Exception Handling and Exception Safety
CS100 Lecture 24

GKxx

December 26, 2023

Exception Handling and Exception Safety December 26, 2023 1/45

Contents

@ Things tend to go wrong.

© Exception handling
e throw
@ try-catch

© Exception safety
@ Exception safety guarantees
@ Exception specification

GKxx Exception Handling and Exception Safety December 26, 2023 2/45

Things tend to go wrong.

Input failure

int num_of_people;
std::cin >> num_of_people;

What happens when the input is not an integer?

GKxx Exception Handling and Exception Safety

December 26, 2023

3/45

Things tend to go wrong.

Input failure

int num_of_people;
std::cin >> num_of_people;

What happens when the input is not an integer?

if (!std::cin) {
// handle input failure
}

GKxx Exception Handling and Exception Safety

December 26, 2023

3/45

Things tend to go wrong.

strcpy

You are asked to write a strcpy function...

vold strcpy(char *dest, const char *source) {
while (*source)
*dest++ = *source++;
*dest = "\0';
}

GKxx Exception Handling and Exception Safety

December 26, 2023

4/45

strcpy

You are asked to write a strcpy function...

vold strcpy(char *dest, const char *source) {
while (*source)
*dest++ = *source++;
*dest = "\0';
}

In reality, things may go wrong:

@ Null pointers? Or even worse - wild pointers?

o Buffer overflow?

GKxx Exception Handling and Exception Safety December 26, 2023 4/45

Which is better?

1. Terminate the program on failure and report

the error. 2. Return false on failure:
void strcpy(char *dest, const char *source) { bool strcpy(char *dest, const char *source) {
if (!dest || !source) { if (!dest || !source)
std::cerr << "strcpy arguments invalid.\n"; return false;
exit(1); while (*source)
} *dest++ = *source++;
while (*source) *dest = '\0';
*dest++ = *source++; return true;
*dest = '\0'; }
}

GKxx Exception Handling and Exception Safety December 26, 2023 5/45

Things tend to go wrong.

Which is better?

3. Be silent to errors. 4. Use assertions.
void strcpy(char *dest, const char *source) { void strcpy(char *dest, const char *source) {
if (dest && source) { assert(dest != NULL);
while (*source) assert(source != NULL);
*dest++ = *source++; while (*source)
*dest = '\0'; *dest++ = *source++;
} *dest = '\0';
} }

A good blog on this topic: https://blog.csdn.net/myan/article/details/1921

GKxx Exception Handling and Exception Safety December 26, 2023

6/45

https://blog.csdn.net/myan/article/details/1921

Exception handling throw

Contents

© Exception handling
@ throw

Exception Handling and Exception Safety December 26, 2023 7/45

Exception handling throw

Throwing an exception

class Dynarray {
std::size_t m_length;
int *m_storage;

public:
int &at(std::size_t n) {
if (n >= m_length)
throw std::out_of_range{"Dynarray subscript out of range!"};
return m_storage[n];
}
I

GKxx Exception Handling and Exception Safety December 26, 2023 8/45

Exception handling throw

Standard exceptions

exception

defined in <exception>

|

bad_alloc logic_error

runtime_error bad_cast

defined in <new=>

length_error

domain_error

out_of_range

invalid_argument

Exception Handling and Exception Safety

defined in <type_info>

range_error

— overflow_error

—iunderﬂow_error

December 26, 2023

9/45

Exception handling throw

Standard exceptions

@ The normal new and new[] operators throw std: :bad_alloc when running out of
memory.
@ dynamic_cast for references throws std::bad _cast when the cast fails.
e dynamic_cast for pointers does not throw. It returns nullptr on failure.

GKxx Exception Handling and Exception Safety December 26, 2023

10/45

Exception handling throw

Standard exceptions

@ The normal new and new[] operators throw std: :bad_alloc when running out of
memory.

@ dynamic_cast for references throws std::bad _cast when the cast fails.

e dynamic_cast for pointers does not throw. It returns nullptr on failure.

@ std::system_error is thrown in many cases, especially in functions that interface with
OS facilities, e.g. the constructor of std: :thread.

@ <chrono> defines std: :nonexistent_local_time and std::ambiguous_local_time
representing some errors related to time settings.

GKxx Exception Handling and Exception Safety December 26, 2023 10/45

Exception handling throw

Standard exceptions

operator[] for STL containers does not check boundaries, but at() does.

std::vector<int> v;

v.at(0) = 42; // Throws std::out_of_range.

v[o] = 42; // Does not throw, but undefined behavior
// (and often severe runtime error).

We will see that exceptions thrown could be catched and handled.

GKxx Exception Handling and Exception Safety December 26, 2023

11/45

chron
Stack unwinding

voild func(int n) {
std::string s;
std::cin >> s;
int *p = new int[n];
!/l ... operator new[] k— top

}
int main() { func
int size = 100; .
func(size); main
/] ...
}

Suppose operator new[] encounters shortage of memory...

GKxx Exception Handling and Exception Safety December 26, 2023 12 /45

Exception handling throw

Stack unwinding

void func(int n) {
std::string s;
std::cin >> s;
A int *p = new int[n];
/] ...
}

int main() {
int size = 100;
func(size);
/] ...

}

GKxx

@ During the creation of p, std::bad_alloc is raised

in operator new[].

Exception Handling and Exception Safety

December 26, 2023

13 /45

chron
Stack unwinding

void func(int n) {
std::string s;
std::cin >> s;

int *p = new int[n];
/] ... @ Control flow returns to func.

}

int main() {
int size = 100;
func(size);
/] ...

}

@ During the creation of p, std::bad_alloc is raised
in operator new[].

GKxx Exception Handling and Exception Safety December 26, 2023 13 /45

chron
Stack unwinding

vold func(int n) {

std::string s; @ During the creation of p, std::bad_alloc is raised

s.td::cm >> s; in operator new[].
int *p = new int[n];
/o @ Control flow returns to func.

} © s is destroyed.
int main() {

int size = 100;

func(size);

!/l ...
}

GKxx Exception Handling and Exception Safety December 26, 2023 13 /45

chron
Stack unwinding

vold func(int n) {

std::string s; @ During the creation of p, std::bad_alloc is raised

s.td::cm >> s; in operator new[].
int *p = new int[n];
/o @ Control flow returns to func.

} © s is destroyed.
int main() {
int size = 100;
func(size);
!/l ...
}

@ n is destroyed.

GKxx Exception Handling and Exception Safety December 26, 2023 13 /45

chron
Stack unwinding

void func(int n) {

std::string s; @ During the creation of p, std::bad_alloc is raised

s.td::cm >> s; in operator new[].
int *p = new int[n];
/o @ Control flow returns to func.

} © s is destroyed.
int main() {
int size = 100;
func(size);
/] ...
}

@ n is destroyed.
@ Control flow returns to main.

GKxx Exception Handling and Exception Safety December 26, 2023 13 /45

Exception handling throw

Stack unwinding

void func(int n) {
std::string s;
std::cin >> s;
int *p = new int[n];
/] ...

}

int main() {
int size = 100;
func(size);
!/l ...

}

GKxx

@ During the creation of p, std::bad_alloc is raised

in operator new[].
@ Control flow returns to func.
© s is destroyed.
@ n is destroyed.
© Control flow returns to main.

Q@ size is destroyed.

Exception Handling and Exception Safety December 26, 2023

13 /45

chron
Stack unwinding

void func(int n) {

std::string s; @ During the creation of p, std::bad_alloc is raised

s.td::cm >> s; in operator new[].
int *p = new int[n];
/o @ Control flow returns to func.

} © s is destroyed.
int main() {
int size = 100;
func(size);

/] ... Q@ size is destroyed.
}

@ n is destroyed.
@ Control flow returns to main.

Notice

Stack unwinding is only guaranteed to happen for caught exceptions. If an exception is not
caught, whether the stack is unwound is implementation-defined.

GKxx Exception Handling and Exception Safety December 26, 2023 13 /45

Exception handling R4}

Contents

© Exception handling

@ try-catch

Exception Handling and Exception Safety December 26, 2023 14 /45

Exception handling try-catch

Catch an exception

voild func(int n) {
std::string s;
std::cin >> s;
int *p = new int[n];
/] ...
}
int main() {
try {
int size = 100;
func(size);
} catch (const std::bad_alloc &e) {
// deal with shortage of memory here.
}
/...
}

More Effective C++ Item 13: Catch exceptions by reference.

GKxx Exception Handling and Exception Safety

December 26, 2023

15/ 45

D
what()

The error message could be obtained via the ‘what’ member function, which is virtual,

const and noexcept.

void fun() {
throw std::runtime_error("I love watermelons.");

}

int main() {

try {
fun();

} catch (const std::runtime_error &re) {
std::cout << re.what() << std::endl;

}
}

Output:

I love watermelons.

GKxx Exception Handling and Exception Safety

December 26, 2023

16 /45

e
Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

1

std::cout << "returns.\n";

Exception Handling and Exception Safety December 26, 2023 17 /45

e
Catch an exception

void f(const std::vector<int> &v) {
try {
auto 1 = 42;
auto copy = v;
A int x = copy.at(100); throws std::out_of_range
g(x);
} catch (const std::bad_alloc &ba) {
// deal with shortage of memory
} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'
} catch (...) {

// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}
std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

Exception handling R4}

Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v; ‘copy' is destroyed
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

Exception handling R4}

Catch an exception

void f(const std::vector<int> &v) {

try {
auto i1 = 42; ‘i1' is destroyed
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {

// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

e
Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) { Not matched
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

Exception handling R4}

Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) { Matched
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

Exception handling R4}

Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n";

Exception Handling and Exception Safety December 26, 2023 18 /45

e
Catch an exception

void f(const std::vector<int> &v) {

try {
auto 1 = 42;
auto copy = v;
int x = copy.at(100);
g(x);

} catch (const std::bad_alloc &ba) {
// deal with shortage of memory

} catch (const std::out_of_range &oor) {
// deal with illegal subscript '100'

} catch (...) {
// What else may happen (probably in 'g(x)')? We are not sure.
throw; // Throw the exception again.

}

std::cout << "returns\n"; Control flow continues here

Exception Handling and Exception Safety December 26, 2023 18 /45

ety
Catch by base class

operator new[] raises std::bad_alloc when out of memory.

@ But if the array-new length is obviously invalid, an instance of
std::bad_array_new_length is raised.

new int[-1]; // negative size
new int[3]{2, 3, 4, 6, 8}; // too many initializers
new int[LONG_MAX][100]; // too large

GKxx Exception Handling and Exception Safety December 26, 2023

19/45

Exception handling try-catch

Catch by base class

operator new[] raises std::bad_alloc when out of memory.

@ But if the array-new length is obviously invalid, an instance of
std::bad_array_new_length is raised.

new int[-1]; // negative size
new int[3]{2, 3, 4, 6, 8}; // too many initializers
new int[LONG_MAX][100]; // too large

@ catch (const std::bad_alloc &) also catches it, because of inheritance:

exception

<

bad_alloc

<

bad_array_new_length

GKxx

Exception Handling and Exception Safety December 26, 2023

19/45

ey
Catch by base class

try {
do_something();
} catch (const std::runtime_error &re) {
// deal with runtime_error
} catch (const std::exception &e) {
// deal with other kinds of exceptions
} catch (...) {
// deal with other things

}

Exception Handling and Exception Safety December 26, 2023 20/45

ey
Catch by base class

try {
do_something();
} catch (const std::runtime_error &re) {
// deal with runtime_error
} catch (const std::exception &e) {
// deal with other kinds of exceptions
} catch (...) {
// deal with other things

}
Note: Other things (e.g. a string) can also be thrown.

throw "I don\'t want to talk to you.";
throw 42;

In this case, these things are caught by catch (...).

Exception Handling and Exception Safety December 26, 2023 20/45

ety
Catch by base class

catch clauses are examined one-by-one.

try {
do_something();

} catch (const std::exception &e) {
std::cout << "exception\n";

} catch (const std::runtime_error &re) {
std::cout << "runtime_error\n";

} catch (...) {
// deal with other things

}

If an instance of std::runtime_error is thrown, it will be caught by
“catch (const std::exception &)” instead of “catch (const std::runtime_error &)"
in this case.

GKxx Exception Handling and Exception Safety December 26, 2023 21 /45

try-cateh
Stack unwinding

voild fun() {
int 1 = 42;
std::vector<int> v;
Av.at(i) = 10; throws std::out_of range

}
int main() {
try {
std::string str("Hello");
fun();
} catch (...) {3
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

Exception handling try-catch

Stack unwinding

voild fun() {
int 1 = 42;
std::vector<int> v; v' is destroyed
v.at(i) = 10;

}
int main() {
try {
std::string str("Hello");
fun();
} catch (...) {3
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

Exception handling try-catch

Stack unwinding

voild fun() {
int 1 = 42; *1' is destroyed
std::vector<int> v;
v.at(i) = 10;

}
int main() {
try {
std::string str("Hello");
fun();
} catch (...) {3
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

Exception handling try-catch

Stack unwinding

voild fun() {
int 1 = 42;
std::vector<int> v;
v.at(i) = 10;

}
int main() {
try {
std::string str("Hello");
fun(); Control flow returns here
} catch (...) {3
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

try-cateh
Stack unwinding

voild fun() {
int 1 = 42;
std::vector<int> v;
v.at(i) = 10;

}
int main() {
try {
std::string str("Hello"); ‘str' is destroyed
fun();
} catch (...) {3
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

try-cateh
Stack unwinding

voild fun() {
int 1 = 42;
std::vector<int> v;
v.at(i) = 10;

}
int main() {
try {
std::string str("Hello");
fun();
} catch (...) {} The exception is caught.
}
GKxx Exception Handling and Exception Safety

December 26, 2023

22/45

Exception handling try-catch

Notes

@ The try block and catch blocks are independent scopes. Objects declared in the try
block cannot be used in catch blocks.

@ When an exception occurs, local objects in the try block are destroyed before the
exception is caught.

@ Stack unwinding is only guaranteed to happen for caught exceptions.

@ If an exception is thrown and not caught, ‘std::terminate’ will be called to terminate
the program. (defined in <exception>)

GKxx Exception Handling and Exception Safety December 26, 2023 23 /45

e
Function-try-block

A function-try-block is typically useful for a constructor.

class Dynarray {
public:
Dynarray(std::size_t n)
try : m_length(n), m_storage(new int[n]{}) {}
catch (const std::bad_alloc &ba) {
std::cerr << "No enough memory.\n";
throw;
}
b

@ Exceptions raised both in constructor initializer list and function body can be caught.
o Non-static data members cannot be referred to in such catch blocks. (Why?)

GKxx Exception Handling and Exception Safety December 26, 2023 24 /45

e
Function-try-block

A function-try-block is typically useful for a constructor.

class Dynarray {
public:
Dynarray(std::size_t n)
try : m_length(n), m_storage(new int[n]{}) {}
catch (const std::bad_alloc &ba) {
std::cerr << "No enough memory.\n";
throw;
}
b

@ Exceptions raised both in constructor initializer list and function body can be caught.

o Non-static data members cannot be referred to in such catch blocks. (Why?)

@ An exception thrown in the constructor indicates that the initialization has failed!
e Once an exception is thrown, everything initialized in the try block are destroyed.

GKxx Exception Handling and Exception Safety December 26, 2023

24 /45

Exception safety Exception safety guarantees

Contents

© Exception safety
@ Exception safety guarantees

Exception Handling and Exception Safety December 26, 2023 25 /45

Exception safety Exception safety guarantees

Exception safety guarantees

Exception-safe functions offer one of three guarantees:
@ Nothrow guarantee: Promise never to throw exceptions.
@ Strong guarantee: Promise that if an exception is thrown, the state of the program is
unchanged, as if the function had not been called (“roll back").

e Weak guarantee (basic guarantee): Promise that if an exception is thrown, everything in
the program remains in a valid state (though possibly changed).

o No objects or data structures become corrupted.
o All class invariants are satisfied. For example, a Polynomial should have at least one

coefficient (the constant term). In Dynarray, m_length should represent the length of the
memory block that m_storage points to.

Effective C++ Item 29: Strive for exception-safe code.

GKxx Exception Handling and Exception Safety December 26, 2023 26 /45

Exception safety Exception safety guarantees

Exception safety guarantees

The level of an exception safety guarantee measures how hard it is to recover from an
exception.

void foo(std::vector<int> &values) {
try {
values = something();
} catch (const std::bad_alloc &ba) {
// Can we assume that 'values' is still in a valid state? (weak guarantee)
// Can we assume that 'values' remains unchanged? (strong guarantee)

}
}

Exception Handling and Exception Safety December 26, 2023 27 /45

Exception safety Exception safety guarantees

Exception safety guarantees

Effective C++ ltem 29:
A software system is either exception-safe or it’s not. There's no such thing as
a partially exception-safe system. If a system has even a single function that’s not
exception-safe, the system as a whole is not exception-safe.
A function can usually offer a guarantee no stronger than the weakest guarantee
of the functions it calls.

GKxx Exception Handling and Exception Safety December 26, 2023

28 /45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
int *m_storage;
std::size_t m_length;

public:
Dynarray &operator=(const Dynarray &other) {
if (this != &other) {
delete[] m_storage;
m_storage = new int[other.m_length]; // May throw std::bad_alloc
std::copy(other.m_storage, other.m_storage + other.m_length, m_storage);
m_length = other.m_length;
}
return *this;
}
1

GKxx Exception Handling and Exception Safety December 26, 2023

29 /45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
int *m_storage;
std::size_t m_length;

public:
Dynarray &operator=(const Dynarray &other) {
if (this != &other) {
delete[] m_storage;
m_storage = new int[other.m_length]; // May throw std::bad_alloc
std::copy(other.m_storage, other.m_storage + other.m_length, m_storage);
m_length = other.m_length;
}
return *this;
}
1

No guarantee at all! The data pointed to by m_storage has already been destroyed before

the exception happens.
GKxx Exception Handling and Exception Safety December 26, 2023 29 /45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
public:

};

Dynarray &operator=(const Dynarray &other) {

auto new_data = new int[other.m_length];

std::copy(other.m_storage, other.m_storage + other.m_length, new_data);
delete[] m_storage;

m_storage = new_data;

m_length = other.m_length;

return *this;

GKxx Exception Handling and Exception Safety December 26, 2023

30/45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
public:

Dynarray &operator=(const Dynarray &other) {
auto new_data = new int[other.m_length];
std::copy(other.m_storage, other.m_storage + other.m_length, new_data);
delete[] m_storage;
m_storage = new_data;
m_length = other.m_length;
return *this;

}

b

Strong guarantee. Nothing has been changed before new[] on the first line throws an
exception.

GKxx Exception Handling and Exception Safety December 26, 2023 30/45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
public:
Dynarray &operator=(const Dynarray &other) {

m_length = other.m_length;
auto new_data = new int[m_length];
std::copy(other.m_storage, other.m_storage + m_length, new_data);
delete[] m_storage;
m_storage = new_data;
return *this;

};

GKxx Exception Handling and Exception Safety

December 26, 2023

31/45

Exception safety Exception safety guarantees

Which exception safety guarantee?

class Dynarray {
public:
Dynarray &operator=(const Dynarray &other) {
m_length = other.m_length;
auto new_data = new int[m_length];
std::copy(other.m_storage, other.m_storage + m_length, new_data);
delete[] m_storage;
m_storage = new_data;
return *this;
}
b

No guarantee. m_length is changed too early. If new[] throws, m_length is not equal to the
length of the memory block that m_storage points to.

GKxx Exception Handling and Exception Safety December 26, 2023 31/45

Exception safety Exception safety guarantees

Which exception safety guarantee?

The “copy-and-swap” idiom, talked about in previous recitations.

class Dynarray {
public:
void swap(Dynarray &other) noexcept {
using std::swap;
swap(m_length, other.m_length);
swap(m_storage, other.m_storage);
}
Dynarray &operator=(const Dynarray &other) {
Dynarray(other).swap(*this);
return *this;
}
¥

GKxx Exception Handling and Exception Safety

December 26, 2023

32/45

Exception safety Exception safety guarantees

Which exception safety guarantee?

The “copy-and-swap” idiom, talked about in previous recitations.

class Dynarray {
public:
void swap(Dynarray &other) noexcept {
using std::swap;
swap(m_length, other.m_length);
swap(m_storage, other.m_storage);
}
Dynarray &operator=(const Dynarray &other) {
Dynarray(other).swap(*this);
return *this;
}
¥

Strong guarantee. The only thing that may throw an exception is Dynarray(other) (which
allocates memory through new[]).

GKxx Exception Handling and Exception Safety December 26, 2023 32/45

Exception safety Exception specification

Contents

© Exception safety

@ Exception specification

Exception Handling and Exception Safety December 26, 2023 33/45

Exception safety Exception specification

noexcept vs throw()

Before C++11, a function may declare in advance what exception(s) it may throw.

vold *operator new(std::size_t size) throw(std::bad_alloc); // May throw std::bad_alloc.

GKxx Exception Handling and Exception Safety December 26, 2023 34 /45

Exception safety Exception specification

noexcept vs throw()

Before C++11, a function may declare in advance what exception(s) it may throw.
vold *operator new(std::size_t size) throw(std::bad_alloc); // May throw std::bad_alloc.
To a function that offers nothrow guarantee: throw()

int add(int a, int b) throw() {
return a + b;

}

GKxx Exception Handling and Exception Safety December 26, 2023 34 /45

Exception safety Exception specification

noexcept vs throw()

People came to realize that it is whether the function throws exceptions or not that really
matters.

@ In most cases, knowing the specific exception type offers no more help.

@ In most cases, all we can do is to catch it through catch(...), report it or do some
logging, and then throw it again through throw;.

GKxx Exception Handling and Exception Safety December 26, 2023 35/45

Exception safety Exception specification

noexcept vs throw()

People came to realize that it is whether the function throws exceptions or not that really
matters.

@ In most cases, knowing the specific exception type offers no more help.

@ In most cases, all we can do is to catch it through catch(...), report it or do some
logging, and then throw it again through throw;.

Since C++411, declare noexcept for non-throwing functions.

class Dynarray {
public:
voild swap(Dynarray &other) noexcept {
std: :swap(m_storage, other.m_storage);
std::swap(m_length, other.m_length);
}
1

The throw() specifiers have been deprecated and removed in modern C++.

GKxx Exception Handling and Exception Safety December 26, 2023 35/45

Exception safety Exception specification

noexcept

The noexcept specifier makes it possible for more optimization.
@ When an exception is thrown inside a noexcept function, whether the stack is unwound is
implementation-defined.
o Compilers need not keep the runtime stack in an unwindable state.
@ Certain functions must be noexcept so that they can be called by standard library
functions.

GKxx Exception Handling and Exception Safety December 26, 2023 36 /45

Exception safety Exception specification

Move operations are often noexcept.

Recall that std::vector<T> will allocate a larger block of memory when the current memory
capacity is not enough.

template <typename T>
class vector {
T *m_storage;
T *m_end_of_elem, *m_end_of_storage; // Possible implementation.
public:
voild push_back(const T &x) {
if (size() == capacity())
reallocate(capacity() == 0 ? 1 : capacity() * 2);
construct_object_at(m_end_of_elem, x);
++m_end_of_elem;
}
private:
void reallocate(std::size_t new_capacity);

};

GKxx Exception Handling and Exception Safety December 26, 2023 37/45

Exception safety Exception specification

Move operations are often noexcept.

Before C++11, the elements are copied to the new memory block.
@ Note: std::vector<T> does not use new[], because it needs to separate object creation
from memory allocation. The following code uses allocate_memory,
construt_object_at and destroy_and_deallocate for demonstration only.

template <typename T>
class vector {
void reallocate(std::size_t new_capacity) {
auto new_storage = allocate_memory(new_capacity), p = new_storage;
for (auto old_data = m_storage; old_data != m_end_of_elem; ++old_data)
construct_object_at(p++, *old_data);

destroy_and_deallocate(m_storage);
m_storage = new_storage;
m_end_of_elem = p;
m_end_of_storage = m_storage + new_capacity;

};

GKxx Exception Handling and Exception Safety December 26, 2023 38/45

Exception safety Exception specification

Move operations are often noexcept.

To offer strong exception safety guarantee, reallocate needs to “recall” the operations
once an exception is encountered.

template <typename T>
class vector {
vold reallocate(std::size_t new_capacity) {
auto new_storage = allocate_memory(new_capacity), p = new_storage;
try {
for (auto old_data = m_storage; old_data != m_end_of_elem; ++old_data)
construct_object_at(p++, *old_data);
} catch (...) {
while (p != new_storage) destroy(--p);
deallocate(new_storage); throw;
}
destroy_and_deallocate(m_storage);
m_storage = new_storage; m_end_of_elem = p; m_end_of_storage = m_storage + new_capacity;

};

GKxx Exception Handling and Exception Safety December 26, 2023 39 /45

Move operations are often noexcept.

Since C++411, a reasonable optimization is to move elements, instead of copying them.

template <typename T>
class vector {
void reallocate(std::size_t new_capacity) {
auto new_storage = allocate_memory(new_capacity), p = new_storage;
try {

for (auto old_data = m_storage; old_data != m_end_of_elem; ++old_data)

construct_object_at(p++, std::move(*old _data));
} catch (...) {
// Wait ... The elements are moved! How can we recover them?
}
/] ...

};

GKxx Exception Handling and Exception Safety

December 26, 2023

40/45

Exception safety Exception specification

Move operations are often noexcept.

Since C++411, a reasonable optimization is to move elements, instead of copying them.
Unlike copy, move of an element is a modifying operation.

@ The old elements are modified during this procedure.
@ If a move throws an exception, there is no way of rolling back!

Due to this consideration, std: :vector<T> uses the move operation of T only when it is
noexcept.

for (auto old_data = m_storage; old_data != m_end_of_elem; ++old_data)
construct_object_at(p++, std::move_1if_noexcept(*old_data));

GKxx Exception Handling and Exception Safety December 26, 2023 41 /45

Exception safety Exception specification

noexcept

noexcept is only a logical guarantee. A noexcpet function may still
@ call functions that are not noexcept, or

@ throw exceptions under certain circumstances.

GKxx Exception Handling and Exception Safety

December 26, 2023

42 /45

Exception safety Exception specification

Summary

throw an exception

try-catch: catch and handle exceptions

@ Standard library exceptions: std::exception, std::bad_alloc, std::logic_error,
std::runtime_error, std::bad cast, ...

Stack unwinding:

o Destroys local objects in reverse order of initialization.
e Only guaranteed to happen for caught exceptions.

GKxx Exception Handling and Exception Safety December 26, 2023 43 /45

Exception safety Exception specification

Summary

@ Exception safety guarantee:

o Nothrow guarantee
e Strong guarantee: “roll back”
o Weak guarantee: Promises that everything is in a valid state.

@ noexcept: specifies that a function offers nothrow guarantee.

@ Move operations are often noexcept, because unlike copy, move is a modifying operation.

GKxx Exception Handling and Exception Safety December 26, 2023 44 /45

Exception safety Exception specification

Homework

Make your Dynarray: :operator= offer the strong exception safety guarantee.

GKxx Exception Handling and Exception Safety December 26, 2023 45 /45

	Things tend to go wrong.
	Exception handling
	[language = [11]C++, basicstyle =]throw
	[language = [11]C++, basicstyle =]try-[language = [11]C++, basicstyle =]catch

	Exception safety
	Exception safety guarantees
	Exception specification

