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Definition

A stochastic process is a collection of random variables
{Xt , t 2 I}. The set I is the index set of the process. The
random variables are defined on a common state space S.
I is discrete: discrete-time stochastic processes (sequences of
random variables)

I is continuous: continuous-time stochastic processes
(uncountable collections of random variables)
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Example: Discrete Time & Discrete State Space

State Space:{1, . . . , 40}
Xk : the player’s board position after k dice rollings.

Stochastic Process for Monopoly: X0,X1, . . .

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 5 / 96



Example: Discrete Time & Continuous State Space

Air-monitoring with PM2.5 measurements every hour

State Space:(0, 2000)

Xk : the PM2.5 measurement at the kth hour.

Stochastic Process for Air-monitoring: X0,X1, . . .
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Example: Continuous Time & Discrete State Space

We receive emails at random times day and night.

State Space:{0, 1, 2, . . .}
Xt , t 2 [0,1): the number of emails we receive up to time t

Stochastic Process for Email: {Xt}
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Example: Continuous Time & Continuous State
Space

Two-dimensional Brownian Motion
State Space: R2

Xt , t 2 [0,1): position of the particle at time t

Stochastic Process for random motion of particles:{Xt}
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Model Selection in Stochastic Modeling

Enough complexity to capture the complexity of the phenomena
in question

Enough structure and simplicity to allow one to compute things
of interest
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Motivation

Introduced by Andrey Markov in 1906

IID sequence of random variables: too restrictive assumption

Completely dependent among random variables: hard to analysis

Markov chain: happy medium between complete independence
& complete dependence.
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Markov Model

Three basic components of Markov model

A sequence of random variables {Xt , t 2 T }, where T is an
index set, usually called “time”.

All possible sample values of {Xt , t 2 T } are called “states”,
which are elements of a sate space S.
“Markov property”: given the present value(information) of
the process, the future evolution of the process is independent of
the past evolution of the process.
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Classification of Markov Model

Discrete-Time Markov Chain: Discrete S & Discrete T
Continuous-Time Markov Chain: Discrete S & Continuous T
Discrete Markov Process: Continuous S & Discrete T
Continuous Markov Process: Continuous S & Continuous T

Our focus: Discrete-Time Markov Chain with finite state space
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Markov Chain

Definition
A sequence of random variables X0,X1,X2, ... taking values in the
state space {1, 2, ...,M} is called a Markov chain if for all n � 0,

P (Xn+1 = j |Xn = i ,Xn�1 = in�1, ...,X0 = i0) = P (Xn+1 = j |Xn = i) .
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Time-homogeneous Markov Chains

Definition
Given a Markov chain X0,X1,X2, ... It is called time-homogeneous
Markov chain if for all n � 0,

P (Xn+1 = j |Xn = i) = qi ,j .

where qi ,j is a constant independent of n.

From now on, we focus on time-homogeneous Markov Chains, and
we call it Markov chain in brevity.
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Transition Matrix

Definition
Let X0,X1,X2, ... be a Markov chain with state space {1, 2, ...,M},
and let qi ,j = P(Xn+1 = j |Xn = i) be the transition probability from
state i to state j . The M ⇥M matrix Q = (qi ,j) is called the
transition matrix of the chain.
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Graphical and Matrix Form of Markov Chain
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Example: Rainy-Sunny Markov Chain
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Example: The First Markov Chain in History

Andrey Andreyevich Markov was interested in investigating the
way the vowels and consonants alternate in Russian literature,
e.g., “Eugene Onegin” by Pushkin

He classified 20,000 consecutive characters: 8638 vowels &
11362 consonants

vowel consonant
vowel

consonant


1104/8638 7534/8638
7535/11362 3827/11362

�
=


0.1278 0.8722
0.6632 0.3368

�

v c
0.8722

0.1278

0.6632

0.3368
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Gambler’s Ruin As A Markov Chain
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Coupon Collector As A Markov Chain
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Example: Random Walk on A Graph
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n-step Transition Probability

Definition
Let X0,X1,X2, ... be a Markov chain with transition matrix Q. The
n-step transition probability from i to j is the probability of being at j
exactly n steps after being at i . We denote this by q

(n)
i ,j :

q
(n)
i ,j = P (Xn = j |X0 = i) .
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Example: 2-step Transition Probability

q
(2)
i ,j = P (X2 = j |X0 = i) =

X

k

qi ,kqk,j = (i,j) entry of Q2.
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Chapman-Kolmogorov Relationship

q
(m+n)
i ,j = P (Xm+n = j |X0 = i) =

X

k

q
(m)
i ,k q

(n)
k,j = (i,j) entry of Qm+n.
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Proof
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Distribution of Xn

Let X0, X1,. . . be a Markov chain with transition matrix Q and initial
distribution ↵, where ↵ = (↵1,↵2, · · · ,↵M),
↵i = P(X0 = i), i = 1, . . . ,M . For all n � 0, the distribution of Xn is
↵Q

n. That is, the j th component of ↵Q
n is P(Xn = j), denoted as:

P(Xn = j) = (↵Qn)j , for all j .
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Example

Given a Markov chain X0,X1,X2, . . . with state space S = {1, 2, 3}.
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Find P(X3 = 1|X2 = 1) and P(X4 = 3|X3 = 2).
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Example

Given a Markov chain X0,X1,X2, . . . with state space S = {1, 2, 3}.
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If P(X0 = 1) = 1
3 , find P(X0 = 1,X1 = 2,X2 = 3).
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Example

Given a Markov chain X0,X1,X2, . . . with state space S = {1, 2, 3}.
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Find P(X2 = 1|X0 = 1), P(X2 = 2|X0 = 1), and
P(X2 = 3|X0 = 1).
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Example

Given a Markov chain X0,X1,X2, . . . with state space S = {1, 2, 3}.
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Find E (X2|X0 = 1).
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Recurrent and Transient States

Definition
State i of a Markov chain is recurrent if starting from i , the
probability is 1 that the chain will eventually return to i . Otherwise,
the state is transient, which means that if the chain starts from i ,
there is a positive probability of never returning to i .
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Example
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Irreducible and Reducible Chain

Definition
A Markov chain with transition matrix Q is irreducible if for any two
states i and j , it is possible to go from i to j in a finite number of
steps (with positive probability). That is, for any states i ,j there is
some positive integer n such that the (i , j) entry of Qn is positive. A
Markov chain that is not irreducible is called reducible.
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Irreducible Implies All States Recurrent

Theorem
In an irreducible Markov chain with a finite state space, all states are

recurrent.
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A Reducible Markov Chain with Recurrent States
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Gambler’s Ruin As A Markov Chain
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Coupon Collector As A Markov Chain
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Period

Definition
For a Markov chain with transition matrix Q, the period of state i,
denoted d(i), is the greatest common divisor of the set of possible
return times to i. That is,

d(i) = gcd{n > 0 : Qn

i ,i > 0}.

If d(i) = 1, state i is said to be aperiodic. If the set of return times is
empty, set d(i) = +1.
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Periodic, Aperiodic Markov Chain

Definition
A Markov chain is called periodic if it is irreducible and all states
have period greater than 1.

A Markov chain is called aperiodic if it is irreducible and all states
have period equal to 1.
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Example: Periodic Chain
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Example

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 45 / 96



Outline

1 Stochastic Processes

2 Markov Model

3 Markov Property and Transition Matrix

4 Basic Computations

5 Classification of States

6 Stationary Distribution

7 Reversibility

8 Application Case: PageRank

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 46 / 96



Definition

Definition
A row vector s = (s1, ..., sM) such that si � 0 and

P
i
si = 1 is a

stationary distribution for a Markov chain with transition matrix Q if

X

i

siqi ,j = sj .

for all j , or equivalently,
sQ = s.
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Example: Double Stochastic Matrix
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Theorem
If each column of the transition matrix Q sums to 1, then the uniform

distribution over all states, (1/M , 1/M , ..., 1/M), is a stationary

distribution. (A nonnegative matrix such that the row sums and the

column sums are all equal to 1 is called a doubly stochastic matrix.)
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Example: Two-State Markov Chain

0 11� ↵

↵

1� �

�
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Theorem on Stationary Distribution

Theorem
Given a Markov chain with finite state space.

If such Markov chain is irreducible, then it has a unique

stationary distribution. In this distribution, every state has

positive probability.

If such Markov chain is irreducible and aperiodic, with stationary

distribution s and transition matrix Q, then P(Xn = i) converges
to si as n ! 1. In terms of the transition matrix, Q

n
converges

to a matrix in which each row is s.
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Reversibility

Definition
Let Q = (qi ,j) be the transition matrix of a Markov chain. Suppose
there is s = (s1, ..., sM) with si � 0,

P
i
si = 1, such that

siqi ,j = sjqj ,i

for all states i and j . This equation is called the reversibility or
detailed balance condition, and we say that the chain is reversible
with respect to s if it holds.
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Check the Detailed Balance Equation

Theorem
If for an irreducible Markov chain with transition matrix Q = (qi ,j),
there exists a probability solution ⇡ to the detailed balance equations

⇡iqi ,j = ⇡jqj ,i

for all pairs of states i , j , then this Markov chain is reversible and the

solution ⇡ is the unique stationary distribution.
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Example: Symmetric Transition Matrix
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Theorem
If the transition matrix Q for an irreducible Markov chain is

symmetric, then the uniform distribution over all states,

(1/M , 1/M , ..., 1/M), is the unique stationary distribution.
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Example: Random Walk on Undirected Graph
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Example: Random Walk on Undirected Graph
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How to Organize the Web?

First Try: Web Directories

Yahoo, DMOZ, LookSmart
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Yahoo
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How to Organize the Web?

Second Try: Web Search

Information Retrieval:
I find relevant docs in a small and trusted set

I newspaper articles, patents, etc

Hardness: web is huge, full of untrusted documents, random
things, web spam, etc.
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Challenges for Web Search

Web contains many sources of information. Who to trust?
I Trick: Trustworthy pages may point to each other!

What is the best answer to query keywords?
I Webpages are not equally important (www.nothing.com

vs.www.stanford.edu)

I Trick: rank pages containing keywords according to their

importances (popularity)

I Find the page with the highest rank

I How to rank?
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Modeling Language: Graph Theory

Origin: 1735 Euler for Seven Bridges of Königsberg
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Key Elements of A Graph

A graph is an ordered pair G = (V ,E )

V : a set of vertices or nodes

E : a set of edges or links between nodes

Edge: undirected/directed
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Undirected Graph

Degree of vertex v : metric for connectivity of vertex v .

deg(v): the number of edges with v as an end vertex
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Directed Graph

Indegree of vertex v : the number of incoming edges ends at v .

Outdegree of vertex v : the number of outgoing edges starting
from v .

I (v): indegree of v

O(v): outdegree of v
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Adjacency Matrix

A square (0, 1)�matrix to represent a finite graph

Matrix elements: pairs of vertices are adjacent or not

Symmetric matrix: for undirected graph
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Adjacency Matrix: Directed Graph
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Adjacency Matrix of Nauru Graph
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Adjacency Matrix of Cayley Graph
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World Wide Web as A Graph

Web as a directed graph

Nodes: webpages

Edges: hyperlinks
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Web as A Directed Graph
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Milestones in Networking

1998: Larry Page (1973-) and Sergey Brin (1973-) invented
PageRank algorithm and then founded Google.

1998: Jon Kleinberg (1971-) invented Hyperlink-Induced Topic
Search (HITS) algorithm.

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 72 / 96

-

--- --

- -

--



Links as Votes

Page is more important if it has more links

Incoming links or outgoing links?

Think of incoming links as votes:
I www.stanford.edu has 23400 incoming links

I www.nothing.com has 1 incoming link

Are all in-links are equal?
I Links from important pages count more

I Recursive question!
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Example: PageRank Scores
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Simple Recursive Formulation

Each link’s vote is proportional to the importance of its source
page.

If page j with importance rj has n out-links, each link gets rj/n
votes

Page j’s own importance is the sum of the votes on its in-links
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Example

rj = ri/3 + rk/4.
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PageRank: The “Flow” Model

A “vote” from an important page is worth more

A page is important if it is pointed to by other important pages

Define a rank rj for page j :

rj =
X

i!j

ri

Oi

where Oi is the outdegree of i .
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Example: Flow Equation

ry = ry/2 + ra/2

ra = ry/2 + rm

rm = ra/2
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Solving the Flow Equations

Additional constraint forces uniqueness:
I ry + ra + rm = 1.

I solution: ry = 2/5, ra = 2/5, rm = 1/5.

Gaussian elimination method works for small examples

We need a better method for large web-size graphs
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PageRank: Matrix Formulation

Adjacency matrix Q

I Each page i has Oi out-links

I If i ! j , then Qi ,j =
1
Oi
, else Qi ,j = 0.

Q is a stochastic matrix

Row sum to 1.
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PageRank: Matrix Formulation

Rank vector r
I Vector with an entry per page

I ri is the importance score of page i

I
P

i
ri = 1

The flow equations can be written

r = r · Q
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Example

ry = ry/2 + ra/2

ra = ry/2 + rm

rm = ra/2

Q =

0

@

y a m

y
1
2

1
2 0

a
1
2 0 1

2
m 0 1 0

1

A
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Random Walk Interpretation

Random Walk on Directed Graphs

r · Q = r

r: stationary distribution
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Power Iteration Method

Given a web graph with n nodes, where the nodes are pages and
edges are hyperlinks.

Power iteration: a simple iterative scheme
I Suppose there are N web pages

I Initialize: r(0) = [
1
N
, . . . , 1

N
].

I Iterate: r(t + 1) = r(t) · Q.

I Stop when |r(t + 1)� r(t)|1 < ✏
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The Google Formulation

r
(t+1)
j

=
X

i!j

r
(t)
i

Oi

=) r
(t+1) = r

(t) · Q

8
<

:

Does this converge?
Converge to what we want?
Result reasonable?
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Example: Spider Traps with Two Nodes

A B

r
(t+1)
A

= r
(t)
B

r
(t+1)
B

= r
(t)
A

rA ! 1 0 1 0 . . .
rB ! 0 1 0 1 . . .
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Example: Spider Traps with One Node

y

a m

y a m
y 1/2 1/2 0
a 1/2 0 1/2
m 0 0 1

=)
ry ! 1/3 2/6 3/12 . . . 0
ra ! 1/3 1/6 2/12 . . . 0
rm ! 1/3 3/6 7/12 . . . 1
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Example: Dead End

A B

rA ! 1 0 0 0 . . .
rB ! 0 1 0 0 . . .

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 88 / 96



Observations

Dead End

Spider Trap

Some pages are dead ends (no out-links)

Spider traps (all out-links are within the group)
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Google’s Solution

Idea: irreducibility leads to unique stationary distribution

Random Teleports: create virtual links between any two pages

Given the WWW graph G = (V ,E ) and N = |V |.
At each time, walker at page i has the following operations:

If Oi = 0 (dead-end), then select any page j with equal
probability 1/N .

Otherwise, walker has two options

⇢
w.p. � Follow an out-link at random 1

Oi

w.p. 1� � Jump to some random pages
(1)

� = (0.8, 0.9)
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Example: Google’s Solution for Spider Traps

y

a m

y a m
y 1/2 1/2 0

a 1/2 0 1/2

m 0 0 1

=)

y a m
y 1/2 1/2 0
a 1/2 0 1/2
m 1/3 1/3 1/3
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General Solution

Assume no Dead Ends

Pagerank Equation:

rj =
X

i!j

� · ri

Oi

+ (1� �) · 1
N

Google Matrix

G = � · Q + (1� �)


1

N

�

N⇥N

r = r · G
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Random Teleports

Google Matrix

Q ! G = � · Q + (1� �)


1

N

�

N⇥N

y

a m

y

a m
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Do Some Calculation

Let � = 0.8.

Q = 0.8 ·

0

@
1/2 1/2 0
1/2 0 1/2
0 0 1

1

A+ 0.2 ·

0

@
1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

1

A

As a result,

G =

0

@
7/15 7/15 1/15
7/15 1/15 7/15
1/15 1/15 13/15

1

A
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Implementation of PageRank in Practice

BigTable: distributed storage system

GFS (Google File System): distributed file system

Mapreduce: distributed computing system (followed by Hadoop
& Spark)

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 95 / 96



References

Chapter 11 of BH

Chapter 7 of BT

Reading: Chapter 12 of BH

Ziyu Shao (ShanghaiTech) Lecture 9: Markov Chains December 17, 2024 96 / 96


