approximation:

X5 | z1 = the
Sample the first word z1 ~ p(X1) € AV p(Xa | 2y )

PAc[he -, Kid)




Masked language modeling:

- /l‘
/X‘;'IO'W‘ f?pmftch ‘ /Md.gk ( / %) e The probability of a sequence is a product of local token

probabilities

PCX) T P(&Ll ﬁu /X{, -l %H:‘ . N) e The proba_blhty of a token depends on the ones that came before

and after it

Key C{Mas‘l:iom Ml p(T) = ];[p(xi | T1yen sy Tits Tigd - - Tn)

/F (4(‘1/!' 2‘[ S )(“L_,‘ ) 1 |The name anteater refers to the species'-, which consists mainly of ants and termites. |

zljllp(xi|x1,...,xi_1) LCCY’ A/G'Wﬁ
=p(x1)p(xe | 1) ...p(Ty | 1, ..., Tp_1) /7(2((.';/&.) :P[“/¢“ - KL"I)

probability that probability that
the first word is x1 the second word

is T2, given that (@1, Tn1) How to m0de’ l‘t /' &lﬁ Cha“eyfge

the first word is 21

Core modeling challenge: > L Can be a’l\g nl/(”IbQ/‘

i Lo -
How do we compute these con robabilities? m SO{W&&M

o Pl 205) . bt et = Markoy prperty  assum
~ p(x | B E) Let s .make a Mark.ov as§umpt1on:
Preceding (n-1)-gram The probability of word at index 7 only depends on

C(@img1s e T, T) the n - 1 words that came before it
Ol imniendpe 0 9em - giip § 3 15 0 or (n-) grem P Cowit 44

NC(%—nH, e 7xi—17x)

=y C{zej't :aka p(T) = Hp(xi | T1,. .0, i) p(X; =) C(@imits 1)

bag of word) ~Tlete - Gcn,e)
- Cﬂgh’t_) suitcase ¢ i [z Clxi—1,z;)

p(yellow suitcase and red hat) = p(red suitcase and yellow hat)

p@) ~ || ——=—
Word order does not matter! C(x . )
This is why it's called “bag of words” i=1 i—1
. . .
{
Generalization of For an n-gram language model, we need to store counts
A'W n-ram Language Model il
Asn increases, we get more fluent text o All sequences of length n @) .
_ C(Liberals, Third Parties, Left-) 417 n—1
’to mml But also more Spar51ty P(X=-) = C(Liberals, Third Parties, Leit) 118 o Al sequences of length n-1 ( V )
0" (in a corpus of 1.4T tokens!)
N w n=1 n=2 n=3 n=4 n=10 /0 .
Md Vt never view were dropped Liber -
(0 lonal V Comment -find e her -als ‘_%D e 45/ ie. <
has a -colog off
in place -ical at Third
. of topics her Part # %
Sl,nlma’ —r “ a related achiev -ies ex Oﬂe” L
t human T -ement
view intelligence  |-weet Canadian Left
C brief niet Resource
never viewfinda |, oo dropped her off at
Comment place of a logical her achi Liberals, Third
has in . “t ’."”"af' topics related |Canadian Parties, Left-
view C zt;zlfhgence to Tweet niet |Resource / so /We cw‘” 68 W w%%

C(Ti—nt1s-- -, Tiz1, ﬂU)
C(Ti—n+1,---,Ti-1)
Missing data (sparsity)

C(xi—n—i-la"')xi—l)x) p(XZ :J:)%

C(Ting1,. -, Ti1)
Missing data (sparsity

o What if the count of the target n-gram is 8?

e What if the count of the target n-gram is 87? e Solution: add a small number to the count for every n-

« Solution: add a small number to the count for every n- gram (aka “smoothing”)
gram (aka “smoothing”) 7% n-grom,
¢ ?"“J:"" K>, o What if our n-1-gram prefix has a count of 87 z 4 n-1.n2,
_/ﬁ—— - e

% |\ BHEEE _
Pho - A b ﬁ% smooth ~ * . Solu?ion: condition on a shorter n-gram prefix (e.g., the
previous n-2, or n-3, etc.) instead (aka “backoff”)



C(xz‘ ntly---,Li 1,37)

ShartbaCk 5 p(Xl :$)% C(CI;_,,H_l,...,.’)Z;_l)

Without a big n, cannot handle long-distance dependencies

No notion of similarity

e What if the count of the target n-gram is 82— smoothing

Iﬂ Se? mc@ Wde[[”g’ é”/%z ‘S/la/‘w‘ e What if our n-1-gram prefix has a count of 8?7 — backoff

@ Storage is at worst exponential wrt [V|

768/‘”1_ &lpe”de” {é 5/{]9% @ ;?i’:alre;?r:gything from the counts of n-grams containing
N &m Work$ bwt e d/ea'n df p(bike | I bought a) &~ p(bicycle | I purchased a)

o Likelihood: probability of the data under our model

0 canbe My ¢ o A Hpe(xz

(Q

o Let's say we have a language model that can give us a /l 54”

probability of any text Pe (x) . Ngw]kehhood (flxes float underflow)

. . — M _
« We created this language model using a corpus P = {Z; };Z, Zlogpg(xz Z ZIngﬁ(x |,
i=1 j=1

o We care hpw well this generalizes to some held-out . PerpleXIty. inverse probability of data, normalized by

dataset number of tokens in the dataset

) = exp = ZZlogpg(ac] |2y, .. @l 1))
Lec]* Greneration. ( S

In ths section . e erplore. more possible way ‘bo eneram
sequence . o poper and effectie mamer. HW“’-~~’“—1>

« As we generate, we build our output sequence T, which
ts memd ‘“ Lec é - > starts as an empty sequence T = < >
eq che SamF tn = S o At each step 4, we choose an item from the vocabulary ) by
performing some operation on the loca%/probability
distribution p(X; | 1, ...,7i—1) € A

OF@,O,_E tb n i ; em qu"e} « Then, we append this to our running sequence T <— T + (;)

« If we ever choose EOS, we stop generation 44’(1‘“@ & ?“T’

k2R I4RTX

Operat1on modify the logits E /60 1,‘65 ( g— Main point: generation methods differ wrt ;‘he operation
before computing probabilities 8 EW) they perform on p(X; | 1., zi-1)
Sneak peek: computing probabilities over wordtypes using S(W) = jLw 17X, - %L’l J 9} W

pretty much any modern language model \w

unsgftmmed : (ogrt5

e Score each wordtype independently

s(w) = f(w|x1,...,2,-1;0)

e Renormalize using softmax @‘

\(S)p(Xi =w] »3717 Ce L) = Zwe:jéxp 2 Sdﬁma% GPEIWUOA
{Z>Br}ng in Tem[)emtm {

Temperature parameter controls the f]‘ 7‘ =
“smoothness” of this distribution? ﬂfjb"‘“ cl sth dwhbiern o T — O: relative probability assigned to highest-
(\

probability item in distribution increases
€T 1) — eXp( ( o \ e in practice, setting a temperature of ®
= Zw ey exp w’) 7— recovers “argmax”, putting all of the mass on

the highest-probability item
T f;mé—rofﬁ ™

%Wm— /_0\7 it
- Poracgm

e T =1 no changes to the probability distribution

p(X; =w|x,...,

o Temperature allows us to control the entropy of the output
e l’// Q/J 5 entences distribution without changimmﬁﬁn‘s

N, ‘t?(_, ! entrop j‘
are mone dg‘t@fﬂhfhs o Highggtfemperatl?re: closer to a uniform distribution
(=0, 'agmam)

e Lower temperature: “peakier” distribution (in the limit, gives all
probability mass to the most probable item)



Grfe@cf}/ cloesn't

ugrantee
global Oﬁima l

>Beam Search 1o ease this issue ¢

p(X1) p(X2 | 21 = and)

Finding the Most
Probable Sequence

Operation: find arg max p(T)
zEVT

e Why is this hard?
e An approximation: greedy “sampling”

—_— -

x; « argmaxp(X; | z1,...,2i—1)
zeY

o Just choose the most probable wordtype at each
generation step (no random sampling needed)

Example

Operation: choose ; <— arg mea‘icp(Xi | z1,...,2i—1)
T

e Why isn't this guaranteed to get us the highest-probability sequence?

o A better approximation for global argmax: beam search
N\ —

« During generation, we maintain a “beam” of n sequences instead of just
one

* At each generation step i,

o We select the n most likely next tokens Xifor each prefix, and create
n more sequences

e Then we look at all the n2 sequences so far, and discard all but the n
most likely sequences

At the end, we select the sequence that has the highest probability
among the set

Discard all but the

the the top 3 continuations Prefix Probability
0.4 6 the list 0.12
i i ey £ o [the look 0.06
0.3 & § |the look 0.3%0.2 @ 4 |the parents 0.02
g - the parents 0.2*0.1 m [} -
an dog w T in the 0.3*0.15 - -a in the 0.05
S Tlina 0.3%0.1 c =
0.2 0.2 ‘,s:éinthis 0.3%0.05 o 'g ina 0.03
d th 0.2%0.6 . .
S e S £ @ |inthis 0.02
and dog 0.2%0.2 =2 O and the 0.12
Prefix Probability u
E lne 0.04 and a 0.04
Qi 0.02
D fana 0.02 and dog 0.04
p(T)  p(Xs3|T = the look) Refresh the beam
the list two with top n candidates ﬁ) How do we know when to stop?
0.12 2 Jiscard . .
) “Prefix Probability e When all of the items in the beam have EOS (we don’t
the look reation i ST 0 004 W . .
O E o e expand these prefixes, just keep them around for the end)
04 e list goes .
0.06 g % the list is 0.002 h , hed . h
and buildings % 3 [the took of 0.018 o @W en we've reached a maximum seguenc
S T [thetoo 0.012
0.12 0.02 c 5 thie look-oh 0.006 . ; y o )
O  |andittie two 0.024)- e |et's say we're done sampling at this point
and iﬁe cre&i@f 0.005
andﬁhe buildjv(gs 0.002
£ Prefix probabitity o \We'll select the sequence with the highest probability in the
@ |the look of 0.018 b
&' the lookout 0.012 eam
and the two 0.024

e What if our sequences have different lengths?

Length

normalization: ”

Agmwx can be problematic!

|Z|

_ S
(T) ox — logp(z; | x1,...,2i—1)

But - (ength may matter! Ttem< (!

=Le(zg+)nma(f matter!

Lwoels !

Argmax produces repetitive,
less diverse, and overall too-
probable output sequences

What's missing?

= Change. pickin

Beam Search

..to provide an overview of the

learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and to provide an
overview of the current
state-of-the-art in the field of
computer vision and machine
learning, and...

current state-of-the-art in the field and threeéears warranty. The
of computer vision and machine

Human

.which grant increased life span

series consists of five
models with capacities spanning
from 400W to 900W. Here we
should note that we have already
tested the HCG-620 in a previous
review and were quite satisfied
With its performance. In today's
review we will rigorously test the
Antec HCG-520, which as its model
number implies, has 520W capacity
and contrary to Antec's strong
beliefs in multi-rail PSUs is
equipped...

nucleus) sampling

g Stoegy

0perat1on top-

o Identify the set of n tokens P that have the highest probabilities

under P(Xi [ 21, ...

o Set the probabilities of all but th:

»Li—1) and

e Renormalize by dividing remaining probabilities by

ZTi1)=p

> opXil .,

z€P

ese tokens to ®

. Ligmex anly chone S fiphly ey

5000

4000

3000

Frequency

2000

1000

Word Frequency Distribution - Linear Scale

{

2000 2500




Operation: constrained decoding

. . e For some tasks, we have additional information about what

Operation: esa\mphrEL wordtypes can or cannot be next

o Identify the set of n tokens £ such that Vix eé, %lf'ﬁ”' o E.g., in code generation, I can’t generate more ) than I
P@lo o) 2 € FARARIDT ¢ cnordd], somalie. - pave A7 th e 2R L MBS, 21RY

e Set the probabilities of all but these tokens to ® ard tien samfle. e While modern LLMs can learn these patterns from data at

. s .. - scale, it can sometimes still be useful to constrain our

e Renormalize by dividing remaining probabilities by output space eV 'ﬁ’(ﬂ s ek [ K =0 X0 ) 445 renoma
> p(Xi| @y, mi) - oo e N e,

. vord Freguency Distrbution - Lneor scale e Similar to before: given a set of possible continuations ccy

ocE | h } ‘ we will set the probabilities of all other tokens to 8, then

renormalize using Zp(Xi | 21, . i)

zeC

Lec8 * Nawal Sequence Mode ling” - |
Previously , We've mentioned -tie f(}(ma): E PCALT, -, Kia) we dheam
)= o e et o Formulation

E noam o (o afout previoes N1 wordds

[z
approximation

~ Hp(a:, | Tint1,-- -5 Tiz1)
«— e nk (n1) grom W0 coledztR

~ ﬁp(m | Tient1s .-, @45 0) Neural n-gram¢ M/e w@wm 7

=1

(%3 | Timng1, ..., 045 0) .. ' . . /
! x_ ' ex—gl(s(:ci|xf_n+1, ooy Tim130)) Softmax over Ut(ﬁge f#t/”m,/()//f /Wm&ym
> wey exXD(s(2/[Ti—ny1s ..., T5-1;0))

Embadd i
o xi-130) = fo(@(@imnt1), - - -, @(@iz1))[7] L iy ép é’”y m

é(Jﬂ \ Li—n+1,--

. . ° -

Neural takes n-1 embeddings ggwm‘c 1/1/ Wmaz m
model  inputs: of each
prefix
wordtype
Input Word Concatenate Scores over

tokens  embeddings word vocabular

(prefix) representations (gt for v
Tient1—O(Ti—pt1) sfomark 1)

Tint2—P(Ti—pt2)

—> sgftmay —> 50”1//6.

Eg. in Bengio et al:

(| s =0+ Wo+ Utanh(c + Hv) = R\V|><d
. : e b 3
T — @fi;;,i) *\mx;fz[/m H e RUn—1)xh
e ceRP C, eNVI"
. v n—
s e RV Ue th\V| C, ;€ NIV
W e RU—DxVI -
be RV
¢ Neural N-grams Count-based
=6 N-grams
¢ C‘iVL IOSO, 000 =» ~13M parameters 6.4 x 1025, ..
h = 60 w5
b Wu c H SO fta’ /)7
) H e Rén=1)xh
9] ceR" . .
p Looks nice.. Moreover . iteven can
Q@Ww‘ " c v
= R‘;;‘X@K px
o 522

( Learnable fammaéefs)

~ Save storage (



Pod Jwant o PVQ”l“{ p(D) p(D) p(like) p(pizza)

oken : (
BESIBEE 1 ik j"’t * BOS BOS I like pizza BOS BOS I like pizza
1Ke plzza

000000
000000
000000
000000
000000
000000

1 7
)
MLP MLP MLP
softmax softmax softmax
pE0s)@

p(like)
m p(D) i w i ﬂl‘

EKMP(Q un:5,:ﬁ/f’ genera:tftﬁ Onewd , ook at pmvwll) (3-) WO"O[.S
x Ped for gererating first C3-1) wards ¢ 4. SToPp!

» We have some training dataset D = {a:}

er ICXH% : )
/T F ¢ We want to find the parameters of our neural model 8 that
maximize the likelihood of this dataset

1 . .
exp (_g (log p(I) + 10g p(hke) + log p(plZZ&) + p(EOS))) e Train using gradient descent in log-probability space
||

s 4 0 — argmin (= 3° Y logp(o: | i, 7i-110)

0
¢ e RIVIxd 7eD i=1

Gorortod Sentence’s plexity = i
_Tfam’mg Stu‘ﬁ‘ :

W e RUn-DxVI
\/ What if the count of the target n-gram is 8?2 ( e N-gram models (count-based or neural) impose fixed

be RV
Vonat . windows of context
What if our n-1-gram prefix has a count of 87

JStorage is at worst exponential wrt || e Could we instead truly compute p(:IJ,L | L1y ,SL'Z'_l)
%\Io notion of similarity for any i?

<
JIntervem’ng words  (Can learn about it

Without a big n, cannot handle long-distance J\ Ma@ ‘Pm‘/lou‘s Lssue‘s am So "ed bu't n 3’%)

dependencies oed P ken rej i !
st | P Markoy Property ctill violates log-d’ist deiye/wl%y_
= To Hackle this, wtwduce + Recument Newral Network:

. Input Word Hidden
e Key 1dea: add a latent space tokens embeddings states
whose values are both: ‘oo
e determined by computations 1 > ¢(21) ha hi = o(Wihi—1 + Wed(2:) + b1) /ltzéfc(h/ﬂ-i-kweé//t(;)
. . ©00000)
performed during previous ‘{’bl)
“timesteps”, and T2 — ha 1

e taken in as input at each
timestep
Ti—1 — (b(Ii,l) hi*l

e The value of this latent space is e 620009 mﬂﬂu[llmm[lﬂluﬂlﬂ} [\\
called a “hidden state” AQ>}{> s=Uh;_1+by Sluye 16‘3/9"”

Input Word Hidden
tokens embeddings states

hy (tearned or nul) R
N ol < Mutti Log@r*

softmax

hy

@ ilr)

Ti_ A :
i1 — P(wi_1) hi1 Ry softmax
mLP

s=Uhl_; + by



(b c R|V|><d ‘Z)() c R\V|><d

h; = c(Wrhi—1 + Weo(x;) + b1) H € RAr—1)xh W, € R4

Ty ce R b € RY
S = Uh’i—]. ‘|_ b2 Ue RZ<><|VI1) " W’ll c R xd’
W ¢ RHUn—HX d'x|V|
. [VIxd . v UeR
¢()€Rdxd’ — be R by € RIVI % 7 ,
We eR Neural N-grams RNN *

b, € RY

0.5 n =6 V| = 20,000
d'xd' vl = 20,000_> ~13M parameters !1 ‘7 100 ’ =» ~2.1M parameters
WireR d =100 d’ = 60
, h = 60 Plus, we can (theoretically) ™
U e RV L .

keep information from any
b2 e R|V‘ -6 -4 -2 0 2 4 6 % point in the past!
—— ———
M ha .
Go%00) E55550) them{e on
@(The) ho hi = o(Whhi—1 + Wep(xi) + b1) )
The (©c0000) {(000000)——» ft followi ¢(f0110w1ng) h:}
sottmax ollowing— (©20000)—(000000 softmax 5{0"}0/6
s=Uh;—1+ b sample sample

followmg s =Uhij—1+bo sectlons (not 'tlﬁt'htf)
Vanishing Gradients

il
o We want to find the parameters of our neural model 6 that SL(ws | T1re oy wi1) LG | Ty si)

maximize the likelihood of this dataset h; — = Sy H diag (o' (f(hi-1))) Wh ?fmem .

e We have some training dataset D = {f}f‘il

. . . . s Wi, diag(o”(f(hi—
e Train using gradient descent in log-probability space H n ]I diag(o’(7(hi))

Uan ($h @

Wi;"' I1 diag(a’(fuzzfl))@

|| ho o
0 = argmin | — >0 > logp(a 1w ) R W Gradionts

If the values of

d)( ) c R\V\xd zeD i=1 ‘% OL(xn | 21 Zn1) _ by the weight matrix
A 2 Shy = o are too small,
dxd’ . S ] — gradients will get
We e Rd, \C/ ring training, we always compute ¢(like) % .\ exponentially
b71 € R{i,xd, \?/t% L probability of each observed token by like ) ) o e X
Wi € Rd’x\v\ 31(/5, Loge ! conditioning on its observed prefix. This j ) B(pizza) ha l R
I)UE]%]%\V\ ) ) also called “teacher forcing”. pizza 095060 ) Al <orimax P(EOS)
2
L(xn | 21, pe1) = —logp(zn | 21, .., T0o1;0)
Exploding gradients: if the activations are too big, the
gradients become too big, and the values of the weights o 1.2 . . : .
become too big, eventually getting values closer to ° Vamshmg grad1ents. gradlent S]gnal from many
« Can solve using gradient clipping (if the norm of the timesteps in the future is negligible compared to gradient
gradient is greater than a threshold, clamp its value or s1gnal from nearby tokens *

scale it down)

Ci—1 Cell memory: same

size as hidden state

Iw%roduce_ Aopvanco.ol Modlel: -

LSTM hi_1 Cell memory: same
@ size as hidden state

Vanishing gradients: no
longer a problem, because

we can keep around s=Uh;_1+ by
information indefinitely

fon s New information to add - —4 _— o -
mory? ~ o ~
i+ Ui +0) | ¢; =130 6+ fiocig mlh /'__’—
Cq
“Output” gate: what information ﬁg

from the memory should be put in
the new hidden state?
0; = 0(Wohi—1 + Usi + b,)

; —(o55550)

ew cell content: information
adged from new token

¢ ( -771) Ei & nh (Wehi—q + Ue; + be)
I ; ——(000000)—+ (000000

“Koyget” gate: what information
shyWNd be removed from or kept

New hidden state: get some
information from “long-term”
memory to serve as the
“working memory” for this h
timestep

h; = o; o tanh(c;)

M—>¢ui) 73| Ci

% Ji L O are Scalors

}l‘L ——<— = 0(:0 ‘t‘QﬂﬁCCé}



Lec8: Sequence, Embeddmy
(We have word emdedMg. wiat obout

sentence 1 Con ne use

RV or LSTM Jm help embed the sequence

ho
RN @J LSTM
— 50050)C
$(BOS) hy ¢(BOS) LT
BOS—— (6006060 (co0000) p(T) BOS— (6555650) 060666 (1)
— I — ([@o0000)C1
I —Eomm——(wmme—p(like) I ——emD oo p(like)
olike) , o(like)  pa 11
like —» (E55555) e8559—p(pizza) lke ——— EoB0D——Geoa_p(pizza)
¢(pizza)  F, ~ oizza) ]
pizza—— (©55000) o5m0) p(EOS) pizza———(690000) ooi_ggggoo C4 p(E0S)

() ¢(I like pizza)

= 7 )

Option O: average word
embeddings

¢(T)
— h_y

hidden state

But we lose all
notions of order

% To backle this = Bidirectional
Bidirectional RNN

*you can have this with LSTM,
I'm just leaving it out to save

= ¢(I like pizza)
Option 1: take the last

But this is overly
weighted by information
from later tokens

dm O(T) =

wdl @hcht

6(¥) = o(1 like pizza)
X

1 Z h,

i=1

Option 2: average hidden
states over time

But earlier states have no
information about later ones,
while later ones have full

information of the sequenc
RAUN

o(1 hke plzza)
1 :E

T

1)

© o\ BoSL EOS

OLERE T kK-
H, A rormalize.

space 2
‘N _
PVRY LT
(ZS(I) MLP softmax
I — > (000000 500000 ;7 Lo(x1) = —logp‘(fu-s | EOS, pizza, like, I; 6)
¢(1k ) 4 softmax
1Ke
like —— 550 ;7 Lo(w2) = ~logp(L \ EOS, pizza, like; 0)
: ¢(plzza) — log p(like | EOS, pizza; 0)
1ZZa — (000000 000 o~
p (©00000) ﬁ
¢(EOS) 2 softmax
EOS—— (000000} ;71 Lo(w4) = — log p(pizza | EOS; 6)

*you can have this with LSTM,
I'm just leaving it out to save
space

agging tasks
R = A

p(P|Z,i) x W [hi;m}

Pronoun
4

Verd
3

Noun

T

b

sl

=

1

"

e

BT 125 CIHAR M 1)

et’s say we have some embedding function (aka encoder)
EIIC V+ N R’n Note: Enc = ¢

is the notation we'll use
« And we want to learn to classify text for encoding sequences

e E.g. spam vs. not spam

e We want to learn the optimal parameters of some function

f9 ‘R™ — A{spam,not spam }
such that for some labeled dataset D = {7;, yi}?il
M

0* = arg mgixil:[l f(yi | Enc(z;); 6)

o Our classifier might just look like a linear transformation or
MLP, e.g.,

fo(Z) = o(WEnc(Z) + b)
0={W.n}

ﬁnd we can train this classifier by fixing the parameters of
the Encoder

« Or, we could also backpropagate into the encoder itself

0 = {W,b} Ufrnx



lecq. Sequence t0 Setiuence A/lodeh’ng/

e Maintains a latent “hidden state” Enc(z) = Pool (h1, o hlf\) c R4
updated after each new token

“Pooling” functions map
from a sequence of items of

Xb—lidden states can be used to:
type t to a single item of type t

o e Get a distribution over the

o(like) next token’s value Pool : R¥*™ _s R4
like —— (©50000)—(656000) - .
'3 » Get a vector representation of n vectors of length d  single vector of length d
the entire sequence =l
1Zza—— (090000}
plzza—> ﬁz P e e MeanPool(h1, ..., hiz) = 1 Z hi

e

¢(E0S)

Enc(z) = Pool (hi,..., hz) € R

i=1
|

EOS —— 1 &
EOS ——(0c0000} (©o0000)f - BidiﬁlcanPool(h?, S hT;] E, ... ﬁ) = E Z [?,, ;;]
=1
o
71—0 B]i%irLastPool(?l,4.,,hET; 1,4.4,;%): [h‘:}‘,m]

\ 2 _ >
b L - 172G Sequence tmbec{dly R4 e i
Natural Language Inference (i} f7V* x V+ — Alentailment.contradiction neutral}
output ”ﬂll.‘f)f%é’
o Aka: recognizing textual entailment
« Given two sentences Tp(premise) and T, (hypothesis), f(fp’ jh) = softmaX(W [Enc(fp); Enc(fh)] + b)

determine the following: . .
text encoding text encoding
of premise of hypothesis

o If Tpis true, then is T}, always true?

e 3 possible labels:

e Entailment: 7, F T, . .
o Train using labeled data
e Contradiction: T, F —Tj,

« Neutral: ¥, ¥ %, Tp, Tn, Yy € {entailment, contradiction, neutral}

f . V+ x V+ N A{entailment,coxltradiction,neutral}

Can be used to measure quality of sentence WZ (
e How might we use sentence embeddings to implement f? *

representations!

e What can we do with sequence embeddings? waﬂ-t 40 /MP/Qmeyrt' a hew f@/( {

e Text classification
fo(T) = o(WEnc(z) +b) f: VT =C

e Multi-sentence classification, e.g., natural language

e Task: map from text in one language (L1) to a distribution
over texts in another language (L2), assigning high
probability to texts that preserves the input text meaning

inference
f . V+ % V+ N A{entailment,contradiction,neutral} n
: LY+ \Z
T,, Tp) = softmax(W [Enc(Z,); Enc(Zy)| + b f'VLléA L2
P> P/
e Retrieval . _ — _ s . . . .
arg EHa% Slm(EnC(:E), EHC(:E )) xEnglish — Qula A. Alrifai is a Syrian emigrant to the United States and writer
T'e

.. . for various Washington-based think tanks.
e Conditional sequence generation!

. l Google Translate
e Aka “sequence transduction”

fMalay — Oula A. Alrifai ialah seorang pendatang Syria ke Amerika Syarikat

. E.‘g., machine translation, response generation in dan penulis untuk pelbagai badan pemikir yang berpangkalan di
. dla—l-ogue . — Washington.
» What do we get from sequence models? Peca,“, End-to-end, we can think about the translation problem as
e Autoregressive (token-by-token) generation generating an output sequence token-by-token by

) Cmapping from some input word to the target vocabulary,
 Sentence embeddings Enc(7) \U/HOW ,bo —ranslacteusing the target language synta)ﬂ

¢ Key idea: encode some input into a vector, decode it r \
using autoregressive generation é"' CO/Q LC/QQ g

e Aka: sequence-to-sequence, encoder-decoder, / Encode input sentence: Enc(Zy,1)
sequence transduction, conditional language model...

We can use RNN +o
encode £ decode :

2. Generate output sequence token-by-token, conditioning on
previously-generated tokens and the input sentence
embedding:

yL2 = <y17 RN yn,> Yn = EOS
yi ~ p(Yi | Y1, Yim1, Enc(Tr1); Odec)

previously-generated tokens embedding of
(empty when starting translation) sequence to
typically, we use y to denote translate
output tokens (you can condition on other things, too! e.g., images)



Encode

Enc(z) =

Pool (hi,..., gz ) € R
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EOS —
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N Softmax
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e Given a training dataset of bitexts D = { (x87 yg) }i:1 samplel

o We want to find parameters that maximize the probability mi

of target sequences 7 conditioned on input sequence T /_3:
v 79

_ (4) (i) (2)

6" = arg max Z Z 10gp< Y; Y1 s y52, Ence,,, (xm) Odec> ; Va/ﬂ/”
=1 =1 “previously-generated” embedding of
(teacher-forcing) tokens sequence to
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Options for backprop: use pre-trained 6,,. and freeze, or

finetune by backprop direct
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Encode
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Problem 3
We have to encode the input

sequence token-by-token O(n)

pizza—%oooooo)—g(oooooo)—» EOS

. 5 v
Dizza—(E55556)—>@BBEE— EOS

p(y | x)
ly 0 = Henc U edec

=
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Decode

Machine translation
Summarization (long text — short text)
e Dialogue (previous utterances — next utterance)

Syntactic parsing (input sentence — serialized parse)

18 54 Fe/\fect

< Pob | B translation ?fﬂf
B depencly BEARK (RAW 4175,
Prob). Pwmg Chie ) &)

53— | Pobd RS

Problem 2
Fixed-size representation of entire
input sequence.

[l
Problem 1
Long-distance dependencies are harder to
represent than shorter ones.

The federal government wants to do something about
the high prices for gas, electricity, and fuel

Die Bundesregierung will etwas gegen die hohen
Preise fiir Gas, Strom und Treibstoff machen.

il Encode I Decode //_-_» .
Pfobz_ MeanPool(h1, ..., hz) = ] - Z ;‘ffzjhh@nﬂm‘ow’n En»” Drob, l?ﬂﬁ é—%ﬁ .
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Enc(f):‘zﬂ:p(i)hi w,&h p%/)e(;é to pyab 2 , Can we auarage,

Thp(l) € At

Ger?eralizationof?ooling: w1-bh Wet?kt 7 And ’d@ wel:?kt Cﬂh 6e m Udﬂm

assign a probability

distribution over input .
indices, and compute ) "o b d lS’t 7
weighted sum over hidden .

states need {0)

waitvis ooty @) ALLOYL [ON. Cam/h/ Soon

during generation?

Lec (o - Arttention e © *(of the pmuwsymdmao{

E Our nee

Enc(7, g) Zp (i | g)h —JFDrmwla‘thM want\},uetgbrt F( 3) P'Ob/ems

17 R ttXl

geR? p:Rd ANz

e Compute a new distribution .
over input indices depending 8 Can e MOC{Q,-ZA as htddQ/l Stat@_ .

on some other vector g S
Encode he Decode
(©00000) _
X§>Two questions: 90 Enc(Z, go)
}7{ 000000)
e Where does g come from? BOS— (060000)—+(000000)

How to implement p? 7 {

¢ g1
I —»(oooooo)—»goooooo));: 1 BOS —
v
Iy — . 3 —
90 Enc(z, g1) like —— CEXXXE——+{O00000)- 2 g = flgi—1/Buc(T, gic1), 6(y:))
(coo000) (G00000) - text encoding also
piZza—»(oooooo)—"f(ooo2)0_0));g 3 depends on the
- ; I
g1 ) previous state!
B6S—={000000)}——>(000000 mi EOS —>@E
Recall: |z
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e Update decoding hidden state based on an updated

version of the input sequence encoding

_ - 0}1 urtion : ati
gi=f (9z’—1, Enc(x,gi_l), (/5(%)) e sd aﬁ(h?togwdf

« An analogy: databases mammals in Turkish?

e The updated sequence is determined via a weighted sum « Aaueryissomesearch 75 R e
. . erm -
over input hidden states 2 Jier_ ;;";:rk
= ot OO —
d Nll_l 5 |fly sinek
. ' 6 |radio radyo
Enc(Z, g) p ilg)h p: R — A=
e We want to return the 7 Tfarmer ciftci
values of the keys most 8 |plant e
. lated h -
« Next time: how do we compute p(I|g)? retediothe auery 7 Joevers oo
11 |snail salyangoz

p(i

Weight of each item is proplorti nal to
the similarity of its key with|t

| q, k;) o sim(Enc(q), ¢ p(z ‘ q, kz@ Volue

query Weight each value accordingly

(ololen stote



“Tn our RUN  Sconarip 2010k xsim(Encla). o)) = 20 | 6.Ja) o sima(a. 1)

Query Key |z
e Query: current decoder hidden Enc(z,g) = Zp(z | 9)hi

@ state % Value

e Key: encoder hidden state (at

some index i) 7 k
M1 Thereare mutiple Waﬁ +o eval Sim(G.RL) -

e Value: also the encoder hidden  P(i | ¢, ki) o< sim(q, k; g € R - sim(q, k) = ¢"Wk Bilinear attention
state at index i esnn(q’k;i) ke R W e R¥x4
' ' = SE S sim(g, k) = wJ tanh(W [g; k])
p(l | g, hz) o< Slm(g, hz) Zi/—l esim(q,k;r) MLP attention
Query K - Wy € RUFd)x”
uery Key sim(q,k) = q"k Dot product attention wy € R
z /
7] d=d . q7k Scaled dot product
EHC x g Zp i ’ g sim(q, k) = \/E attention
Value

F[Petme . | g
h .

Similarities betv_veen query and keys
so = gJh € RI7!

Weights over keys (weights sum to 1)

o (5 Calaﬂ(weed e s (= ao=p(-|go,h) = softmax(sp) € A7

USage. Encoding is weighted sum over values like
B ||
p(Y1|Z) = softmax(f(coago))b
sample . < = Enc(Z, g0) Z ao,ihi € R pizza

— mi

ShMPQA

- aio Updateg. and
repeat -

like
pizza i
BOS mi Similarities betlvgleen query and keys
mi —2+©o0000) g1 =g(go,00,y1) s1 =g/h e R”

Weights over keys (weights sum to 1)
a1 = p(- | g1, h) = softmax(s;) € ANz

\ . Encoding is weighted sum over values
Overview:
= EIIC(E, 91) = Zal,ihi (S Rd

=1

 We encoded our input sequence into hidden states: f; , , , . | h|5| =he Rdx [Z|

o Now we want to predict the next word Yi+1 C O m p leXity

e We have access to the previous decoder hidden state g; dx [z
T
hi,...;hz =heR

O 5 = a(g;.h) € R
a; —softmax( i) € ANz

e First, compute attention scores for each input hidden state using similarity between

query (g;) and keys hy: S; = a(g,, h) S R‘xl
e Then, take softmax of attention scores to get a distribution over keys:
Ni. 1z
a; = softmax(s;) € AVl ¢ = Zawhﬁ e R?
e Finally, compute a weighted sum of values (h) using this distribution ]
il p(Yir1 | Ty, .. yi) = softmax(f(ci, g;)) O(m)

— E . h. c R4
Ci a; jh; € gi = 9(gi—1,Ci—1,Ys)
i=1

e Use the weighted sum to predict the next word: o)
— nm
p(Yiy1 [ T,y1, .. -, y:i) = softmax(f(ci, gi)) (nm)

e Use the weighted sum to update the decoder hidden state: g; = g(gi_l, Ci—1, yz) m N //mﬁs/m # 006d&

n: input /eW



o Main problem: fixed-size representation (“bottleneck”) of input sequence
at each stage of decoding

ot <4,
e Attention fixes this by allowing access to different parts of the input sequence /’low aﬂ ’1'[ on .{0/V00{ s
based on where we are in decoding <_ //’Oﬂe’]

¢ While decoding token-by-token, we can “focus” on different input parts

e Helps with vanishing gradient problem via shortcut to far-away M m e"p é -t
states <——— 5.

e Provides some kind of interpretability (“soft” alignment) learned * Keys, values, and querijes are transformations of the same
without any supervision underlying representations
o e
Attention was initially developed for sequence-to- o For each token generated at index i, we have:
sequence problems — S J— o Akey: k; = Kh; e R K ¢ RIxd

— X d dxd
But we can also use it during single-sequence generation * Avale: v; = Vh; €R" V ER

to solve analogous problems: _(_é ’

9 P ent( on e When trying to generate our next token st index j, we need
e Problem 1: long-distance dependencies aquery: gj = Qhj € R? Q € R**
e Problem 2: fixed-size representation of sequence so far e Scores over keys: s5; = g T Ki s = exp(s;i)

. s I
= e Attention distribution over keys: j Zizzl eXp(Sji’)

ﬁwﬁgf’w hj-i-l — ¢($J+1) o Weighted sum of values: ¢; = ZOC]‘Z"Ui
\(} Cmclal 'j((ﬂ’ SMPPOf‘tl*g para,(/td commutort(on il /i = K ¢(z;) € R

information! v;: = Volr: eRd
dxi) k q c i o(z4)

BOS—— (656050) (655650) ) ) ) s = qTk € RI#I*/7] Two PVOb ems ’) a5 = Q¢(mj) € R?

a = softmaxgim=1 ( S = qu c R|E|x|f|

I —— (cooo00) ) (©00000) ) ) c {ANl |z ‘}l’l‘ P b ‘ .
like — ) ) (©900600) ) )C=aQav E Réx17 ro o = SOftmaXdlmzl (S)
) e Currently, our model is operating only on embedding of c {ANL‘E' }\5\
plzza— ) ) ) ) ) individual wordtypes ¢(z;) = ¢(z)
_ R4l
EOS ——(G500606) (GGG500) (G56660) (G55660) (G56665) cC=avc

e Let’s also embed their indices: z;) = ¢z i Problem 2
We can get context-sensitive representations of ¢( Z) ¢( ) + ¢( ) N merliresriies
each input token in parallel! 47 !

e Sinusoidal embeddings

sin(i/10000%*1/4)
cos(i/100002*1/d)
pi = ,

k) = KO,
(i) v = O,

q¥ = QWn,

s=q'k e R‘ﬂxm‘

a = softmaxqim=1(8)
c {ANI:\E\ }lil

¢, = av®

Dimension

sin(i/10000%" z/d)

44
cos(i/10000%2/%) Index in the sequence

e (in practice, most methods use learned embeddings)

Trobs-  hiu= MLPCCL)

Cabculocte gk First block

use embeocling G Ac) ;. Follauing
blockS use 1 Srom the [ast block

M—»

L1
x L layers hy — W(l)RCLU(Wl(l))Cl T bgl)) + bg)

Lec i TVMbefmeP

+ Atransformer block takes d
as input a sequence of
input vectors h € R¥X"

W [ . Compute attention over (S‘/ﬁi/e W)

input vectors
k = Kh € R¥xn
= Qh; € R%
Tk

Si =

\/@
; = softmax (s;) € ANt
v=Vhe Rk *m

E Qi

=1

¢; = SelfAttention(h),

QSelfAttention = {K, Qa V}

- It generates a sequence of
output vectors h’ € R4x™

+ For now, let’s focus on how
it computes the output
vector corresponding to the
input at index i, p! ¢ R®




MuttiHead  Attention
Compute attention over

Compute attention over OSeltAttention; = 145, Qj, Vi } input vectors
input vectors

k) = K;h € R%*n 9 = SelfAttention; (h); dimn
. K .//_\
af) = Q(;@%Ridk e = V)] ‘e . o)
( Tk ] (] 7
sg )= i e R"®
dg ooncat

al(-j) = softmax gsgj) e ANun
v = Vih e R%X™

() )

Cz(‘j) = i

(0%
/=1

cgj) = SelfAttention; (h);

1. Compute attention over

Compute attention over ) Orr - Cm
input vectors input vectors MuluHc{aaz;tt}cntl?}{ 0 V}H
. (7) _ : . . == ° U 9 )y ViSj=
CZ(J) = SelfAttention; (h); ¢;”” = SelfAttention; (h); Jr s Virj=1
B RO €< e = [efi 5™
ci=|¢; 5.6 205

hi =wee:  lirear combo

hi = WOCZ'
RMEA — MultiHead Attention® (h);
dm Multi-headed attention allows us
.M‘t lﬂ-)m to look at multiple places in the d < h
mst d input sequence at once. gy 9
n
\b Residual connection allows for 1. Compute attention over
smoother gradients. input vectors
1. Compute attention over ~ Layer normalization cuts down
input vectors on uninformative variation i p MHA — \fyltiHeadAttention” (h);
activations, speeding up training.

RMEA — MultiHead Attention™ (h);
2. Add and norm

pAddNormy _ 1 averNorm(h, 4 hMHA)
LayerNorm : RY — R?
g

jAddNorm; 2. Add and norm

prddNorms — [ averNorm(h; + hYHA)
hyTHA

Multi-Head
Attention

3. Feedforward layer
FFN __ AddNorm1
hi = ReLU(hl Wi + bl)WQ + by

LayerNorm(z) = ——(x — u(x
s He)
1 1 ) Here is a nonlinearity that makes d <
M= g o) =y g2 ) d ( h learning easier!
\_’/
n

1. Compute attention over
input vectors pAddNormz E@SIM (bnnet‘t‘[on

U
AMHA — MultiHead Attention® (h);
2. Add and norm
hfxddNorml = LayerNorm(h; + h?IHA)

hMHA — MultiHead Attention® (h)
pAddNorm — 1 averNorm(h 4+ hMHA)
h{™N = ReLU(hAIN™ 7y + by )Wy + by

=L

h' = LayeI'NOl‘lll(hAd(lNom] + hFFN) E‘)'

3. Feedforward layer a

5]

hfFN — ReLU(hiAddNOle Wi + bl)WQ + b h’ = TransformerBlock(h) 532
@©

4. Another add and norm d OTransformerBlock g
AddN AddN. = OMultiHead Attention U {”/1 Wa, by, b2} =~
prddNorm2. _ T averNorm (b d4Norm 4 pFFN) 4 ( b

h+Y = TransformerBlock; 1 (h)

b = Tgnsforner (g (1), ... $(2n))

hN c Rdxn

Input: ¢(xi) = () + ¢(i)
word + position embeddings
= <1‘1,...7$n>




Decoder Block

hMHEAT — MultiHead Attention” (hgec)
hAddNorm1 — LayerNorm(hdeC + hMHA1)

hMHA2 — MultiHead Attention™ ([hepe; h*99)

encs
hAddNormg hAddNorm1 + hMHA

Multi-Head
Attention

= LayerNorm(

h'N = ReL U (hAddNormz 4 b YW, +

— LayerNorm<hAddNorm2 + hFF

/
dec

One last layer norm to get
our final output vectors for
each token generated so far!

/
dec

How <fo generabe. index jtt s

FFN )

'ayerNorm

_ Decod
\ First, MrAA: esgg“-

S(hte.
8\ Second MHA- ¢, k- Nenc
D Lls resuit

FIBf, MHAL LVEE +)
Res SHLABTR L

1+1)
tec )

V

h((llot‘) = DecoderBlock; 41 (hepe, hE

Y, = Tan e &(y1) o(y;))

no iy RAXI

00|g Jawlojsuel |

The transformer decoder maps
from a set of input encodings
and a sequence of tokens
generated so far to a set of
vectors, each corresponding to
atoken in the currently-
generated sequence

+ Let’s say we want to predict the word at index j + 1

« All we need to do is transform this into a distribution over the

word 1 Decoder % & jT word, i e
p(Yj11 | T1,. - s Tny Y1, ..., Y;) = softmax i
£é[\i'l-l hd:é' H:( I’lJN ; W e RIVIxd N

WeR "™,
frob(p'a ly.,-'~,)j)=5oj-bm(w\lf)

Given some paired data (T,7):

Q) Q)
of of
ol
ol |
g
S
DA

— Transformer (5 We can compute these
heye = Encoder (CL‘) in parallel on the GPU
. _ T £ .
p(szrl) — r]%ggooég;er(henca Y1y .- 7yz)

Probability of a token should only depend on the ones that come
before it! But we still want to take advantage of parallelism...

Masking:

+ When doing the forward pass on the decoder, self-attention cal
be parallelized

+ But we don’t want the model to learn to rely on “future” words in
the sequence!

important
~/TMHA
CTransformer <for

+ Solution: during training, set Sii = —ooif i (query index) < j
(key/value index) J

Decoder-Only Transformer
h;_vg

Linear
B transformation
+ softmax

adl

« Then we can sample, compute loss, etc.

Encoder-Decoder

U?i—’aﬂulﬂﬂ ‘@L WCC)‘

E‘Trmm‘ug rj}r /Jm'eﬂelzsm, mas/cﬂy s

' Mask B Decoalor\# '

Recall the autoregressive approximation of sequence
probability:

||

p(T) = HP(% | z1,...,zi—1)

Seq M@Vlw gwe'atm Can we do this with a transformer model?

Decoder oMy, Yes! We just don't have an encoder {ie., decoder-only
v
toke the last h) f

NX Japodeq

We still have to be careful about masking while training.

What if we just want some representation of a sentence,
and we don't really care abouj/being able 1o generate
sentences? Enc(T)

We get this with the transformer encoder:
henc (E)

— Tron sformer Oeof‘ Se7mw mocleling/
Encoder only

— Transformer
Encoder



| B Triing con be problematic.

If we can attend to our input
token too, we won’t learn

n
]9(33) = ]j]:])(lﬁ | L1yeeoy Ti—1,Li41-.-T
i=1

=

O H .
+ From our transformer encoder, we get gr— diet anything!
hi = Tegnelomer(z); € RY ¢

+ We could just transform this to the vocabulary space, and Transformgr Encoder

compute the loss from there:
p(X;) = softmax(Wh;)
+ Do you anticipate any problems? p
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|The name anteater refers to the species' diet, which consists mainly of ants and termites. ‘

For word with index / , oulpet By cin see. 4 !
A”A ouy” ‘b’amlng %00( s : F()(j :“j) ’S#M(W/Ij)
ormwﬁan* Lealcaje ¢
Sflesk word j ¢ For encoder e
/ :

o ik , P~ «
l Qr W l"bh 41 L ( L-# ) . ( 's ,%ﬁe“The name anteater refers to the species‘- which consists mainly of ants and termites. ‘
'60‘49” S) Instead: randomly sample some tokens to replace with a MASK placeholder
:, token in the input, then train the model to predict those words

diet
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