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L With this , we can build pinhole camera !
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[Pinhole  Camera

Ky~ cop
W[ & et @ Pinhole model:
Imagﬁ Plal\Q + Captures pencil of rays — all rays through a single point

» The point is called Center of Projection (COP) 432125%5»
A} 'FOCM[ [Qﬂg’th ‘ « The image is formed on the Image Plane

COV - Image Plane_ + Effective focal length fis distance from COP to Image Plane
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Why did evolution opt for such strange solution?
BM:L‘ our 9)@5, Who Seﬂemtef + Nice to have a passive?@ﬁg-ranggsensor
- » Can get 3D with létere or by moving around, plus experience
U’VlﬂﬂeS o‘{' 2D r LS , can ———— e~~~

helr us perceiw, 3D world. Wh/\ is that sp?

Passive: We coptwe lights instead vf usmg sonar to  detect’
Lang— ronge = Light can be —far away

Stereo: ALBR IS AR ARA T 274 HABTRZANI 2D,
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But —from 3D =20 , their are  perspective projection:
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p o world don‘t g9 Faralle] (n 2D Maje,j
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3 X
/Q’ / Orthographic or paralleﬁi)rojection

— « What happens if we walk infinitely far away
and zoom infinitely far in?

Left - Tntersect =
Right - Almost Farwae(
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) hat happens if we walk infinitely far away
— e om amers = 1-e., ; and zoom infinitely far in?

= We gre gettig close to parolel pesspective.

Of We can use oanother a()pmximate, mdelm(cf:
Scaled OrthijPhi(, or *Weak Pe,jfe i
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/ istance fro enler[ofprolecllonlmmag e plane is infinte 4 Justified if scene depth is small relative to
Projectlonequat\on: s\mplydropthezcoordlnale! . avera o i e ~ f ~e .

o diia rd W average distance from camera
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; AV[OW Prgectlon : Spherical Projectio‘rj.'
(x,y,2) = (x,y) SPM(COJ Om S ARRRA
(Actually more  similar AT
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_{70 how Our eyes e ) 69’¢ 2) >69/ ¢) What if PP is spherical with c/enter at COP?
Xp Doesn't depend on

In spherical coordinates, projection is trivial:
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o build a camen. aﬁw-wmgs %o

calibrate -~ Like Aperture.
> How gperture affects image
Too large £ Too 100 small =3 plurr

- G Y to understano{é cf’ﬁ,ﬁf{)
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Ags focuses light onto the film

There is a specific distance at which objects are “in focus”
— other points project to a “circle of confusion” in the image

» Changing the shape of the lens changes this distance
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Depth of Field 4%
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s T Anotler topic (s Deptiof Freld (POP
m Settled it > settled clo 27
SRS (Aperture controls Depth of Field)
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Changlng the aperture size affects depth of field
neQd more BX:EO SUNe A smaller aperture increases the range in which the object is

. approximately in focus
F-number: focal length / aperture diameter - y %
- y * But small aperture redu;:eaagr{nount Ogllght ;eed
- col lengtn f) x increase exposure % 18 F6, 7 K
F= aporare domerer -+ TUAETAZT, P 2

Aperture HEFR|~

Soal length-
il’\ Camef aQ COmmum—l:& l: numeer = qrertwe diometer o DDF
S Another topic < FOU (Fied of view)

== % """ Smer WFH’\. ,7/‘ d FOV depends of Focal Length
il E S 4 \Lw Xe lmag ¢ -

n \ , SLZQ Qf’r oV |

s . “ Fleld of View / Focal Length
E\Viz From London and Upton

Exposure: shutter speed vs. aperture

_ -1 d ?”: arcten (—di)
B 1ay. or shoud 5 p=tan” (=) f
F11 /”é’“" L& 3 7 2/
@ @ Smaller FOV = larger Focal Length
@ o l| Cnally - exposure
1/30 ﬂ (S):]r:tr:c:\al;lf?;?net;ecar s}lutte/\ SP %d \ZL OWM

. How much photon /i rays of [gt !
BWt [8’15 Lens Flaws: Chromatic Aberration Olgﬂ/ﬁ 07( 4’7}(@@”-5-

e Dispersion: wavelength-dependent refractive index

nLt * (enables prism to spread white light beam into rainbow) -
are Uiy g el e ) wre fength di-
Tlowless

ray - bending > Dispersion
—> Chromaet < Aberration.
%Colorfrilnges near edges of image % d—; 1Wﬁe 0@ @% %?— '

Corrections: add ‘doublet’ lens of flint glass, etc.
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Radial Distortion (e.g. ‘Barrel’ and ‘pin-cushion’) Radial Distortion

(G cuve sind ihe age oty Radial Distortion
— Fv == I e

Ajl

No distortion Pin cushlon Barrel

afid
”ﬁmﬁx{é% ©

Radlal distortion_of the image

Caused by imperfect lenses Zﬁig%vféwﬁjé}
« Deviations are most noficeable for rays that pass through the
edge of the lens
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@ Bendm8 an be glifterent ot tre center £—frige portngL

Lec>, Cal?’curm% nght'

The Eye Our eye - Two types of light-sensitive receptors
Iris q_ O:ex rs \ Vo pumer lrls Can—t—r()l Ale"t,% Cones {\l‘@l\

cone-shaped
less sensitive g

_4_\,/7

Aqucoss ?MP 1) /q?m operate in high light W
Opic nerve color vision oo visen | )
Choroid Rods : |
e O ‘t . rod-shaped ,ﬁ:’f/ W =
i I 5 n retink: highly sensitive =
The human eye is a cameral 24y operate at night gaf- sl | E

* Iris - colored annulus with radial muscles ﬁé )%ﬂ
cone
* Pupil - the hole (aperture) whose size is controlled by the iris Cone & ro dé&%‘ Wu/ gray- -scale vision
- Whats the *fim?  BEIL>D A Hi# %}éﬁ/’gﬁ "& %
— photoreceptor cells (rods and cones) in the retina s ’[\ %/ ( .
]‘z Wﬁ% Slide C O

Distribution of Rods and Cones Ec‘tma . J\ ﬁl %\ },T/E la m /75 T ?é f\%lg %(oﬂ@_
i vhRE 5 % K é Corte;

150,000|  Rods ‘) I' Rod: _] IN % %’ %#7 Ww\&
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Visual Angle (degrees from fovea)

Night Sky: why are there?mo/ée stars off- center'? % Fﬂ L@o—’]o on M) )

& & B U]

Why d light of th lengths? N4 gﬂ % p -2 et e :
J ?m\:\:i See oMt o Mese R ‘l @ f\ Q Human Luminance Sensitivity Function
...because that’s where the sQ %% ,%
Sun radiates EM energy 7%&\_{ WM@W 77% 5f( lﬁ
wavelengtin 2one !

Any patch of light can be completely described
physically by its spectrum: the number of photons

rod

radio waves
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(per time unit) at each wavelength 400 - 700 nm.




Some examples of the spectra of light sources Thr : . - ﬁ’%
ee kinds of cones: = cone.

A. Ruby Laser B. Gallium Phosphide Crystal

I

400 500 600 700 400 500 600 700

440 530 560 nm.

. ¥ ’it Vﬁ‘&iﬁﬁ%@

# Photons
# Photons

Wavelength (nm.) Wavelength (nm.)

C. Tungsten Lightbulb D. Normal Daylight

400 450 500 550 600 650 : L
MI E.j WAVELENGTH (nm.)
* What's up with S cones?

400 500 600 700 400 500 600 700 - Why are there 3?
Trichromacy BA cone A ~fiHer,
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Rods and cones act as filters on the spectrum = Represent s ectrum with
» To get the output of a filter, multiply its response curve by the : P P
spectrum, integrate over all wavelengths _
3 ‘dlm o[atq

Eac%cfﬁne %/;Ids ogeﬁnu%mger
2 < h
* How can we represe\ria[{w entire spectrum with 3 numbers? Me{a_meﬁs : (79:5 ﬁ#’ /}L #317 @_

 We can’t! Alot of the information is lost

— As a result, two different spectra may appear indistinguishable :E‘kZ\ﬂ ) fg)ﬁg%%ﬁ\@?fﬂ[ﬂ

» such spectra are known as metamers ﬂ *ﬂ%fm
Slide by Steve Seitz

. the ability to perceive the ﬂ’aq' fﬁ(’ r] 7:} fﬁ éﬂﬁ o Qt?wjﬁé‘%ﬁlﬁ) /
invariant color of a surface despite ecological
Variations in the conditions of o%servatiog. o @_ /%ép f:) %////ﬁ@ /f['jF ﬁf(wgpﬁ[rfg
Another of these hard inverse problems: FK ?O%/:{;ﬂ &%@ { iﬁ%}%/ﬁ% ﬁ é YIILZF(:)
Physics of light emission and surface reflection

underdetermine perception of surface color %?K d ij (’/@)/}L (7](2\ ) /;-_F_ /Tu%fl'g((_
SRR (470) R] KB Bger Grd

Image representation %raotical Color Sensing: Bayer Grid

» Images represented as a matrix

» Suppose we have a NxM RGB image called “im”
— im(1,1,1) = top-left pixel value in R-channel

— im(y, x, b) =y pixels down, x pixels to right in the b"" channel
— im(N, M, 3) = bottom-right pixel in B-channel

| ——

colump —— — — —— >
* Manual e o A
+ Choose color-neutral object in the photos and normalize < LonTom Ton o e g Estimate RGB
. 2 o o o s at ‘G’ cels from
» Automatic (AWB) oo neighboring
« + Grey World: force average color of scene to grey __,__LFZ r values
« White World: force brightest object to white |3=?x? ‘ﬁ ‘[

zﬁj‘?’iB 4 RGB co lor SFaCe- g,a y:(At) Jf?fgoffﬂ N
. Hue: 474 6my Diagool hE.
Soturatin - %Y Giray Diagonal AL B,



Lec3.  Pixels andl Imgges

We can think of an image as a function, f, from R? to . .
= .y What s an mage now ?

* flx, y) gives the intensity at position (x, y) ,
* Realistically, we expect the image only to be defined over a WQ u§e Raﬁ : 50 7[0'» (4('9)
rectangle, with a finite range:
~ f labIXled > [0.1] we VlQQd wmten s 1*7 ‘@L RQB chonnel s

How does a pixel get its value? ] ) .
- So the intensity of ligit

Major factors en: @
lllumination strength and Light itted .
Q recton o aEm matters. How a pme/ get
Light reflected é:
to camera

Surface geometry
@ Surface material

: (ts lalue 7 See Lleft.

Senso

How does @ £ @ decide how intense the. reflected fight /s

Some light is absorbed (function of albedo p) .
Remaining light is scattered (diffuse reflection) :) A .Slmpl-e and F}’Q(—tl (al Model '

Examples: soft cloth, concrete, matte paints

o S ambertion Reflectonce.  Model
absorp%mg;””m;reﬂec“on A Surable Material: soft cloth , concrete. , matte points
ST 2 e know light can specular (% & 247) o Diffuse
(ERHT) .« in Lambortian we suppose purely dffuse

1= Isource, 'f(aibedO) : @ , N normal vector,

f_ f_li it divgdion vector 1/7\7”;:/12!!),:1'\ o5 0
e A im0 i e sogng
. L N real world 2 &M 19 image, (0., Pixe,/
a spoce AgHa .
o Ucrzc’t, z‘mcges (an de mgOfde 13}
5Ignals " S0 sampling Jrequency Cresoluction,
1 Miehdypmicrange 10" g Im[)ortan‘t. We wl| talk apout H leter,

o Ater getting intensity , have o map it

@ Nearby surfaces
o Camera gain/exposure

10

| 11 I I I N S N -

fi@%?ji Lens (?%ﬁtEL Shutter ﬁ%gﬁ .-i; c> ’,?:l‘:!fa'egz. l— (:> / ‘2';:;::Si] o

P, :

oo, o = T find we are_ interested about how we.

co oo taws can enhance t, like * Wwhite ba(aw’h@‘

analog
voltages




Metiod 11 Power = low tonsformations -
S= Cr"/ , relod , Selo]

Metiod > : Negetive * s= /-1
st /,mwgmﬁww ( Mostly /gpp/z'm/ n  Medical)

ot og‘i—(r wrwgwu xb.
/ Methods - Contrast Stretching-
/Vlo,thod‘l': Ly s=C [ogmr)
Method S - Iwaje Histogrom

S = 255 X CPF (), .
r €10.253] , re R

cPFm € Lo, (.

s  Now, back 4o 3""119/"%

s=T() sﬁqﬁ‘ A @Ol’O/Mg ‘50
R A/), guist Theorem

I N 7[g>). jmaév
e

hﬁ Aliasing !

Disintegrating textures How —bo eaSQ a lasmg

Sar?leeoir:;Lel\/?:;e:Pixel craze of the ph% ‘> {/UQ Can 9e_t rtd d /“ h \_/ %

» But this can’t go on forever
— « Transformations on signals; e g.:
— bass/treble controls on stereo
— blurring/sharpening operations in image editing
— smoothing/noise reduction in tracking

.« -

Make the signal less “wiggly”
» Getrid of some high frequencies*’

* ( Will loose information é%% 5 iva.
» [ Butit's better than aliasing P

» Key properties
— linearity: filter(f + g) = filter(f) + filter(g)

We can usé COHI/O(M’tZOn — shift invariance: behavior invariant to shifting the input

+ delaying an audio signal

as .J(’l(..ke'n _b ZMaﬂe , « sliding an image around

L « Can be modeled mathematically by convolution
MCQ o Hox L]

Hitber: [
— | 1 1 1
9




Cross-correlation

Let /' be the image, H be the kernel (of
size 2k+1 x 2k+1), and (G be the output
image ’ .

Gli,jl= > > Hluv]Fli+u,j+ ]

u=—kv=-—Fk

In Convolution, +the_ operation
sequehce on e s reversed|
(Actually in DL 7 we dontt f/;p)

This is called a cross-correlation operation:

G
Le(/r + Convolution amat Derivartlwa) _+ Canthinkof as

local neighborhoed anc
= convolixtion

er,
-
b=cxa

Convolution is a multiplication-like operation
— commutativea xb = bx a ,
— associativea x (bx ¢) = (axb) x ¢ Xp
distributes over additiora x (b+c) = axb+axc

el for each pixel

Cross-correlation vs. Convolution kerrel & symmetric

G=H®F }L/@F

cross-correlation: Notation:

k k
Glidl= Y Y HluolFli+u.j+0]

u=—kv=—k

A convolution operation is a cross-correlation where the filter is

flipped both horizontall d vertically before bei lied t
trlwi)eﬁe o' orizontally and vertically before being applied to _ scalars factor outaa x b = a % ab = a(a % b)
(Symmgtfit) — identity: uhit impuls¢ e=1...,0,0,1,0,0, ...]
. SR o axe=a
Gli,j1= Y. > H[u,v]F[i—u,j—v] o . )
u=—kv=—k Conceptually no distinction between filter and signal
Itis written: Usefulness of associativity

G=Hx+F — often apply several filters one after another: (((a * b;) * b,) * b)

HAF

A Gaussian kernel gives less weight to pixels further from the center
of the window

— this is equivalent to applying one filter: a * (b, * b, * bs)

Tn stend af box-filter, we can use

Flx, y]
1 _u240?2

—5e
27152
This kernel is an approximation of a Gaussian runcuon:

h(u,v) =

31

Removes “high-frequency” components from
the image (low-pass filter)

Convolution with self is another Gaussian

B-0-0

%Convolving twice with Gaussian kernel of width &

= convolving once with kernel of width 0‘\/5 .

Gaussian (lowpass)pre-filtering)
z 14 R4 cf"l/msamp/»f

P
Gaussian 1/2

tion: filter the image, then subsample
ilter size should double for each ¥ size reduction. Why?

Slide by Steve Seitz

Slide by Steve Seitz

. ( Effect of o
L [T Jomssion o blur |
1Tel2l4]2
1 2 The Gaussian function has infinite support, but discrete filters 03|
use finite kernels
H[u7 v] 03

a0
o = 5 with 30x30 kernel

oo
o= 5with 10x10 kemel

Cons ider :lf we wert +° redute The size

of an image | we wl| see aliasing |

S we cn blur it wth Gaussian -first/
then down sumple o reduce size
Image Pyramids —_

{htj 120/ ms
an Image

P)rom‘lo[

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2*x2* images (assuming N=2)

level k (= 1 pixel,

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
« In computer graphics, a mip map [Williams, 1983]
« Aprecursor to wavelet transform



Image is function f(x,y)

0fCey) _ . fatey) —fxy)

Remember:
dx €—0 €

f(xy) fx+1Ly)—flxy)
ax 1

Another one: 0f(xy) flx+Ly)-f(x—-1y)

Approximate:
-1 1

Which shows changes with respect to x?

(Convoliction can also help tp find tte 8radie/tt 7# pictue.

af df

et V1= 5 This nformaction can be vesy usefil
vs =[50l vr=[8.9]
5 o vy I Also we have

The gradient points in the direction of most rapid increase
in intensity

* How does this direction relate to the direction of the edge? ( /l* ) = a "1 FE
The edge strength is given by the gradient magnitude a /x' a %
2
V71 =1/(GD* + &)

The gradient direction is given by ¢ = tan™ (%/%)

_{:[Vlaﬂy '- Tmage ~ Smoothed = Details

L Image+ oC De-tails = S}urpeneof
CoerSPand o kerne (: fra(f-f*=g)=0+a)f—af*+g=f*{(+a)-ag)
] 8; ﬂausﬁm T

image blurred unit impulse
image (identity)

And we define: Uni impulse. ~ Guoussian x Laplacion &f Gaussion

LecS: The Jrequendy domain

A nice set of basis

Teasesawayfastvs,slowh g n the image. (‘ouj‘ ler %’Wﬁcaf mafl

- moliii

RE il m g ‘% j;{g% 4 }/\
9 e @ g Rf13, 2 mgees,

oo
Fourier Transform : F(®) = J‘f( x)e " IOX gy
- Intensity Image
+oo
Inverse Fourier Transform : f(x)= 1 J’ F(w)eimx do

2w
—oo
Fourier Image



« The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg *h]=F[g]F[h]

» The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
inverse Fourier transforms

F'[ghl=F'[g]*F '[A]

« Convolution in spatial domain is equivalent to
multiplication in frequency domain!

53'5(

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

This an be used —to cxplam this T
Jgo;gﬂ,(tey‘ Spatial Domamj_ﬂ-’ﬁ
{8 freqrenty domain 1= 2 4F, sRA AR

R Frquocy domain 75 (5. 7)

xp i Fetey

4278

domain E} E— Sfectmm

DC77‘g') By, tZDARENER

f\\%fif ff%v%mﬁw@m@ﬁ

Spectyun @?5{ dﬁ#y“”“ﬁg)ﬁﬁ\’lfi
, 2t 77?%(

Spatial domain Frequency domain

f(@) F(s) = / F(z)e™i2™ g
’—FTX(X) sinc(s)
X =N ~ s
VTV
J{ gauss(x; o) gauss(s; 1/0)
s

A\sunc(s)
o

box(x)

[]]

X

%{P%{ ar&“fac{) Gaussian B3 éiﬁ sinces) WAT—E B ik

Lecb  Pyramid Blendin
4B A Ak L

L placian Pyramld

g “Tem

Tl At

As a stack

la‘te.s » ML Filters
= /-ﬁ% @ Blordling”

Created from Gaussi

Gaussian Pyramld (low-pass images)

Laplacian Pyramid (sub-band images)
ian pyramid by sul

Collapsing Laplacian Pyramid s g2,
Need this!

(Lowest Freq)

How can we reconstruct (collapse) this pyramid

btraction into the original image?

Inkro to how  Gramssian Liaplacian Pyramwfﬁ Stock are tuilt

Then: P[ elne: ———>

Note ia lacian  Stack Co/bpsc

AC 64 Bk 75\7@_%3[7\7 (ZA4)
a 6’#0»\10! 5? ’% Z‘%f['/}t
Ti=Li+ UFsamFle,(Tm)
CAT RS &2 E‘%@{%

Image Blending with the Laplacian Pyramid

Build Laplacian pyramid for both images: LA, LB
uild Gaussian pyramid for mask:

“Build a combined Laplacian pyramid L

Collapse L to obtain the blended image

AR NETVTE .
7
{ 2 | .
(| 1
1\

| > -

.;ﬁ‘; PR TS Tt ) T )
% A o j \
id

u
I

L, = l,‘?*mk-i-lZB*(l—mk)



Template matching Goal: find ® in image Py -eeg L 5
Goal: find @ in image - Method 1: filter the imai with zero-mean eye 78

hm,n] = Z(g[k,l] flm+k,n+1])
Main challenge: Whatis a |\ . kel
e [a‘te good similarity or : ;
distance measure ]

z

f

—-— Lz Z\ E
between two patches?

i
(Kerne]
)

« Zero-mean correlation
« L2 distance
» Normalized Cross Correlation

sum=o

Filtered Image (scaled)

& ?&VP &km\ fnt%hé)

sensitive.
iy lnsfl"@ corfe(otrim

Thresholded Image

Goal: find & in image
Method 2: L2 distance (sum of squared diffs)
hlm,n] = Z(g[k - flm+k,n+11)

A . .
‘

Input 1- sqrt(SSD) Thresholded Image

Input 1- sqrt(SSD)

Goool

Goal: find & in image
Method 3: Normalized cross-correlation

mean template mean image patch

> (glk, 1= ) flm+kn+0-f,.)
k.l

h[m,n] =

(Z(g[k,z]—g)zz(f[mk,n+l]—fm,n)2j
k.l ki,

Input Normalized X-Correlation Thresholded Image

Zero-mean filter: fastest but not a great

matcher Qummao/ o d(‘Hefe’l't Wthods

L2/SSD: next fastest, sensitive to overall Reducing Gaussian noise

intensity | Q@ Denoise . .

Normalized cross-correlation: slowest,

invariant to local average intensity and &ausslan can Ml'tlgafte
—_— v )

o . . .

& but can't eliminate .
Alsy it can blur imoge ot the same time ¢ . . .

:> 50 ( M,'L i_o n . “ med (an v vt( l _t e{\ . Elrjrt\c;cl;;r;ir;?u\:\gtgleairgzrg setandard deviations suppreeses nho‘ise,.
Alternative idea: Median filterih\g \U/ Median vs. Gaussian filtering
A median filter operates over a window by ;H,S nvn—— ,neaj‘( ' 3x3 5x5

selecting the median intensity in the window

10]15]20 ( [\) L)

23[90]27
3310 | S

Median value
10 15 20 23 30 31 33 90

Gaussian 2

101520 l Replace
23127|27 7[&%))
33[31(30 (‘gg

What advantage does median filtering _
have over Gaussian filtering? lake nba

obustness to outliers "
—ime,
filters have width 5 :
........ o : INPUT R
: Median
......... o MEDIAN bw

MEAN




L9c7 Image Transfarmartion‘f (/{)arf
Previous imageji({erimd center on change range of image .
now warp ~foars o change domain i

[/Ukwt L 24> Metrik can ob -~

2-D Rotation

This is easy to capture in matrix form:

Wil

a_/

Is this a linear transformation? ~ Yes

Even though sin(6) and cos(0) are nonlinear functions of 6,
* Xx’is a linear combination of x and y
» y’is alinear combination of x and y

What is the inv
* Rotation by -0
» For rotation matrices

-1 _pT
R™=R (aytl/\odnmﬂlrkﬂnu

Linear transformations are combinations of ...
* Scale, \
- Rotation, x|o|a b|x
* Shear, and y| e dlly
< Mirror/Reflection
Propertles of linear transformations:
Origin maps to origin
« Lines map to lines
« Parallel lines remain parallel
« Ratios are preserved
« Closed under composition

NS A I M

Affine transformations are combinations of ...
* Linear transformations, and
» Translations
Propertles of affine transformations: J
Origin does not necessarily map to origin (translation!) QW@j e
* Lines map to lines
» Parallel lines remain parallel
« Ratios are preserved
+ Closed under composition
* Models change of basis

|
Will the last coordinate w always be 1? Yes

=

<
-0

« Affine transformations, and
+ Projective warps
Propertles of projective transformations:

+ Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratfios are notpreserved
» Closed under composition .
+ Models change of basis ine 9" t

=

. l

Projective transformations ... . a b X
) ) =|d e y
w g h w

have move jweedo’h
1 allwy pespectives

S,

x'=cos®@*x—sin®@*y
M y'=sin®*x+cos®*y

2D Shear?
x'=x+sh *y
y'=sh,*x+y ‘ y'

1% 2D Rotate around (0,0)?

x' B cos® —sin® || x
y' | sin® cos® y
b | —
7\ \l}stl"”r x| 1 sh, | x
| sh 1 ||y

y

b s a*BSM

Only linear 2D transformations
can be represented with a 2x2 matrix

| [a b cx
Yii=ld e flvy
w 0 w

i g e

Wsj“"" awtion

But can't br{ng i~ lranslation
=) X3 1 = with adlitional |

ijc last row: o0 o |

Then L s oftire thousfomation
<=

Bt f its not:

its pers pec{ive_ “[ron 5formatzon> !

2D image transformations

//m projective
translation
_—r

—_iind

A

Euclidean

X

Name Matrix [ #D.O.F. | Preserves: Icon
ranslation [r]e], | 2 L]
rigid (Euclidean) | [ R |¢], 3 Q
similarity [sr|t],, 4 &
[4],, | b 0
projective [(a],, | &  staght es | [

orlyf’



Sy hw 0 wau'p v Fust: f csource) = Toets -
s , Send each pixel f(x,y) to its corresponding location
(x’,y’) = T{x,y) in the second image

Q: what if pixel lands “between” two pixels?

_ _ N A: distribute color among neighboring pixels (x,y’)
Given a coordinate transform (x’,y’) = T(x,y) and a . .
source image f(x,y), how do we compute a — Known as “splatting” (Check out griddata in Matlab)
transformed image g(x’y’) = {T(x,y))? ]
— Generally, a very bad idea. Why? (55 & oeta |

Maybe we con try = ‘ctoget) = 1 spurce

Bilinear Interpolation

Ay glx ',y) ‘

-~  ——

yT_,.' T-’(x,y; ’T_,~ %aé; fwiiﬁ‘ﬂ Oy (xay2) E};e, b”lW
X fxy) ey T £ iu‘beft)olatlm

slze s
Get each pixel g(x’,y’) from its corresponding location

nw(wal - -
(x,y) = T'(x’y)) in the firstimage i J b) de(’ldM
Q: what if pixel comes from “between” two pixels? RS fo, (x3,y1) (X2,y1) ,
| - e humoricol value,

A: Interpolate color value from neighbors

— nearest neigh bilinear, Gaussian, bicubic
— Check outfinterp2)n Matlab / Python ,,,,MHQA avea_ o +0

Lec 3 Mosaic

= Plenoptimtion ) PIQVIOP'EQ Function (% k&‘ﬁ)%i J/A- i
| L BINBE  GHEWEFp6 L
AU AT Lttp 358

P(6,41,Vy,VyV,) L@'t.(f _thlnk our Spherical Panorama

+ Can reconstruct every possible view, at every
moment, from every position, at every wavelength

+ Contains every photograph, every movie, 151 lahe ,_'5 |
everything that anyone has ever seen! it V on P a ba l .
completely captures our visual reality! Not bad

for a function... reC@NlCﬂ tgh’t at 6V67’}

ang [e. —:;> 5 he r\l Cal Fa nO Vama ‘ All light rays through a point form a ponorama

Totally captured in a 2D array -- P(6,¢)

ry %A B C?/T‘/L,..\J‘T tmajeﬂé‘ﬁ‘j/j( %@\/ -

; P‘{m% . A pencil of rays contains all views
As Iong as  Cop dont move, we can
sjn’d’le&ze an/\/ camera  view wheose ~

COP (s identical

¥ CARALA B8 % RN ALER)

real synthetic
camera camera

Can generate any synthetic camera view
as long as it has the same center of projection!



How o relate two images wih —the
samg COP 1 Fimd corresponaling/

Yoints anof warp (

= Homogra h
AMU/ler ’to[nc F@t:spec“tw/ P Lstortion:

_@ Y

+

W Image Plane
Ccopr

Less noticeable with long focal length (i.e. you see
distortion more with wide-angle camera) S ( L
e
A\
Fore shorten ngs

()

@

Image reprojection

Basic question
« How to relate two images from the same camera center?
— how to map a pixel from PP1 to PP2

Answer
« Cast a ray through each pixel in PP1
« Draw the pixel where that ray intersects PP2

But don’t we need to know the geometry
of the two planes in respect to the eye?

Observation: ty/

Rather than thinking of this as a 3D reprojection,
think of it as a 2D image warp from one image to another

A: Projective — mapping between any two PPs with the
same center of projection
+ rectangle should map to arbitrary quadrilateral
+ parallel lines aren’t
* but must preserve straight lines
* same as: unproject, rotate, reproject

called Homography

wx' * 1 x
wy'| = l:* *:l y

w * * 1
P P

To apply a homography H
+ Compute p’=Hp (regular matrix multiply)

» Convert p’ from homogeneous to image
coordinates

PP2

PP1

L]

Image Plane

CcoP

AL last : Howto work o™ Hanogmph/v Mectrin 7 _ 75 /i

Image rectification

i N

How -to

A= 000n\g

H= (A%)™ A

- I\Ieed P oint Pa_tfs
- Find Optimal

maJcriQ(,
s DOF

Compute 1 5«4?[2052 h33= 1|
For one poirt * (4. yp. 1)t (a0
4(le00"¢(4? }f/l(,{)
“mp Y4
oJf 1 point 2 data . 3 points fuly deter
z& points overconstraived - ;Z'/L [AH-DI

- When a line (or surface) is parallel to the image plane, the effect of perspective
projection is scaling.

- When an line (or surface) is not parallel to the image plane, we use the term

foreshortening to describe the projective distortion (i.e., the dimension parallel to

the optical axis is compressed relative to the frontal dimension).

\ulln
\/
Foreshortening
p’=Hp
wx' a b cl|lx
wy'|=|d e f|y
w g h i1

Can set scale factor i=1. So, there are 8 unkowns.
Set up a system of linear equations:
Ah=b

where vector of unknowns h =[a,b,c,d,e,f,g,h]"
Need at least 8 egs, but the more the better...
Solve for h. If overconstrained, solve using least-squares:

. 2

mm”Ah - bH

5] o)

hé l
h32

h=

ming_

C close —form  solution)



Lec %@ L0 - pr to  auto - ‘fMd ma’cchmg pm’mﬁs
Not.resaﬂggr? in O(N8) is problematic ‘Bf[,{,‘tg WU% — H /105 DOF W[‘ g

» Not clear how to set starting/stopping value and step

What can we do? .
» Use pyramid search to limit starting/stopping/step values » L _thm{gh ’tmm and —fMd 62 St H'

Alternatlve gradient decent on the error function

i.e. how do | tweak my current estimate to make the SSD .
error go down? :

+ Can do sub-pixel accuracy

ey amasopes st (b improvee] with pyramic) =)

— Cani ve with id i
an improve with pyramid Feature-based alignment

+ Same tool as in motion estimation

Feature Detection: find a few important features (ak

1.
SL(HTG H& wwg/ : Fll/ld fga“twag, POintS/ Interest Points) _in e.ach image separately

2. Feature Matching: match them across two images

and then moctch,  How ! 3

We should easily recognize the point by looking

Compute image transformation: as per Project 4, P

How do we match the features between the images?

+ Need a way to describe a region around each feature th rough a Sma” WindOW
— e.g. image patch around each feature e . . . . .
- Use successful matches to estimate homography Shlftlng a window in any direction should give a Ial‘ge
— Need to do something to get rid of outliers Change |n |ntenS|ty
Issues: “

» What if the image patches for several interest points look

- O Petecting Features : Harris (pmer

« What if the image patches for the same feature look different due
to scale, rotation, etc.

Ew,v)= Y [I(x+u,y+v)—I(x,y)]’ H \

(x,y)eW

I‘F w,v aye SMGIIL Csma,b{, Shqab ) “ﬂat”regiqn: “edge”: “'cor'nszr”:

_ . _ no change in no change along significant change
* First-order Taylor approximation for small all directions the edge direction in all directions
motions [u, V]:

I(x+u,y+v)=10x,y)+1u+1, v+h1gher order terms  F'(y,y) = Z[I(x+u yv+v)—1I(x, y)]

~I(x,y)+1u+ly Pug lVl (x,y)eW
=1y, 1)" / ~ I )" |-1 2
- ’y x y v ~ Z [ ('x’y)+ X y - (x9y)]
(x,y)eW v
Consider a horizontal “slice” of E(u, v): [u v] M [ﬂ:const 2
This is the equation of an ellipse. [I ] /M
0
Diagonalization of M: M= RIFO“ ﬁjR (xy )EW
The axis lengths of the ellipse are determined by the u
eigenvalues and the orientation is determined by R ) v

direction of the
fastest change

direction of the

T Diagondlize M L get e genvectors-
| Can use ellipse o visualize!

m



> Gudent T, anis)
2 Good mf[ed; “chmgc imfens'rtg !

Interpreting the eigenvalues

Measure Of COorner response:
Classification of image points using eigenvalues

of M:

_detM | S
Trace M

detM =4, —
traceM =4 +4, i

IAZ% Harris detector: Steps

Compute Gaussian derivatives at each pixel
Compute second moment matrix M in a Gaussian

>
I%I/K Iﬂ . window around each pixel
. N . Compute corner response function R
Pipeline  shown on the right

Threshold R
_ _ 5. Find Ioca! maxima of response function (honmaximum
@ COMPWtQ each l)olm':'s iﬂ‘uiy suppression)
A ! A
@ For each (/ng) , draw widow W. Use reautts in @ o compatic. V)
Some pmperg/ @" harris detector -

v/ Only derivatives are used => invariance

’\ ||~ /\ to intensity shift/ — I+ b

N =

Ao

Slrtial inanance

v Intensity scale: 1 @ N . ,
oo = ! Rohamel) 1o offire intensity
(Kchange '
R Y= r [\ chonge
Ellipse rotates but its shape (i.e. eigenvalues) threshold A\ N R
remains the same / W / \/
‘ Corner response R is invariant to image rotation ‘ x (image coordinate) X (image coordinate)

The problem: how do we choose corresponding circles
independently in each image?

Choose the scale of the “best” corner §
All points will be Corner ! /\ ;

classified as edges

AHEIR AT, RAL D LR HAPRANRE
Msb , we want ponts are eftuall)/ distributed | = AMMS.
EOf Point set /P , 7[01” /7L€ P , Compute i
= mn l 6’*PLlL - then sort using ri and
Pl Ri>cRe +take vboF-l? points,

But: non-invariant to image scale!



e, Match  Harris Corners = In variont & Distinctive
Sowtion: (In project) Tlake 4ox4o potch = Blur

. 0(—
— Downsamlvle +to 8§ —> MNormalze: =Z2= _?“.

Then ~to Match them: Similarity between two desmpf:ors Guc lilean
AMl wart* ,2':%:/}- < & o ensure match is conectC

RANSAC loop:
1. Select four feature pairs (at random)

F[;’la“} , 0 96('/ r'(d 0][ UMt Uef <§ Compute homography H (exact)

Compute inliers where dist(p;’, Hp,;) < ¢

R A NSA C /4’{90}’(-{:}’!”] 4. Keep largest set of inliers

@ Re-compute least-squares H estimate on all of the

% Use all inliers ! Not its original -~ -~ inlers

Lccl[ ,QD- + 3D Iyrtroéﬁ‘fefw * is 3D = depth from a single image?

Structure and depth are inherently ambiguous from — . . .
cingle views, yam9 + 2.5D = per-pixel depth from a single image
Need two different camera center
otherwise everything can synthetic PP [ (ztDr:cotTrtes) ]

be explained by a: plane!!!
\/ -1 a
=< 3
Camera

//' —_— [ Correspondences } [ (Motion) ]
~

There is a world coordinate frame and camera looking

_ _ _ at the world
To go from pixels to 3D location in the world
coordinates, we need to know two things How can we model the geometry of a camera?
about the camera: Camera : ‘
1. Position & Orientation of the camera with
respect to the world (extrinsics) Three important coordinate e
. i SyStemS: “The World”
2. How the camera maps a point in the world to 1. World coordinates
: : F ool 2. Camera coordinates
Image (mtrmS|CS) 3. Image coordinates
Orientation + Location of How the camera maps a .
the camera in the World point in 3D to image wa’rt ’
Extrinsics (R, T) Intrinsics (K) Image Coordinates Camera Coordinates World Coordinates
Lo
3 l]@x_y O Xe= |y
Pq ) 2w
a z Perspective Coordinate
1 Projection Transformation
(3D to 2D) (3D to 3D)

t
.

World coordinates Camera coordinates Image coordinates



Image Plane to Image Sensor Mapping mx ,mg; % mm é,/]‘ fil(el.

Image Plane Image Sensor

u (pixels)

lmtﬁe P{ane: 0“8‘171 . conter !
1.Accountf0rpeIdensity(pixel/mm)&aspectratiobyscalars: [ma, my) -Image SQnSOf‘ : TOP’Lej-t lDO/-Mt !

Mg Tiy Myl

2. Usually the top left corner is the origin. But in the image plane, the T . . Perspective projection + Transformation to Pixel Coordinates:
origin is where the optical axis pierces the plane! Need to shift by: (02, 04) M[ﬂb(_c—

fh fx + o, fy + Oy

Ze
Ui = QzT; + Oy *O‘Lf + 0y
Ze C

where [ fy] = o fymy 1] (/0
Pixel Coordinates: /10114 ?j@ﬂéﬂl_&)

yc

u U f= 0 o0, O Te
Image . -— . . v = ’17 = 0 fy Oy 0 yc
P P Extrinsic 1 W 0 0 1 0|z

(ﬂfec/ /tolflﬂyenem Intrinsic Matrix
Uzm"’#'mffjfwtmn) Camera Transformation (3D-to-3D)

A T T pinhole
we] G- &_4 I b
i Ze 0
Image Coordinates Camera Coordinates M 5 D F
f mc Camera Coordinates World Coordinates
'CCZ = —_— 6 - [/ Te Lw
Ze S +F g X, = [y] o Xy = Jw:|
Putting it all together ’I‘ Ze Coordinate

pinhole Ve . - Transformation

. )_xywlnfrmsu[( 44) . .
o O — L - 1" . ¢ R3xs t w
. ' 7i Extrinsic (6) ” _[ s 1] -

0143
1 1

Extrinsic

Image Coordinates Camera Coordinates World Coordinates 5 ke w 5 ome._ camey }
H@X”} = X‘ﬂ
e oo fl)( el /s parall e/"f'm Nees]  stew
fo 0 o0, O Rixs t
R I Now we canvse mutti-view vo sense deptt;
From oW, SUPpOsC. cameres are. cal ibracted (In/Bxtrinsic Matrix Unlnswn)
Triangulation using two cameras

* Assume parallel optical axes s
» Two cameras are calibrated

* Find relative depth

Key Idea: difference in corresponding points to understand shape

Solving for Depth in Simple Stereo

X Camera

Do we have enough to know what is Z?

Yes, similar triangles!

Stereo System HO”
B (Binocular Vision) Sase? ”tal -
i eh
V4

B — (ul — U,T,)
d z? do z—f B

B
& @Tf Tu—u s L & o(isfar%?

corrsp. pixels,
move)

E

|

£

=

IS s
e




Parallax 747&7% .- diSFarh;V causes| clue o v offes -

Consider task:

Stereo Matching: Finding Disparities

<i /,;;:;::j.l;;f,éi —
Goal: Find the disparity between left and right stereo pairs.

Parallax = from ancient Greek paréllaxis
= Para (side by side) + allasso, (to alter)
= Change in position from different view point

Two eyes give you parallax, you can also move to see more
parallax = “Motion Parallax”

SO wt [eaﬁ’t we I,{)an't"b’O Left/Right Camera Images. Disparity Map (Ground Truth)
Jind pairs of points who has same disprity -

Your basic stereo algorithm  Dense correspondence sedrch El,;zyomf [ive :

[T HON ADRATIAM LINCOLN, President of United States. *1—

g { THEDAL, 7 P8 5
KRBT 3H AL b

For every epipolar line: For each epipolar line z] ﬂ¢ @_ 5
VLU

For each pixel in the left image For each pixel / window in the left image

+ compare with every pixel on same epipolar line in right image « compare with every pixel / window on same epipolar line in right image

Improve;nei:(t::k :1):1::“:/:1::];: Tz::;;s;ots of matching strategies e pick position with minimum match cost (e.g., SSD, correlation) ( Pwal l.et mome%)
- — . . Issues with Stereo
Teoue - Effeet o~ window size -

Want window large enough to have suttficient intensity
variation, yet small enough to contain only pixels with about
the same disparity.

* Surface must have non-repetitive texture

* Foreshortening effect makes matching a challenge

More general case - Camerns are al. brated

but doesn't have +o have parallel optical axes
* The two cameras need not have parallel optical axes. Optlon 1: Rectify Via homography

Quite Familiar

* reproject image planes
onto a common pIane
— plane parallel to the line between
optical centers \ A
.\\ \\\\

Option 2 * pixel motion is horizontal
after this transformation

N~

1. Solve for correspondences * two homographies, one
for each input image

reprojection

— C. Loop and Z. Zhang. Computing
Rectifying Homographies for
3. Triangulate Stereo Vision. CVPR 1999.

- _
Lssue . m lo be cortinvel in ﬁrtwe class

2. Estimate camera

— What is the relationship between the camera +
correspondences?

e Given pin left image, where can corresponding point
p’ be?



