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Abstract

Catastrophic forgetting (CF), the phenomenon that occurs when a model forgets previously
learned data as a result of learning new data, poses a significant barrier to lifelong learning
of LLMs, where many factors of fine-tuning tasks within different domains can ultimately
degrade the performance on previously learned tasks. In this project report, we propose
different curriculum designs to mitigate catastrophic forgetting and conduct experiments
to verify the effectiveness of these approaches. Subsequently, we investigate whether
curriculum design exhibits a scalable transferability effect by using a smaller LLM to
approximate the ideal curriculum for a larger LLM from the same family to reduce trainin

power consumption and increase downstream performance. Our code is available onlineﬁ

1 Introduction and Related Work

Catastrophic forgetting occurs when you train a model sequentially on different datasets, and as training
continues, the model tends to perform poorer and poorer on previously learned data. The general consensus
of the Al research community indicates it is paramount to build/train models that can learn new tasks se-
quentially without forgetting previously learned knowledge [[1]]. In Continual Learning (CL), a model needs
to learn a series of tasks sequentially with the objective of learning new tasks without forgetting old ones.
Hence, catastrophic forgetting is commonly viewed as a harmful problem that needs to be overcome [2]] [3].
A classic example of catastrophic forgetting is the distribution shift phenomenon in binary classification
task 4] shown in Figure[T] It is revealed that in continual learning, the *order” itself in which a model learns
a series of tasks, significantly affects the degree of catastrophic forgetting [5]].

Curriculum learning has been applied to finetuning to mitigate catastrophic forgetting phenomenon. This
is highly favorable since it doesn’t pose additional computation burden to the finetuning process. Kim and
Lee [6] investigated a “start-easy-move-hard” approach, comparing the effects of sorting data by length,
loss, and attention scores against random data shuffling. Notably, they proposed a hybrid strategy: random
training for the initial epoch followed by structured curriculum training in subsequent epochs. Their findings
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Figure 1: Depiction of catastrophic forgetting in binary classification tasks when there is a distribution shift
from an initial task to a secondary task. [4]]

indicate that even within one finetuning task, the arrangement of data feeding from this dataset can have great
impact.

Kirkpatrick et al. (2017) propose Elastic Weight Consolidation (EWC), a method inspired by synaptic con-
solidation in the brain to mitigate catastrophic forgetting in neural networks trained on sequential tasks. By
estimating the Fisher information matrix to identify the parameters most critical to previously learned tasks
and penalizing their deviation during new learning, EWC preserves prior knowledge without requiring past
data. The authors demonstrate its effectiveness on sequential MNIST classification and Atari reinforcement-
learning tasks, showing that networks can acquire new skills while retaining earlier ones, marking a signifi-
cant step toward CL in artificial systems. [1]]

Ramasesh et al. identified that catastrophic forgetting depends on task similarity on a U-shaped relation-
ship. Forgetting is minimal when tasks are either very similar or drastically different, but maximal when
tasks demonstrate “intermediate similarity”. Ramasesh et al. formalized this with a feature overlap matrix
©(z, "), and showed that catastrophic forgetting reached maximum when ©(z, ') is moderate. [7]

Appropriate model selection has an effect in catastrophic forgetting. Models like Phi-3.5-mini effectively
minimize forgetting while maintaining learning capabilities. Prompt engineering and fine-tuning strate-
gies significantly impact model performance in continual learning settings. Models such as Orca-2-7b and
Qwen2.5-7B showed strong learning abilities but varied in forgetting. 8] Careful model selection and tun-
ing can enhance handling multiple tasks without sacrificing accuracy, which is crucial for developing au-
tonomous LLM-based agents. [8]]

In recent studies, it was demonstrated that the problem of determining the optimal parameters to avoid the
CF in a fixed model can be reduced to the well-known Satisfiability (SAT) problem. Consequently, this proof
categorizes the CF problem within the class of NP-HARD problems. Despite the NP-HARD nature of CF,
significant progress has been made in mitigating CF within Deep Neural Network (DNN) models through
various techniques and heuristics. [9]

One of them includes adding a new loss term. In the field of LLMs, it is discovered that there is a high cor-
relation between the sharpness of the loss landscape and the tendency for CF, where a flatter loss landscape
leads to lower likelihood of CF [[10]]. Another way to prevent CF is to preserve weights that are important for
the first task (the task that may be forgotten) [[11]. After training on the first task, calculate the aggregated



gradient of loss against each weight, and cutoff based on some threshold. Then freeze the weights that have
a large gradient (meaning they are important to the first task) when training the second task.

Some studies also shows that we can also use reinforcement learning perspective to view
continual training and catastrophic forgetting. Specifically, we view the LLM as an agent, the input z as
the state s, and the generated token sequence y as the action a. Under this formulation, sequential fine-
tuning is equivalent to an agent adapting to a non-stationary environment where the state distribution shifts
abruptly from P(s)r, to P(s)7; where T; ; stands for different tasks, which can be the major cause of the CF
phenomenon. In RL, stability is typically maintained via an Experience Replay Buffer B [15]]. For instance,
the replay mechanism in the CORE paper presented in Figure[2] is a strategy intuitively designed based
on replay buffer perspective.
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Figure 2: Pipeline of CORE which leverages playback mechanism in the curriculum

Low-Rank Adaptation (LoRA) fine-tunes large language models by freezing all pretrained weights and in-
troducing a trainable low-rank update of the form W + B A, where A € R™™ kand B € R*™*" with r < d, k,
enabling efficient adaptation within a constrained subspace of weight changes [16]. Since LoRA restricts
how much the underlying model parameters can drift during fine-tuning, it preserves most of the pretrained
model’s behavior while learning new skills. Recent work discovers that LoRA not only limits overfitting
but also substantially reduces catastrophic forgetting. In other words, models fine-tuned using LoRA retain
markedly more of their original capabilities compared to fully fine-tuned models when evaluated on out-
of-domain tasks [[I7]. As far as we are aware, there has been no research investigating the effects and best
practices exploring the effects of catastrophic forgetting and sequential fine-tuning using LoRA.

2 Problem Statement

We consider a sequential learning setup involving a pre-trained Language Model (LM), parameterized by 6.
The model is required to learn a sequence of tasks 7 = {11, Ts, ..., Tk }. Each task T} is associated with
a dataset D, = {(x,y)}, where z represents the instruction/input and y represents the target output. Due
to compute resource and time limits, we set k to 2 and regard finetuning on a different dataset as a different
task for convenience, and therefore name them Task A and Task B.

After deciding the base experiment setting, firstly we will try to reproduce Catastrophic Forgetting phe-
nomenon. Then our goal is to explore different strategies to mitigate catastrophic forgetting, i.e., to learn



these two tasks well at the same time. Lastly, we can design a curriculum according to these strategies and
investigate whether curriculum design exhibits a scaling effect.

3 Hypothesis

We hypothesize that catastrophic forgetting in Language Models is driven by the abrupt distribution shift
from RL perspective and the optimization conflict between the previous task (Task A) and the current task
(Task B) from optimization perspective. More specifically for the optimization perspective, we suspect that
sequential finetuning leads to parameter moving towards a local optimum specific to Task B, which can be
completely distinct from the optimal region of Task A. We formulate the following hypotheses:

H1: Interleaving mini-batches of Task A and Task B (rather than training them sequentially) can mitigate
catastrophic forgetting since we empirically believe that interleaving forces the optimization process to sat-
isfy the constraints of both tasks simultaneously.

H2: A gradual transition strategy—mixing a small ratio of Task B ’preview’ data into Task A training, and
retaining a small ratio of Task A ’review’ data during Task B training can outperform baseline. This is
inspired by how human design curriculum for studying multiple tasks asynchronously.

H3: The severity of CF is negatively correlated with the semantic similarity between tasks.

H4: Smoothing the loss landscape via additional reward terms or regularization will improve the model’s
robustness to forgetting. Reshaping loss landscape may help mitigate this issue.

HS: Varying the method used to select which data gets placed in the replay buffer (i.e. difficulty, random
selection) under some budget constraint (limited pieces of data to choose). The goal is to gain insight on
how the data in your replay buffer affects your model’s ability to retain information.

4 Method

4.1 Reproduction of CF

To establish a clear foundation for our study, we first reproduce the catastrophic forgetting phenomenon
under controlled environments. This section outlines two complementary experiments for our subsequent
experiments to improve upon.

4.1.1 Toy Experiment

We employed a text classification setup (distilbert-base-uncased model [|18] on the 4-class AG News dataset
[[19])) to construct two mutually exclusive sub-tasks. More specifically, we split 4-class AG News dataset [[19]
into two sub-dataset, one containing class *World” and *Sports’ labeled as Task A, and one containing class
’Business’ and ’Science’ labeled as Task B. We add a 4-class classifier as the task head and unfreeze the
DistilBERT weights, i.e., we perform a full finetuning.

4.1.2 Sequential Training (Baseline)

In this procedure that will serve as our baseline, we employ a method we will call Sequential Training.
Sequential Training consists of first training on solely Task A and then solely Task B. We declare this as
our baseline because this strategy is the most straightforward way to organize the training data. We denote
the finetuning procedure on MATH as phase I and subsequent finetuning on HotpotQA as phase 2. Our
expected results for this experiment are that during phase I the model can learn well on MATH, whereas



during phase 2 the model demonstrates a degrading performance on MATH as it tries to fit the challenging
HotPotQA data. In our base experiment, we use TinyLlama-1.1B-Chat-v1.0 as the language model. For
the training order, we use MATH as the first dataset and HotpotQA as the second dataset.

Strategies Propositions to Mitigate Catastrophic Forgetting in LM Continual Training
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Figure 3: Overview of Proposed Strategies

4.2 Strategy Exploration

Drawing inspiration from the relationship between continual learning in language models and reinforcement
learning, along with an intuitive understanding of catastrophic forgetting, our objective is to explore various
potential strategies to mitigate this phenomenon. All mitigation experiments are evaluated independently.
Specifically, each experiment introduced one single strategic modification to the same exact initial condi-
tions/settings to isolate the method’s effect. The visualized overview of our proposed strategies is presented
in Figure[3]

4.2.1 Mixture Strategy

From RL perspective, in the baseline, model is exposed to two different task environments in an order,
which can lead to a distribution shift as mentioned previously. We therefore propose the construction of
a unified environment that encompasses both tasks. Hence we propose a "Mixture’ strategy where we mix
these two datasets together into one and use that as the dataset to finetune. The model will be tuned in a way
that attempts to perform simultaneously well in both tasks. Note that the concept phase is not applied to
this strategy.

4.2.2 Interleaving Strategy

This strategy still inherits the core intuition of creating a comprehensive task environment when finetuning.
Instead of directly mixing two datasets into one, we interleave Task A batch and Task B batch during training.
In another word, instead of finetuning on Task A batches during phase I and on Task B batches during phase
2, we expose model to batches from ’first A and then B’ in an iterative way. We hope that this strategy can



help prevent the model from overfitting to one single domain’s local minima. The model parameters will be
tuned toward two tasks’ distribution alternately at batch level, eventually forming an equilibrium.

Note that Mixture and Interleaving Strategies seem to be similar, but they are actually distinct. Please refer
to pseudocode in Appendix.BI]23]

4.2.3 Ratio-ing Strategy

Despite the overall fine-tuning order (Task A — Task B) is maintained, the fine-tuning process is still divided
into two phases, allowing a small ratio of ’data swapping and mixing’. In the phase I, the data consists of
mostly Task A samples (e.g., 80% Task A and 20% Task B), while in phase 2, the ratio is inverted (20%
Task A and 80% Task B). This setup allows us to test how mixing in Task B data into the task A training
step (and vice versa in task B’s training) increases or reduces the threshold for Catastrophic Forgetting (CF).
In this strategy, we can intuitively interpret the small proportion of Task B data in phase I as ’preview’ and
the small proportion of Task A in phase 2 as ’review’.

4.2.4 Correlation Strategy

Through replacing the "QA” dataset with a different dataset such as ’coding”, or any other heavily logic-
based dataset, the policy (weights) learned in the first environment should be more robust to updates from the
second. Specifically, we argue that mathematical reasoning and code generation share a high degree of sim-
ilarity—both require strict syntactic adherence, logical derivation, and step-by-step reasoning. By contrast,
open QA (like HotpotQA [22]) relies more on knowledge retrieval and natural language comprehension.
Therefore, we believe that replacing a low-correlation task with a high-correlation task will mitigate the
distribution shift and hence mitigate CF. To investigate this, we designed a comparative experiment keeping
the language model and the first task (Math) identical. We contrast three sequential fine-tuning scenarios:

Baseline (Low Correlation): MATH — HotpotQA

Correlated Setting (High Correlation): MATH — CodeParrot or GSM8K

We select CodeParrot [23]] dataset as a proxy for the coding task and GSMS8K [24]] as a proxy for another
math task, which we believe possess stronger correlation to the MATH dataset compared to HotpotQA.

4.2.5 Loss Smoothing Strategy

While the correlation strategy aims to align task distributions, loss smoothing focuses on stabilizing the
dynamics of optimization itself during the sequential fine-tuning process. We draw inspiration from the
findings of Li et al. [[10], which showed that catastrophic forgetting is strongly related to the sharpness of the
loss landscape. Specifically, when training on the second task pushes gradients of the model towards sharp
minima, previous learned representations are overwritten easily.

Following this insight, we devise schemes to moderate the current direction and magnitude of the loss. The
current approach is to integrate the loss with recent historical loss values: a momentum parameter. Please
refer to pseudocode This has the effect of steering the model away from sharp minima and guiding
optimization towards a flatter region of the loss. We hope to see whether loss smoothing helps mitigate
catastrophic forgetting by promoting gradual adaptation. In addition, the paper also highlights a more prin-
cipled approach to mitigate catastrophic forgetting, by directly reshaping the loss curve. Sharpness-Aware
Minimization (SAM) explicitly counteracts CF by optimizing the worst-case loss within a small neighbor-
hood of the parameter space—penalizing directions in which the loss increases rapidly. By doing so, SAM
discourages overly rapid gradient descent and promotes convergence to flatter minima, which leads to less
CF as they demonstrated. We aim to explore on this approach as well.



4.2.6 Difficulty Strategy

Motivated by the analogy to human learning, we investigate how the difficulty of retained training examples
influences a model’s ability to preserve previously acquired knowledge during sequential fine-tuning, focus-
ing on how different strategies for selecting replay data affect CF. Following the same setup as above, the
model is first fine-tuned on the MATH dataset (phase 1), then fine-tuned on HotPotQA (phase 2). However,
prior to phase 2’s training, we first concatenate the HotPotQA training data with a replay buffer consisting
of 10% of the examples from the MATH phase I training set. To compare replay-selection strategies, we
quantify the model’s retained mathematical reasoning ability using its validation performance on MATH.

We test five different strategies for selecting the phase I data. Our baseline is a random selection strategy
that randomly samples phase I examples without replacement. We then compare this baseline to a difficulty-
based strategy that ranks examples according to their human-assigned difficulty level; each problem in
MATH is annotated with a ”level” from 1 to 5, as determined by human expert annotators [21f]. Since hu-
man difficulty may not align well with the model’s internal difficulty signal, we also explore model-derived
difficulty by sorting examples according to their per-example training loss. We consider both ascending-loss
selection (favoring problems the model finds “easiest”) and descending-loss selection (favoring problems
the model finds "hardest”), as described in AlgorithmE}

4.3 Curriculum Design and Transfer

Based on experiments with the aforementioned strategies, we determine our curriculum — an aggregation
of the best strategies for training an LLM based on our experiment results. We first establish a baseline
using Llama2-7B [25]], ensuring all other parameters remained unchanged. Subsequently, we implement
our curriculum to Llama-7B baseline and conduct the main experiments. Choosing Llama2-7B as the larger
model for experiment is to ensure consistency in the model architecture since Llama2-7B and TinyLlama-
1.1B-Chat-v1.0 are in the same architectural family [20].

5 Experiment

5.1 Reproduction of CF

For the toy dataset experiment, the result is as Figure [d] Before the red borderline, from the blue line we
can tell that the model has sufficient capacity to learn the classification for four classes of news, whereas
orange lines shows that after learning well on *World/Sports’ news, model forgets them during training on
’Business/Sci’ news. This result exactly demonstrates the catastrophic forgetting phenomenon.

And for the baseline experiment, Figure [5] demonstrates the validation monitoring curve during phase 2.
We observed that loss on HotpotQA dropped and the eval-loss of MATH surged from a low starting point,
indicating the model forgot MATH during training HotpotQA. This result is consistent with CF phenomenon.

5.2 Strategy Effectiveness Verification Results

The Mixture and Interleaving Strategy both discard two phase training paradigm. The validation loss
monitoring curves of these two experiment presented in Figure 5] both indicate that these two strategies can
be helpful for mitigating CF. The figures for separate Mixture, baseline and Interleaving experiments are
displayed in Figure 8] Figure[I3|and Figure[I4] The swapping ratio is an important parameter in the Ratio-
ing Strategy. Therefore, we selected ratio of 10%, 20% and 50% to conduct controlled experiments, and also
did experiments with ratio of 0% for reference. The plotted curve of validation loss in phase 2 is presented
in Figure[7} According to Figure[7] in phase 2, introducing mixing ratios can help mitigate this issue. At a
10% ratio, despite a slight initial rise, the loss growth was much flatter, ending at 1.03. Increasing the ratio



Baseline, Interleave and Mixture

1.8
. Accuracy Comparison Loss Comparison (log scale)
10 —— ; —— baseline hotpot
e G 10
et S | 16 —— baseline math
ool interleave hotpot
—— interleave math
§ —=- mixture hotpot
L06 —e— Task A Accuracy (Joint) 100] 314 ==+ mixture math
9 ~ Task A Accuracy (Sequential) |, |
s —— Task B Accuracy (oint) a
g —— Task B Accuracy (Sequential) | =
<o4 Task B starts 12
il W e ] skt g
i !/~ TaskALoss (Sequential) |
| —— Task B Loss (Joint) 1.0
|/ —+— TaskB Loss (Sequential) |
0of — l — - Task B starts
1 2 a 5 6 1 2 3 a 5 6 0.0 0.2 0.4 0.6 0.8 1.0
Epoch Epoch Training Progress

Figure 4: Result Gallery of Toy Experiment: Joint Figure 5: Result Gallery of Baseline, Mixture and
vs. Sequential Training Interleave

to 20% further improved retention, resulting in a final loss of 1.02. In contrast, the 50 % ratio does not cause
an increase in loss; instead, the loss decreases by approximately 0.02. We can now confirm the effectiveness
of Ratio-ing Strategy.

As for Correlation Strategy Experiment, we substitute HotpotQA task with CodeParrot [23]] and GSM8K
[24], respectively. The validation monitoring curve on both tasks during phase 2 is presented in Figure [f]
During phase 2 training on both task datasets, the model demonstrated very similar CF phenomenon on the
learned Math task as in the "Math — HotpotQA’ baseline. The validation loss curves converge to around 1.2
in all training pairs.
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For the Loss Smoothing experiment, as the validation monitoring curve during phase 2 presented in Figure
] we can conclude that auxiliary loss smoothing can’t help ease CF phenomenon as the validation loss still
surge to around 2.0 and shows zero mitigation compared to the baseline.

Moreover, the results from Difficulty experiment suggest only a minor improvement from using human-
ranked difficulty selection over random selection based on the final MATH validation losses. From the
experiment results displayed in[I2] there is no variance in the MATH validation loss across the methods
for the first twenty steps because we trained using the same seed and the first replay buffer training point
comes around step 20. While the difference between the highest validation loss ("loss-descending”, 1.04587)
and lowest validation loss ("human-ranked difficulty”, 1.04153) as a ratio of differences from the step-
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zero loss (1.01410) is (1.04587-1.01410)/(1.04587-1.01410)=1.158, so a 15.8% difference in the amount of
“forgetting”. However, the difference between human-labeled difficult than using random (1.04375) is only
7.15%, which is fairly trivial. While we weren’t able to re-run this experiment due to limited resources, we
suspect that this number is even lower after accounting for noise.

5.3 Curriculum Transfer Experiment

For the baseline with Llama2-7B, the result is as in Figure @ Just like in the baseline experiment with
TinyLlama-1.1B-Chat-v1.0, the experiment figure is consistent with CF phenomenon.
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Figure 10: Result of baseline on Llama2-7B Figure 11: Result of Llama2-7B applied with Curricu-
lum

From the experiment results on the aforementioned strategies, we concluded that the only strategy used for
the most optimal curriculum is the ratio-ing method with the ratio of 20%. This is because interleaving, mix-
turing and ratio-ing can’t be implemented simultaneously, meanwhile loss smoothing and difficulty strategy
proved to be unhelpful or did not provide enough benefit to necessitate the additional complexity. The ex-
perimental result figure is as in Figure[T1] indicating improved loss stability (and thus reduced catastrophic
forgetting). It also reveals an unexpected pattern: despite the 7B model being significantly larger than the
1.1B model, its loss on HotpotQA remained relatively unchanged throughout training. This suggests that the
limited number of HotpotQA samples may have been insufficient for the 7B model to meaningfully benefit
from the curriculum, leading to its consistently high loss. More clarification on this can be referred to[F|
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6 Conclusion

So far, we have successfully reproduced the catastrophic forgetting phenomenon and verified our proposed
strategies. Through the reproduction of CF, we gain some intuition about this phenomenon and accordingly
have some thoughts and ideas on mitigation strategies. We elaborate on the motivation and implementation
of these strategies. Some of our strategies worked, whereas some of them did not. We also conduct a
preliminary investigation into curriculum transfer for LLM continual learning through a case study.

Validation of Distribution-Based Hypotheses (H1, H2): Our experimental results strongly support the hy-
potheses that altering the data distribution is the most effective for mitigating forgetting. Consistent with
HI1 (Interleaving), breaking the strict sequential nature of tasks prevents the model from overfitting to the
local minima of the most recent task. Furthermore, H2 (Ratio-ing) was validated as a robust strategy, where a
simple “preview” or ’review” mechanism can help to maintain the balance between learning new knowledge

and retaining old capabilities.

Refutation of Semantic and Auxiliary Hypotheses (H3, H4, HS): Conversely, our experiments largely re-
futed the hypotheses that relied on semantic properties or auxiliary regularization alone. H3 (Correlation)
and HS5 (Difficulty) posited that the semantic relationship or difficulty level of tasks would significantly
influence forgetting rates; however, our results showed that neither high semantic similarity nor specific dif-
ficulty ordering provided significant gains over random baselines. Similarly, H4 (Loss Smoothing) proved
ineffective in this setting, indicating that adding regularization terms to the loss function is insufficient to
constrain optimization trajectories.
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A Dataset Post-Processing

Since we are doing SFT(Supervised Fine-tuning) [26]], we need a prompt to format data into Llama-chat-style
prompt for conducting experiments. For fair comparison experiments, we adapt the following formatting

R

functions to pre-process the dataset:

def format_hotpot_ga (example) :
"""Formats HotpotQA data into a Llama-chat-style prompt."""

context = " ".join(["".join(s) for s in example["context"]["sentences"]])
question = example["question"]

answer = example["answer"]

text = (

f"<s>[INST] You are a helpful assistant. Use the following context to

f"answer the question. Context: {context}\n\nQuestion: {question} [/
INST] "

f"Answer: {answer}</s>"

)

return text

"

def format_math (example) :
"""Formats MATH data into a Llama-chat-style prompt."""
problem = example["problem"]
solution = example["solution"]

text = (
f"<s>[INST] You are a math expert. Solve the following math problem.
f"Show your work.\nProblem: {problem} [/INST] "
f"Solution: {solution}</s>"

)

return text

"

And for the CodeParrot dataset, the prompt format is as below:

def format_codeparrot (example) :
"""Formats CodeParrot data into a Llama-chat-style prompt."""
code = example["content"]

text = (
f"<s>[INST] You are an expert programmer. Write python code. [/INST]
f"{code}</s>"

)

return text

"

B Experiment Pseudocode

Here are the pseudocodes for the training process of Baseline, Mixture and Interleaving experiments.
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Algorithm 1: Baseline

Input: MATH train D, Hotpot train Dy, validation sets Vi, Vi
Initialize LoRA model fy;
for epoch = 1 to FEy; do
for batch By in Dy do
| Loss Ly = CE(fo(Bar)); backprop; step;
end
end
Evaluate Phase 1 losses on Vi, Vi;
for epoch = 1 to Ey do
for batch By in Dy do
Loss Ly = CE(f¢(Bg)); backprop; step;
if global _step mod logging_steps = 0 then
\ Evaluate Ly (learning) on Vi, Ly, (forgetting) on Vjy; log;
end
end

end

Algorithm 2: Mixture

Input: Hotpot train set D, MATH train set D, validation sets Vi, Vs
Concatenate: D = shuffle(Dg U Dyy);
Initialize LoRA model fy;
for epoch = 1 to Ejoin: do
for batch B in D do
Compute loss L = CE(fp(B)); Backprop L, optimizer step;
if global _step mod logging_steps = O then
\ Evaluate Ly on Vi, L on Vyy; log;
end
end
end

Algorithm 3: Interleaving

Input: MATH train loader Z,;, Hotpot train loader Zy;, validation loaders Vi, Vi
Initialize LoRA model fy;
for epoch = 1 to Fipterieave do
Reset iterators over Zys, Zg;
for i = 1 to min(|Zys|, |Zx|) do
Get batch Bys; Ly = CE(fo(Bar)); backprop; step; global step++;
if global _step mod logging_steps = 0 then
\ Evaluate losses on Vs, Vir; log;
end
Get batch By; Ly = CE(fo(Bp)); backprop; step; global_step++;
if global_step mod logging_steps = O then
\ Evaluate losses on Vi, Vir; log;
end

end
end
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Algorithm 4: Simplified Loss Smoothing Strategy During Sequential Fine-Tuning

Input: Base model fy, smoothing coefficient o € [0, 1),
training batches { B; }7_, from the Phase 2 dataset
Output: Updated model parameters
Initialize previous loss Ly < 0
fori =1to N do
Sample batch By = {(z,y)};
Compute instantaneous loss:
‘Ct = CE(f@(‘T)a Z-/)

Compute smoothed loss:

Lt = (1 —OZ),Ct -|—Oé£t,1

Backpropagate using smoothed loss:

VoL
Update model parameters: 5
0+ 0—-—nVoL,
Set previous smoothed loss: R ~
ﬁt,1 — Et
end
return 6;

Algorithm 5: Loss-Based Replay Selection from Phase 1 (MATH)

Input: Trained Phase I model fy, tokenizer T, MATH train set Dy = {(z;, ;) }_;, number of replay
examples m, selection direction d € {highest, lowest}
Output: Replay subset Ry, C Dys with |Ry| = m
Initialize empty list of losses £ < [];
fori =1to N do
Construct chat-style prompt s; from (x;,y;) (problem + solution);
(input_ids;, labels;) < T'(s;) with labels masked as —100 for instruction tokens;
Compute logits z; <— fy(input_ids; );
Compute token-wise cross-entropy ¢; ; = CE(z; 1, labels; ;) only for tokens with labels; ; # —100;
Compute per-example loss ¢; = WM D titabels;  #—100 Lists
Append (i,¢;) to L;
end
if d = highest then
| Sort L in descending order by {;;
else if d = lowest then
| Sort L in ascending order by /;;

Let S = {i1,...,im} be the indices of the first m entries in the sorted list £;
Construct replay set Ry = {(z;,y;) € Dy 4 € S}

return R,/;

C Dataset

The MATH dataset [20] is a comprehensive benchmark designed to evaluate the mathematical reasoning
capabilities of models. MATH consists of 12,500 challenging competition-level mathematics problems.
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These problems are sourced from many mathematics competitions, including AMC 10, AMC 12, and AIME,
etc. This dataset is considered to represent a relatively high standard of complexity that requires model
to obtain strong reasoning capabilities. The task is to generate the correct final answer given a problem
statement. Performance is typically evaluated based on the accuracy of the final result symbolic verification.

HotpotQA [22] is a question-answering dataset constructed in multi-hop reasoning field. It consists of
113,000 question-answer pairs collected from English Wikipedia. HotpotQA requires systems to reason
across multiple supporting documents to infer the correct answer. HotpotQA also support distinguishing
difficulty levels through its evaluation settings.

CodeParrot [23] is a code corpus designed to train and evaluate L:anguage Models for code generation tasks.
It comprises a massive collection of Python code files scraped from public GitHub repositories. CodeParrot
focuses exclusively on Python, serving as a standard benchmark for evaluating a model’s proficiency in
Python syntax, library usage, and logical implementation. Models trained on CodeParrot are tasked with
predicting the next token in a sequence of code.

GSMSK [24] is a dataset consisting of approximately 8.5K high-quality grade school math word problems
created by human writers. Unlike simple calculation tasks, these problems require models to perform multi-
step reasoning to derive the correct solution. It serves as a standard benchmark for evaluating the reasoning
capabilities of Large Language Models.

D Experiment Settings

For the toy expriment, we use DistiIBERT-base-uncased as the base model and do full fine-tuning on AG
News dataset. We tokenize the offline AG News corpus with the DistilBERT tokenizer truncate to the fixed-
length of 128. We adopt AdamW with a learning rate of 2e-5 and a linear scheduler with no warmup and
schedulers are parameterized by the number of batches in the current phase. Batch size is fixed at 16.

For the formal Strategy Exploration experiments, overall, we adhered to a unified experimental setup (e.g.,
hyperparameter selection) as strictly as possible. Generally, we choose TinyLlama-1.1B-Chat-v1.0 and
Llama2-7B as language model. In LoRA, we set rank to 8 and scaling coefficient alpha to 16. The LoRA
adaptation is specifically applied to the query, key, value, and output projection matrices within each self-
attention layer, while all other model parameters remain frozen. We set the max sequence length to 2048,
and hence around 10% of data will be filtered. We use 4000 instances for training and 400 instances for
evaluation, which is empirically reasonable and sufficient to finetune on a 1.1B and 7B model. Batch size
was set to 64 and all experiments were run on a single A100 80B GPU. For loss definition, we adapted to
loss masking, i.e., tokens before first occurrence of the closing bracket ‘]’ are set to -100 in labels to avoid
penalizing instruction encoding. In Interleaving experiment, since phase concept is not adopted, so to ensure
the same total training amount, the epoch is set to 4.

The choice of TinyLlama-1.1B and Llama-2-7B is motivated by three key factors. First, both models share
the same foundational Llama architecture. Second, given the extensive sub-experiments, TinyLlama-1.1B
can be computationally efficient. Lastly, Llama-2-7B represents a widely adopted standard in the open-
source community.

For the LoRA configuration, we follows the empirical recommendations from the original LoRA paper [16].
We utilized the AdamW optimizer with a learning rate of 2e-5 and a linear decay scheduler. This conservative
learning rate was selected to mitigate the risk of ’catastrophic interference’ during fine-tuning; a higher
learning rate could aggressively alter the pre-trained weights, thereby exacerbating the forgetting of previous
knowledge. In general, given the extensive sub-experiments required for our curriculum strategy exploration,
we prioritized a fixed, robust set of hyperparameters over an exhaustive grid search.
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E More Experiment Results

The following figures [[3]and [T4]are the results of Baseline and Interleaving. These two experiments are run
three times so that error bands can be plotted. Due to compute resource limit, these two experiments are the
only two which are run three times.

Baseline Experiment (Steps) Interleave Experiment (Steps)
= hotpot_loss (mean=*std)
—— math_loss (meanzstd) 1.8
1.8
1.6 hotpot_loss (meanzstd)
1.6 = math_loss (meanzstd)
w "
§ § 14
14
1.2
12
1.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Training Progress Training Progress
Figure 13: Result of Baseline Figure 14: Result of Interleaving Strategy Exp.

F Limitation

First, the scope of our experiments is not exhaustive. Due to time and resource constraints, we could not
achieve comprehensive coverage in terms of strategy validation or comparative baseline design. Second,
given the timeline and the large volume of experiments, we were unable to conduct repeated trials with
multiple random seeds for all the sub-experiments, precluding the inclusion of error bars for a more rigorous
statistical assessment. Finally, for the experiment of curriculum transfer, it should be noted that the sample
size settings used in this study were not tuned, which resulted in accelerated convergence rates and artificially
smoothed trajectories for the curriculum strategy. While we recognize this as an experimental oversight,
strict time constraints precluded us from re-conducting the experiments to rectify this issue.

G Al tool narrative

During the development of this project, we utilized Gemini 3 Pro for partial writing polishing and code
debugging assistance. All Al-generated suggestions were rigorously verified by the authors.

H Incorporation with Feedback

We would like to express our sincere gratitude to professor’s suggestion on the poster session and peer
reviewers’ valuable advice. We make the following specific refinement to address reviewers’ concerns and
issue-shooting. In[D| we supplement the implementation detail on LoRA and the reason for hyperparameter
and language model choice. In[E} we try our best to run two sub-experiements for multiple time so as to plot
figures with error band. In Figure[5] we combine three sub-experiments together in one single plot for space
saving, and put their separate figures in Appendix [E]| We complement the Al tool narrative in Appendix
[G] In Conclusion section, we elaborate more on the effectiveness and validity of our hypothesis. We have
corrected minor notational error throughout the paper writing.

17



	Introduction and Related Work
	Problem Statement
	Hypothesis
	Method
	Reproduction of CF
	Toy Experiment
	Sequential Training (Baseline)

	Strategy Exploration
	Mixture Strategy
	Interleaving Strategy
	Ratio-ing Strategy
	Correlation Strategy
	Loss Smoothing Strategy
	Difficulty Strategy

	Curriculum Design and Transfer

	Experiment
	Reproduction of CF
	Strategy Effectiveness Verification Results
	Curriculum Transfer Experiment

	Conclusion
	Dataset Post-Processing
	Experiment Pseudocode
	Dataset
	Experiment Settings
	More Experiment Results
	Limitation
	AI tool narrative
	Incorporation with Feedback

