Class: singular noun (NN) Predicted Class

2 true positive J RB IN TO NN NNS NNP
O false negative % | 2 1
RB 5
IN 4
TP a 10 1
TP+FN &§ 5
(8] N 2
b
— ® NS &
s D 1
100% 8]
recall VB P
2xPxR S+D+1
F1: P*R Wer: N

WER can be greater than 100% (eg. Too many insertions)
dli,jl=min(d[i-1,j]+1,

d [ig'=l] & 14

d[i-1,]j-1] + local_substitution (i, j))

Optimal path: tells us what the errors were
G, () is the set of n-grams in sequence x

G (y) = {the, most, natural, form, of, language, use, is, dialogue, .}
G2 (y) e {the most, most natural, natural form, form of, }

C(s, x) is the number of occurrences of n-gram s in
C(the,y)=1 C(most,y)=1 C(natural form,y) =1

D eea,) min(C(s,4),C(s,y))

Pn(9,y) =
) > veoni O D)
1 9] > |yl

BP:9) = ca-twirom 15 < py|

o1

BLEU = BP(y, y) exp Z N InP,(9,y)

yi=1

In well-defined tasks, we can define slots that need to
be filled before providing information to the user.

However, this reduces the expressivity of dialogue

Use another model (or a set of rules) to “simulate” a
human user

Allows scaling up experiments, including to more
complex domains

Allows stability across system evaluations

But doesn’t reflect the real-world complexity of actual use
case, e.g.,, user adaptation to systems over time

Why do we need benchmark?

Estimating how well our models will work on real-world
data

Shared understanding of model performance with
standardized evaluations

Building trust within a community in proving how well a
new model does

Driving progress towards specific tasks and capabilities

What are the properties of the outputs models produce in

general? * Consistency: when evaluating models on the

same task (or variations of it) multiple times, how

consistent is its behavior? ¢ Diversity: do the outputs

models generate have the same distributional properties as
human language?

pitfall: Dataset Contamination, Spurious
Correlations, Defining “Human

Performance” , The Long-Tail Paradox

She Just had a baby

T —

What frequencies are
prominent in this

soyng chunk ?
7 Fiip axes and
{ t
“» W'* I i . oo pie ntenshy
\TA AT I mﬂ"\ I\”‘ M

for entire waveform
Speech Spectrog ram

amplitude

time

Discrete
Fourier
Transform

u‘m m Wu
i

Unvoiced Formants

N
ES I
T
H
=
»
£
t'l me
l she & just ‘ had a ‘ baby

e ax

1 - L

me) Phonetic transcription

e Spectrogram reveals some segmental structure with distinct
properties

e These are phonemes — perceptually distinct speech sounds

Phoneticians compiled a common set
of sounds used to codify different
IPA: speech sounds (across languages)

Initial vocabulary is the set of all bytes (characters) across the
texts

Until the target vocabulary size is reached, repeat the
following:

o Tokenize all of the texts using the current vocabulary

o Find the most common bigram in the tokenized texts, then
add it to the vocabulary as a new wordtype

Denotational semantics: the
symbol refers to something in
the context in which the
language is used

“pet” is a hypernym of “dog”;
“draught animal” is a hyponym of
“domesticated animals”

Core principle: distributional hypothesis

e Words that are used in similar contexts have similar
meanings

e Context: typically, other words in a text, but really
anything can be context!

argmax [[p((w,0)eD) [pl((w.c)¢D)

(w,c)€D (w,c)eD’

1
1 + exp(—score(c, w))

p((w,c) € D) =1 —p((w,c) € D)

Negative samples: sample and train on [* | D| pairs (w', ¢') where

p((w,c) € D=

w' ~p(W) ¢ ~p(C)

unigram prior unigram prior

over words over contexts
(w,e) € D = :
PR =TT T exp(— cos(9(e), 6(w))
U (8(b) — 9(a) £ B(@)) - 4(¢)
2rbrei?= 4= AR 6 — ola) 0D - 60

A BYM i 5
«D= {wi > Wy }izl : dataset pairing M word translations

M
. . . A By[|2
e Find a matrix W such that III}‘I/H g HVV(;S(wi) - ¢(wi)H

=1

CFGs offer arbitrary expressivity
through recursive structure

» Set of nonterminal symbols

Set of terminal symbols (wordtypes)

Set of production rules defining how nonterminal symbols could be
expressed via the composition of other nonterminal and terminal
symbols

Production rules

Nonterminal symbols DT — {the, a, an, ..}
DT N VB JJ IN N - {cat, cow, rabbits, dogs, ...}
S NP VP SBAR VB — {hid, is, thinks, was, are, ...}

JJ - {wrong, right, blue, red,
IN - {that, in, of, because, ...}
NP — {DT N, NP IN VP}
VP - {VB, VB JJ, VB S}

: }
Terminal symbols (vocabulary)

are, cat, cow, hid, is,
rabbits, that, the, thinks,
wrong, ...

S - {NP VP, VP}
The cat|that thinks fthe cow thinks|the rabbits hid|is wrong
155 N IN VB DT N VB DT N VB WB JJ
NP NP NP vP| VP

s
vp \
S E—
vp |
NP |
s
NP is sil , SO its corresp g VP should be too

Production rules

NP - {DT N, NP IN VP}
VP - {VB, VB JJ, VB S}
S - {NP VP, VP}

Nonterminal symbols
DT N VB JJ IN
S NP VP

CFG is often called phrase structure or constituency grammar
Each production rule describes a constituent
Constituent constructions are independent of one another

(this is why the grammar is context-free)

o Augmenting a CFG with agreement (e.g., distinguishing
plural vs. singular NPs and plural vs. singular VPs plural)
means it is no longer context-free

o Also, some languages aren’t even context-free, not even
considering agreement:

CCG: Combinatory Categorial Grammar

Elements of a CCG:
o Lexical items (wordtypes)

o Each paired with a syntactic type (= nonterminal or
composition thereof)

[the: NP/N dog:N John:NP bit: (S\NP)/NP|
If a Noun appears Noun Noun If a Noun Phrase appears to the
to the right, then it Phrase right, then it creates an element

creates a Noun with the type
Phrase N - dog NP — PRO S\ NP
PRO - John
NP - DT N If an NP appears to the left of that

DT - the element, it creates a Sentence

DEEEeOEEeE

Truth—-Conditional Semantics:

We'd like the outcome of our semantic parsing to be a
some that can evaluate to true or false (i.e., Y} — [(]7 1])

everyone likes Pepper
S / (s \ NP) (S \ NP) / NP NP
<e . t> t e-<e-t> e

A x, y . likes

. Vox
£(x))

Logical operators, like v, A, and =
Pepper is clever and curious

Quantifiers like v and 3
Some cats like water

Relationships between functions = and &

Squares are rectangles (Vx (square (x) = rectangle(x)))
Verbs can have tenses, and can be modified with adverbs
We can talk about beliefs others have

Some combinations of meanings are nonsensical (unevaluable)
green ideas

Sentences aren't just statements — sometimes they are commands,
questions, etc.

Sentences exist in the context of previous sentences and their meanings

Semantics: mapping
from surface form
(sequence of tokens) to
formal executable
representation

Pragmatics: executing

the logical form against

some context to acquire
its denotation

Speech Act; Presupposition; Implication

By interpreting speech as action, we can ascribe intent to
utterances that isn’t obvious from their formal
representation

Propositions that must be true about a world in order to
compute the denotation of a particular sentence

Propositions suggested by an utterance, but not explicitly
expressed

Gricean Maxims; Common Ground

General principles we believe we mutually hold about how what
kinds of utterances we should add to conversation given what'’s
been said so far:

During interaction, we maintain some representation of what we
believe is mutually known by conversation participants

Elements of Scenario Design

Interaction dynamics also depend heavily on the
properties of the context itself:

e Incentive structure
e Environment design — perception and action, novelty

e Participants — how many, any existing structures among
them, roles, a priori asymmetries

e Communication channel
Work in computational linguistics, psycholinguistics, and

cognitive science aims to characterize the relationship
between scenario design and linguistic behavior

Multilingual MLP and its challenges

For any task we expect out of language technologies, they
should work for any language

Data Modality, Data Scarcity, Dialectical

Variation, Speech System, Morphology,

Lexical Semantics, Syntax, Semantics,

Idioms, Difference in Language Use, Change
Autoregressive language modeling:

« The probability of a sequence is a product of local token
probabilities

The probability of a token depends on the ones that came before it

The probability of a sequence is a product of local token
probabilities

The probability of a token depends on the ones that came before
and after it

n
p(T) = HP(Iz‘ | 21, Bim1, Tit1 - - . Tn)
i=1

Let's make a Markov assumption:
The probability of word at index i only depends on
the n - 1 words that came before it

p(X;=x)=plx|x1,...,2-1)

~ p(z |)
Preceding (n-1)-gram
C(Ii_n+1, coo s L1, IE) count of n-gram
o

.y .’Ei41) count of prev (n-1)-gram
For an n-gram language model, we need to store counts
for:

o All sequences of length n (%)

o All sequences of lengthn -1 (anl)

What if the count of the target n-gram is 0?

e Solution: add a small number to the count for every n-
gram (aka “smoothing”)

What if our n-1-gram prefix has a count of 8?

e Solution: condition on a shorter n-gram prefix (e.g., the
previous n-2, or n-3, etc.) instead (aka “backoff”)

Can't learn anything from the counts of n-grams containing
similar words

Without a big n, cannot handle long-distance dependencies

Measure of Fit (fl &1 & B &)

Likelihood: probability of the data under our model
M
Hpe (T;)
i=1
Negative log likelihood (fixes float underflow)
M M N
- Zlogpg(i,‘,) =- Z Zlogpg(x} |23, T5-1)
i=1 i=1 j=1

Perplexity: inverse probability of data, normalized by

number of tokens in the dataset
M N

1 i
= exp —TZZIngg(x]\xi,...
im i=1 j=1

Adjust the Temperature when generating

71";—1)

Operation: modify the logits
before computing probabilities

s(w) = f(w|z1,...,2i—1;0) <mlogits

e ew(s)/D)
P(Xz = \ lyeoey z—l) Zw’EV exp(s(w/)/T)

A better approximation for global argmax: beam search

« During generation, we maintain a “beam” of n sequences instead of just
one

e At each generation step i,

o We select the n most likely next tokens Xifor each prefix, and create
n more sequences

e Then we look at all the n2 sequences so far, and discard all but the n
most likely sequences

« At the end, we select the sequence that has the highest probability
among the set

Masking Out Wordtypes: (&constrained)
€ sampling top-k sampling top-p (nucleus) sampling
Identify the set of n tokens &€ such that V « € &,
p(x| 21,5 Tim1) 2 €

Identify the set of k tokens K that have the highest probabilities
under P(Xi | @1, 1)

Identify the set of n tokens P that have the highest probabilities
under P(Xi, ‘ Ty,... ,%;1) and their cumulative probability is p

Similar to before: given a set of possible continuations C € V
we will set the probabilities of all other tokens to ®, then
renormalize using Zp(Xi | z1,. . 2-1)

p(xi | Ticpg1, ..., xi;0) neylal n-gram
_ Dlls(i|zi—nt1, - -, Ti—1;0)}

Zx'ev GXP(S(I'|Ii_n+1, PR |

Softmax over

5(x | Ting1,- -+, Tim130) = fo(@@icnt1), - - - d(zi1))[x]

Input Word Hidden

tokens embeddings states
() (learned or null)

(©66660)

T1——— (1)

softmax

s = Uh,ﬁ,l + bo

[z
0" = argngn - Z Zlogp(xi | R 0)

c rIVIxd zeD i=1

Vanishing gradients: gradient signal from many
timesteps in the future is negligible compared to gradient
signal from nearby tokens

Exploding gradients: if the activations are too big, the
gradients become too big, and the values of the weights
become too big, eventually getting values closer to «

Can solve using gradient clipping (if the norm of the
gradient is greater than a threshold, clamp its value or
scale it down)

LSTM hi_1 Ci—1

Cell memory: same
size as hidden state

Vanishing gradients: no
longer a problem, because
we can keep around
information indefinitely
New information to add

c; =[igoleg+ fiocia

Output” gate: what information
from the memory should be put in
the new hidden state?

1= 0(Wohio1 + Unti +ba)

New hidden state: get some
information from “long-term”
memory to serve as the
“Working memory”for this 7
timestep)
hi = 0; o tanh(c;)

*you can have this with LSTM, F

T'm just leaving it out to save 10 ¢(T) = ¢(I like pizza)
space o 7|
—
(503) _ L]
BOS—* (620000} ‘Zl =
i=
1 — (@500 {c5o559) (eoco50

o(like)] b

[
like ——— -)
.-z—i_ =

$(E0S)

EOS (G50000;

Enc(Z) = Pool (hy, ..., hzz)) € R?

“Pooling” functions map
from a sequence of items of
type t to a single item of type t

Seqg2seq (With challenges); Attention

Encode

size representation of entire
input sequence.

The federal government war
the high pric

Problem 3
We have to encode the input
sequence token-by-token O(n)

We encoded our input sequence into hidden states: hl: S h\f\ =he¢e Rdx‘ﬂ
Now we want to predict the next word 1/ 1

We have access to the previous decoder hidden state g;

First, compute attention scores for each input hidden state using similarity between
query (5) and keys (h): s; = a(g;, h) € R

Then, take softmax of attention scores to get a distribution over keys:

a; = softmax(s;) € ANurz

Finally, C‘OJT‘IDU(S a weighted sum of values (h) using this distribution
K

¢ = g a; jh; € R?
Jj=1
Use the weighted sum to predict the next word:
p(Yisr | T y1, .. i) = softmax(f(ci, gi))
Use the weighted sum to update the decoder hidden state: g; = §(gi—1, Ci—1, ¥i)
hi,..., bz = h € R/
o) s; = a(gi, h) € R
@; = softmax(s;) € AN:=I
|z|

Z a; jh; € R?
j=1

(Y1 | By, s) = softmax(f(ci, g;)) O(m)

9i = 9(gi-1,¢i-1,9i)

owm m

Ci

» Sinusoidal embeddings
Sin(i/100002°2/4Y |
cos(i/10000%*1/2)

pi = o

° a
sin(i/lDDODzz/d)
cos(i/loﬂooz‘i/@

Index in the sequence

NX Jepooeq

)

But we don’t want the model to learn to rely on “future” words in
the sequence!
Solution: during training, set .. — _ ~gif i (query index) < j
3)
(key/value index)

Instead: randomly sample some tokens to replace with a MASK placeholder
BERT: token in the input, then train the model to predict those words

