Lecture 9: Markov Chains

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

December 17, 2024

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

3. 3

1/96

Outline

- Stochastic Processes
 - 2 Markov Model
- Markov Property and Transition Matrix
- 4 Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
 - 7 Reversibility
- 8 Application Case: PageRank

Outline

Stochastic Processes

- 2 Markov Model
- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- Reversibility
- Application Case: PageRank

Definition

- A stochastic process is a collection of random variables $\{X_t, t \in D\}$. The set D is the *index set* of the process. The random variables are defined on a common state space S.
- *I* is discrete: discrete-time stochastic processes (sequences of random variables)
- *I* is continuous: continuous-time stochastic processes (uncountable collections of random variables)

Example: Discrete Time & Discrete State Space

- State Space: {1, . . . , 40}
- X_k : the player's board position after k dice rollings.
- Stochastic Process for Monopoly: $X_0, X_{\underline{1}, \dots}$

Example: Discrete Time & Continuous State Space

- Air-monitoring with PM2.5 measurements every hour
- State Space:(0, 2000)
- X_k : the PM2.5 measurement at the *k*th hour.
- Stochastic Process for Air-monitoring: X_0, X_1, \ldots

Example: Continuous Time & Discrete State Space

- We receive emails at random times day and night.
- State Space: $\{0, 1, 2, \ldots\}$
- $X_t, t \in [0,\infty)$: the number of emails we receive up to time t
- Stochastic Process for Email: $\{X_t\}$

Example: Continuous Time & Continuous State Space

- Two-dimensional Brownian Motion
- State Space: \mathbb{R}^2
- $X_t, t \in [0,\infty)$: position of the particle at time t
- Stochastic Process for random motion of particles: $\{X_t\}$

Outline

Stochastic Processes

Markov Model

- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- Reversibility
- Application Case: PageRank

< 円

Model Selection in Stochastic Modeling

- Enough complexity to capture the complexity of the phenomena in question
- Enough structure and simplicity to allow one to compute things of interest

Motivation

- Introduced by Andrey Markov in 1906
- IID sequence of random variables: too restrictive assumption
- Completely dependent among random variables: hard to analysis
- Markov chain: happy medium between complete independence
 & complete dependence.

Markov Model

Three basic components of Markov model

- A sequence of random variables $\{X_t, t \in \mathcal{T}\}$, where \mathcal{T} is an index set, usually called "time".
- All possible sample values of {X_t, t ∈ T} are called ("states") which are elements of a sate space S.
- "Markov property": given the present value(information) of the process, the future evolution of the process is independent of the past evolution of the process.

Classification of Markov Model

- Discrete-Time Markov Chain: Discrete S & Discrete T
- Continuous-Time Markov Chain: Discrete S & Continuous \mathcal{T}
- *Discrete Markov Process*:) Continuous *S* & Discrete *T*
- Continuous Markov Process: Continuous $\mathcal S$ & Continuous $\mathcal T$

Our focus: Discrete-Time Markov Chain with finite state space

Outline

1 Stochastic Processes

2 Markov Model

Markov Property and Transition Matrix

- 4 Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- Reversibility
- Application Case: PageRank

Markov Chain

P(A|B,c) = P(A|B)

given B, A and C are independent

3

Definition

A sequence of random variables $X_0, X_1, X_2, ...$ taking values in the state space $\{1, 2, ..., M\}$ is called a *Markov chain* if for all $n \ge 0$,

Time-homogeneous Markov Chains

Definition

Given a Markov chain $X_0, X_1, X_2, ...$ It is called time-homogeneous Markov chain if for all $n \ge 0$,

$$P(X_{n+1}=j|X_n=i)=q_{i,j}.$$

where $q_{i,j}$ is a constant independent of n.

From now on, we focus on time-homogeneous Markov Chains, and we call it Markov chain in brevity.

A B M A B M

Transition Matrix

Definition

Let $X_0, X_1, X_2, ...$ be a Markov chain with state space $\{1, 2, ..., M\}$, and let $q_{i,j} \neq P(X_{n+1} = j|X_n = i)$ be the transition probability from state *i* to state *j*. The $M \times M$ matrix $Q \neq (q_{i,j})$ is called the *transition matrix* of the chain. Graphical and Matrix Form of Markov Chain

P(Xn+1=j | Xn=i)=($(= \sum_{j=1}^{M} P(X_{n+1-j}, X_{n-1}) = P(X_{n+1})$ 0.6 0.4 0.2 0.1 0.3 0 0.8 0 0.2 0.2 0.6 0.2 Stochastic Matrix Row sum = 1 in Transition Matrix. Quis = P(Xntl=j(Xn=i)

 $\mathcal{B}(\cdot) = P(\cdot | X_n \rightarrow)$

Example: Rainy-Sunny Markov Chain

< □ > < @ >

э

19/96

Example: The First Markov Chain in History

- Andrey Andreyevich Markov was interested in investigating the way the vowels and consonants alternate in Russian literature, e.g., "Eugene Onegin" by Pushkin
- He classified 20,000 consecutive characters: 8638 vowels & 11362 consonants

vowel consonant

Gambler's Ruin As A Markov Chain Xo, Xo, ...

XEFO, I, MY

э

< □ > < □ > < □ > < □ > < □ > < □ >

Coupon Collector As A Markov Chain C: # of coupon types. XKE foil, cf

э

< □ > < @ >

Example: Random Walk on A Graph

December 17, 2024

< □ > < □ > < □ > < □ > < □ > < □ >

э

Outline

- 1 Stochastic Processes
- 2 Markov Model
- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- 7 Reversibility
- Application Case: PageRank

n-step Transition Probability

$$l_{a,b} > 0$$

 $l_{a,c} > 0$
 $q_{a,c} = 0$
 $l_{a,c} > 0$
Definition
Let $X_0, X_1, X_2, ...$ be a Markov chain with transition matrix Q . The
n-step transition probability from *i* to *j* is the probability of being at *j*
exactly *n* steps after being at *i*. We denote this by $q_{i,j}^{(n)}$:
 $q_{i,j}^{(n)} = P(X_n = j | X_0 = i)$.

2

25 / 96

▲口 > ▲圖 > ▲ 臣 > ▲ 臣 >

Example: 2-step Transition Probability

$$\begin{aligned}
p(A,B|c) &= p(A|B,c) \cdot p(B|c) \\
p(A,B) &= p(A|B) \cdot p(B) \\
p(A|B) &= p(A|B) \cdot p(A|B) \\
p(A|B) &= p(A|B) \cdot$$

26 / 96

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Ziyu Shao (ShanghaiTech)

27 / 96

Proof

2

<ロ> <四> <ヨ> <ヨ>

Distribution of
$$X_n$$
 $P(\chi_{n=3}) = \sum_{i} P(\chi_{n=3}|\chi_{n=2}) P(\chi_{n=2})$
 $= \sum_{i} \ell_{c,i}^{(n)} \cdot \alpha_{i} \quad (\alpha Q^{n})_{(i)}$

Let $X_0, X_1,...$ be a Markov chain with transition matrix Q and initial distribution α , where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_M)$, $\alpha_i = P(X_0 = i), i = 1, ..., M$. For all $n \ge 0$, the distribution of X_n is αQ^n . That is, the *j* th component of αQ^n is $P(X_n = j)$, denoted as: $P(X_n = j) = (\alpha Q^n)_j$, for all *j*. $P(X_n = j) = (\alpha Q^n)_j$, for all *j*.

29 / 96

Example

Ziyu Shao (ShanghaiTech)

32 / 96

э

Outline

- 1 Stochastic Processes
- 2 Markov Model
- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- Reversibility
- 8 Application Case: PageRank

Recurrent and Transient States

Definition

State *i* of a Markov chain is **recurrent** if starting from *i*, the probability is 1 that the chain will eventually return to *i*. Otherwise, the state is **transient**, which means that if the chain starts from *i*, there is a positive probability of never returning to *i*.

transient

Example

Lecture 9: Markov Chains

3

A B + A B +

< □ > < @ >
Irreducible and Reducible Chain

Definition

A Markov chain with transition matrix Q is *irreducible* if for any two states i and j, it is possible to go from i to j in a finite number of steps (with positive probability). That is, for any states i, j there is some positive integer n such that the (i, j) entry of Q^n is positive. A Markov chain that is not irreducible is called *reducible*.

 $P_{2,p}^{(n)} > 0$

Irreducible Implies All States Recurrent

Theorem

In an irreducible Markov chain with a finite state space, all states are recurrent.

A Reducible Markov Chain with Recurrent States

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

December 17, 2024

< □ > < 凸

→ ∃ →

39 / 96

э

Gambler's Ruin As A Markov Chain

reducible.

Ziv	vu Shao T	ShanghaiTech	I)

Lecture 9: Markov Chains

December 17, 2024

Coupon Collector As A Markov Chain

Vedu cible

э

Period

Definition

$$d(2) = gcd(1, n_1, n_2, ...)$$

= (

For a Markov chain with transition matrix Q, the *period* of state *i*, denoted d(i), is the greatest common divisor of the set of possible return times to *i*. That is,

$$d(i) = gcd\{n > 0 : Q_{i,i}^n > 0\}.$$

If d(i) = 1, state *i* is said to be *periodic* If the set of return times is empty, set $d(i) = +\infty$.

Periodic, Aperiodic Markov Chain

Definition

A Markov chain is called *periodid* if it is irreducible and all states have period greater than 1.

A Markov chain is called *aperiodic* if it is irreducible and all states have period equal to 1.

Example: Periodic Chain

d(1) = d(2) = d(3)

=d(4)=d(5)=5

э

44 / 96

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

$$\mathcal{T}_{n}^{(i)} = P(X_{n}=i); \mathcal{T}_{n+i}^{(i)} = P(X_{n+i}=i)$$

$$P(X_{nt|=j}) \stackrel{Lopp}{=} \sum_{i} P(X_{nt|=j} | X_{n=i}) P(X_{ni})$$

$$= \sum_{i} \mathcal{L}_{i,i} \cdot \mathcal{P}(\mathcal{X}_{n=i})$$

- 6 Stationary Distribution

$$\mathcal{T}_{n+1}^{(S)} = \sum_{i} Z_n^{(i)} \cdot \ell_{ij}$$

A (日) × (日) ×

Theorem

If each column of the transition matrix Q sums to 1, then the uniform distribution over all states, (1/M, 1/M, ..., 1/M), is a stationary distribution. (A nonnegative matrix such that the row sums and the column sums are all equal to 1 is called a doubly stochastic matrix.)

Outline

- 1 Stochastic Processes
- 2 Markov Model
- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution

8 Application Case: PageRank

54 / 96

December 17, 2024 56 / 96

2

▲ロト ▲圖 ト ▲ 国ト ▲ 国ト

Outline

- 1 Stochastic Processes
- 2 Markov Model
- 3 Markov Property and Transition Matrix
- Basic Computations
- 5 Classification of States
- 6 Stationary Distribution
- Reversibility
- Application Case: PageRank

How to Organize the Web?

Yahoo

Yellow Pages - People Search - Maps - Classifieds - News - Stock Quotes - Sports Scores

- <u>Arts and Humanities</u> Architecture, Photography, Literature...
- Business and Economy [Xtra!] Companies, Investing, Employment...
- <u>Computers and Internet</u> [<u>Xtra!</u>] Internet, <u>WWW</u>, Software, <u>Multimedia</u>...
- Education Universities, K-12, College Entrance...
- Entertainment [Xtra!]
 Cool Links, Movies, Music, Humor...
- <u>Government</u> Military, Politics [Xtra!], Law, Taxes...
- <u>Health</u> [Xtra!] Medicine, Drugs, Diseases, Fitness...

- News and Media [Xtra!]
 Current Events, Magazines, TV, Newspapers...
- <u>Recreation and Sports</u> [<u>Xtra!</u>]
 Sports, Games, Travel, Autos, Outdoors...
- <u>Reference</u> Libraries, Dictionaries, Phone Numbers...
- <u>Regional</u> Countries, Regions, U.S. States...
- <u>Science</u> CS, Biology, Astronomy, Engineering...
- Social Science Anthropology, Sociology, Economics...
- Society and Culture People, Environment, Religion...

My Yahoo! - Yahooligans! for Kids - Beatrice's Web Guide - Yahoo! Internet Life Weekly Picks - Today's Web Events - Chat - Weather Forecasts Random Yahoo! Link - Yahoo! Shop

National Yahoos Canada - France - Germany - Japan - U.K. & Ireland Yahoo! Metros Atlanta - Austin - Boston - Chicago - Dallas / Fort Worth - Los Angeles Get Local Minneapolis / St. Pau - New York - S.F. Bay - Seattle - Washington D.C.

How to Include Your Site - Company Information - Contributors - Yahoo! to Go

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

December 17, 2024 59 / 96

イロト イボト イヨト イヨト

How to Organize the Web?

- Second Try: Web Search
- Information Retrieval:
 - find relevant docs in a small and trusted set
 - newspaper articles, patents, etc
- Hardness: web is huge, full of untrusted documents, random things, web spam, etc.

Challenges for Web Search

- Web contains many sources of information. Who to trust?
 - Trick: Trustworthy pages may point to each other!
- What is the best answer to query keywords?
 - Webpages are not equally important (www.nothing.com) vs.www.stanford.edu)
 - Trick: rank pages containing keywords according to their importances (popularity)
 - Find the page with the highest rank
 - How to rank?

Modeling Language: Graph Theory

• Origin: 1735 Euler for Seven Bridges of Königsberg

Key Elements of A Graph

- A graph is an ordered pair G = (V, E)
- V: a set of vertices or nodes
- E: a set of edges or links between nodes
- Edge: undirected/directed

Undirected Graph

- Degree of vertex v: metric for connectivity of vertex v.
- deg(v): the number of edges with v as an end vertex

э

Directed Graph

- Indegree of vertex v: the number of incoming edges ends at v.
- Outdegree of vertex v: the number of outgoing edges starting from v.
- I(v): indegree of v

• O(v): outdegree of v $T_{1}(1) = 2$; Out(2) = 0(2) $T_{1}(1) = 2$; $T_{1}(2) = 2$; $T_{1}(2) = 2$; Out(3) = 2; Out(3) = 2;

Adjacency Matrix

- A square (0,1)-matrix to represent a finite graph
- Matrix elements: pairs of vertices are adjacent or not
- Symmetric matrix: for undirected graph

66 / 96

Adjacency Matrix: Directed Graph

	1	2	3	4	5	6	7	8
1		1						
2			1	1	1			
3							1	
4						1		
5						1		1
6							1	
7								1
8								

э

67 / 96

Adjacency Matrix of Nauru Graph

3

68 / 96

イロト イボト イヨト イヨト

Adjacency Matrix of Cayley Graph

э

A D N A B N A B N A B N

World Wide Web as A Graph

э

A B A A B A

< □ > < @ >

Web as A Directed Graph

December 17, 2024

<ロ> <四> <四> <四> <四> <四</p>

Milestones in Networking

- 1998: Larry Page (1973-) and Sergey Brin (1973-) invented PageRank algorithm and then founded Google.
- 1998: Jon Kleinberg (1971-) invented Hyperlink-Induced Topic Search (HITS) algorithm.

72 / 96

< □ > < 凸

- Page is more important if it has more links
- Incoming links or outgoing links?
- Think of incoming links as votes:
 - www.stanford.edu has 23400 incoming links
 - www.nothing.com has 1 incoming link
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question!

Example: PageRank Scores

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

December 17, 2024

→ ∃ →

э

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page.
- If page *j* with importance (r_j) has *n* out-links, each link gets r_j/n votes
- Page j's own importance is the sum of the votes on its in-links

Example

2

76 / 96

イロト イヨト イヨト

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a rank r_j for page j: $r_j = \underbrace{\sum_{i \to j} \frac{r_i}{O_i}}_{r_j \to j}$

where O_i is the outdegree of i.

Example: Flow Equation

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

December 17, 2024

< □ > < 同 >

< 3 >

2

78/96

Solving the Flow Equations

• Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1.$$

- solution: $r_y = 2/5$, $r_a = 2/5$, $r_m = 1/5$.
- Gaussian elimination method works for small examples
- We need a better method for large web-size graphs

PageRank: Matrix Formulation

- Adjacency matrix Q
 - Each page i has O_i out-links

• If
$$i \to j$$
, then $Q_{i,j} = (1 \to 0)^{-1} O_i$, else $Q_{i,j} = 0$.

- Q is a stochastic matrix
- Row sum to 1.

PageRank: Matrix Formulation

Rank vector r
Vector with an entry per page
r_i is the importance score of page i
∑_i r_i = 1
The flow equations can be written

$$\mathbf{r} = \mathbf{r} \cdot \mathbf{Q}$$

Ziyu Shao (ShanghaiTech)

Lecture 9: Markov Chains

Example

$$r_y = r_y/2 + r_a/2$$
$$r_a = r_y/2 + r_m$$
$$r_m = r_a/2$$

3

Random Walk Interpretation

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks.
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}(0) = [\frac{1}{N}, \dots, \frac{1}{N}].$
 - Iterate: $\mathbf{r}(t+1) = \mathbf{r}(t) \cdot Q$.

Stop when
$$|\mathbf{r}(t+1) - \mathbf{r}(t)|_1 < \epsilon$$

 $Z_{n+1} = Z_{n-2}$

$$\sum_{i} \left| \gamma_{i} \left(t + \mu \right) - \gamma_{i} \left(t \right) \right| < 2$$

The Google Formulation

Example: Spider Traps with Two Nodes

3

86 / 96

Example: Spider Traps with One Node

イロト 不得 ト イヨト イヨト

Example: Dead End

December 17, 2024

イロン イヨン イヨン

88 / 96

3

Observations

3. 3

Google's Solution

- Idea: irreducibility leads to unique stationary distribution
- Random Teleports: create virtual links between any two pages
- Given the WWW graph G = (V, E) and N = |V|.
- At each time, walker at page *i* has the following operations:
- If $O_i = 0$ (dead-end), then select any page j with equal probability 1/N.
- Otherwise, walker has two options

Follow an out-link at random
$$\begin{pmatrix} 1 \\ O_i \end{pmatrix}$$

Jump to some random pages

0.8, 0.9

90 / 96

(1)

Example: Google's Solution for Spider Traps

< □ > < □ > < □ > < □ > < □ > < □ >

э

General Solution

- Assume no Dead Ends
- Pagerank Equation:

$$r_j = \sum_{i \to j} \beta \cdot \frac{r_i}{O_i} + (1 - \beta) \cdot \frac{1}{N}$$

• Google Matrix

$$G = \beta \cdot Q + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N}$$
$$\mathbf{r} = \mathbf{r} \cdot G$$

э

Random Teleports

• Google Matrix

$$Q \rightarrow G = \beta \cdot Q + (1 - \beta) \left[\frac{1}{N}\right]_{N \times N}$$

3

93 / 96

イロト イボト イヨト イヨト

Do Some Calculation

Let
$$\beta = 0.8$$
.

$$Q = 0.8 \cdot egin{pmatrix} 1/2 & 1/2 & 0 \ 1/2 & 0 & 1/2 \ 0 & 0 & 1 \ \end{pmatrix} + 0.2 \cdot egin{pmatrix} 1/3 & 1/3 & 1/3 \ 1/3 & 1/3 & 1/3 \ 1/3 & 1/3 & 1/3 \ 1/3 & 1/3 & 1/3 \ \end{pmatrix}$$

As a result,

$$G = \begin{pmatrix} 7/15 & 7/15 & 1/15 \\ 7/15 & 1/15 & 7/15 \\ 1/15 & 1/15 & 13/15 \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

2

94 / 96

Implementation of PageRank in Practice

• BigTable: distributed storage system

- GFS (Google File System): distributed file system
- Mapreduce: distributed computing system (followed by Hadoop & Spark)

References

- Chapter 11 of **BH**
- Chapter 7 of **BT**
- Reading: Chapter 12 of BH

3