Metabolism

Yang Yang, PhD

Lecture Outline

- The laws of thermodynamics 热力学定律
- Enzymes 酶
- ATP
- Cellular respiration 细胞呼吸

The Energy of Life

- The living cell is a miniature chemical factory where thousands of reactions occur
- Some organisms convert energy to light, as in bioluminescence 生物发光

Energy

- Kinetic energy 动能 is energy associated with motion
- Heat (thermal energy) 热能 is kinetic energy associated with random movement of atoms or molecules
- Potential energy 势能 is energy that matter possesses because of its location or structure
- Chemical energy 化学能 is potential energy available for release in a chemical reaction

The 1st and 2nd Laws of Thermodynamics

- According to the first law of thermodynamics, the energy of the universe is constant
 - Energy can be transferred and transformed, but it cannot be created or destroyed
- According to the second law of thermodynamics
 - o Every energy transfer or transformation increases the entropy 熵 (disorder) of the universe

(a) First law of thermodynamics

(b) Second law of thermodynamics

Metabolism 代谢

- Metabolism is the totality of an organism's chemical reactions
- A metabolic pathway 代谢通路 begins with a starting molecule and ends with a product, and each step is catalyzed by a specific enzyme
- Catabolism (分解代谢) releases energy, and anabolism (合成代谢) consumes energy

Free-Energy Change, ΔG

- ・ Gibbs Free Energy: G. 吉布斯自由能
- △G: G(products产物)-G(reactants反应物)
- An exergonic reaction 放能反应 △G<0
- An endergonic reaction 吸能反应 △G>0

Exergonic reaction 放能反应

- Biochemical reactions that are energetically favored **DO NOT** happen spontaneously. WHY?
 - Intermediate state 中间态: much higher free energy than reactants
 - E_A: energy of activation 活 化能

How Enzymes Speed Up Reactions

- Enzymes **DO NOT** change free energy of reactants or products
- Enzymes **DO NOT** affect
 ΔG
- Enzymes **DO NOT** affect
 equilibrium
- Enzymes catalyze (speed up) reactions by lowering the E_A barrier

Enzymes

- The reactant that an enzyme acts on is called **substrate 底物**
- The enzyme binds to its substrate, forming an enzyme-substrate complex 酶-底物复合体

5

- The reaction catalyzed by each enzyme is **very specific 高特异性**
- The active site 活性位点 is the region on the enzyme where the substrate binds

Animation: How Enzymes Work

Effects of Temperature and pH

Each enzyme has an optimal temperature and pH in which it can function

 Optimal conditions favor the most active shape for the enzyme molecule

Enzymes in the Cell

• Enzymes for cellular respiration are located in mitochondria线粒体

ATP (三磷酸腺苷)

- Adenosine triphosphate (ATP): "能量货币"
- ATP stores the potential to react with water, a reaction that releases energy to be used by the cell (ATP->ADP, release energy: 30.5kJ/mol)

The carbon cycle

Cellular Respiration 细胞呼吸

- Step1: Glycolysis 糖酵解 (breaks down glucose into two molecules of pyruvate and produce ATP; O₂ not needed)
- Step 2: Pyruvate oxidation 丙酮酸氧化, citric acid cycle柠檬酸 循环 and Oxidative phosphorylation 氧化磷酸化 (O₂ needed)

Glycolysis 糖酵解

- Glycolysis breaks down glucose 葡萄糖 into two molecules of pyruvate 丙酮酸
- Glycolysis occurs in the cytoplasm 细胞质 and has two major phases
 - Energy investment phase
 - Energy payoff phase
- Glycolysis does NOT require O2

Pyruvate oxidation 丙酮酸氧化

- In the presence of O₂, pyruvate 丙酮酸 enters the mitochondrion 线粒体 where the oxidation of glucose is completed
- Before the citric acid cycle can begin, pyruvate must be converted to acetyl Coenzyme A (acetyl CoA,乙酰辅酶A), which links glycolysis to the citric acid cycle 柠檬酸循环

The Citric Acid Cycle 柠檬酸循环

- The citric acid cycle, also called the Krebs cycle, completes the break down of pyruvate to CO₂
- The cycle oxidizes organic fuel derived from pyruvate, generating 1 ATP, 3 NADH, and 1 FADH₂ per turn

Oxidative phosphorylation 氧化磷酸化

 NADH and FADH₂ transfer electrons to the electron transport chain 电子传 递链, which powers ATP synthesis via oxidative phosphorylation氧化磷酸化

Electron Transport 电子传递链

- 电子传递链使电子势能转变为质子跨膜运动,
 将质子从线粒体基质泵入线粒体内膜中
- 质子跨膜运动,产生电位差
- 质子通过ATP合成酶回返线粒体基质,伴随 ATP生成,这一过程又称化学渗透
- $2H^++2e^-+1/2O_2=H_2O$
- 电子传递链不直接产生ATP

Chemiosmosis 化学渗透

- 圆柱状蛋白质复合物嵌入膜内,充当分子马达。
 当质子流经过其内部时可推动马达顺时针转动。
- 转轴与分子马达和催化蛋白质相连,可与分子马达一道转动并激活催化蛋白质。
- 催化蛋白质位于基质一侧,可将无机磷酸根连接 到ADP上生成ATP。
- Oxidation of NADH -> pump 10 H⁺ -> 3 ATP
- Oxidation of $FADH_2 \rightarrow pump 6 H^+ \rightarrow 2 ATP$

Cellular Respiration

Accounting of ATP production

Fermentation: 发酵

 Fermentation: Two common types are alcohol fermentation (植物) and lactic acid fermentation (动物)

Animation: Fermentation Overview

Fermentation vs. Cellular Respiration

- Use glycolysis (net ATP = $\mathbf{2}$) to oxidize glucose
- The processes have different mechanisms for oxidizing NADH:
 - Fermentation: an organic molecule (pyruvate or acetaldehyde) acts as a final electron acceptor
 - o Cellular respiration: electrons are transferred to the electron transport chain
- Fermentation: **2** ATP per glucose molecule
- Cellular respiration: **30** ATP per glucose molecule;

The Versatility of Catabolism

- Glycolysis accepts a wide range of carbohydrates 碳水化合物
- Proteins must be digested to amino acids; amino groups can feed glycolysis or the citric acid cycle
- Fats are digested to glycerol 甘油 (-> glycolysis) and fatty acids 脂 肪酸 (-> acetyl CoA)
- 1g fat can produce more than twice as much ATP as 1g carbohydrate

