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Motivation I

If you can not calculate a probability or expectation exactly, then you
have three powerful strategies:

Simulations using Monte Carlo Methods

Approximations using limiting theorems
I Poisson approximation: The Law of Small Numbers
I Sample mean limit: The Law of Large Numbers
I Normal approximation: The Central Limit Theorem

Bounds (upper and lower bounds) on probability using
inequalities.
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Motivation II

Probability
Math

Statistics
Science

Monte Carlo
Computing
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Monte Carlo Methods

One of the top ten algorithms for science and engineering in
20th century

Monte Carlo Methods, Simplex Method, Fast Fourier Transform,
Quicksort, QR Algorithm...
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Widely Applications

Monte Carlo methods have been used in various tasks, including

Sampling from the underlying probability distribution f (x) and
simulating a random system

Sampling from posterior distribution for bayesian inference

Estimation through numerical integration

c = E⇡(h(x)) =

Z
f (x)h(x)dx .

Optimizing a target function to find its maxima or minima
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Classical Example: Estimation of ⇡
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Classical Example: Estimation of ⇡
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History

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 11 / 88



Monte Carlo Methods
Basic Monte Carlo methods: formally proposed by Stanislaw
Ulam & John Von Neumann in 1940s at Los Alamos National
Lab (Named after a casino in Monaco)
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Monte Carlo Trolley

Analog computer invented by Enrico Fermi in 1946
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Markov Chain Monte Carlo Methods

Metropolis-Hastings Algorithm: formally proposed by Nicholas
Metropolis et al in 1950s at Los Alamos National Lab, then
extended in 1970 by Wilfred Keith Hastings
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Markov Chain Monte Carlo Methods

Gibbs Sampling Algorithm: proposed in 1984 by brothers Stuart
Geman (1949-) and Donald Geman (1943-).

Gibbs sampling is named after the physicist Josiah Willard Gibbs
(1839-1903), in reference to an analogy between the sampling
algorithm and statistical physics.
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Randomness Generation

Earlier days: manual techniques including coin flipping, dice
rolling, card shu✏ing, and roulette spinning

Early days: physical devices including noise diodes and Geiger
counters (https://github.com/nategri/chernobyl_dice)
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Randomness Generation

The prevailing belief: only mechanical or electronic devices could
produce truly random sequences

The book: A Million Random Digits With 100,000 Normal

Deviates (based on Uranium radiation)

Current days: computer simulation with deterministic
algorithms, also called pseudorandom number generator
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Sampling

Assuming an algorithm is available for generating Unif(0, 1)
random numbers

Two elementary methods for generating random variables (or
samples)

I Inverse-transform method: operates on the CDF
I The acceptance-rejection method: operates on the PDF (or

PMF)
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Inverse Transform Method

Given a Unif(0, 1) r.v., we can construct an r.v. with any
continuous distribution we want.

Conversely, given an r.v. with an arbitrary continuous
distribution, we can create a Unif(0, 1) r.v.

Other names:
I probability integral transform
I inverse transform sampling
I the quantile transformation
I the fundamental theorem of simulation
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Inverse Transform Method: Recall

Theorem
Let F be a CDF which is a continuous function and strictly increasing

on the support of the distribution. This ensures that the inverse

function F
�1

exists, as a function from (0, 1) to R. We then have the

following results.

1 Let U ⇠ Unif (0, 1) and X = F
�1(U). Then X is an r.v. with

CDF F .

2 Let X be an r.v. with CDF F . Then F (X ) ⇠ Unif (0, 1).
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Algorithm Inverse-Transform Method: PDF Case
input: Cumulative distribution function F .
output: Random variable X distributed according to F .

1: Generate U from Unif(0, 1).
2: X  F

�1(U)
3: return X

!

" #

$ #
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1
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Histogram & PDF: Example
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Box-Muller Method: Recall

Let U ⇠ Unif(0, 2⇡), and let T ⇠ Expo(1) be independent of U .
Define X =

p
2T cosU and Y =

p
2T sinU . Then X and Y are

independent, and their marginal distributions are standard normal
distribution.

Algorithm Normal Random Variable Generation: Box-Muller Ap-
proach

output: Independent standard normal random variables X and Y .
1: Generate two independent random variables, U1 and U2, from

Unif (0, 1).
2: X  (�2 lnU1)1/2 cos(2⇡U2)
3: Y  (�2 lnU1)1/2 sin(2⇡U2)
4: return X , Y
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Acceptance-Rejection Method

Algorithm Acceptance-Rejection Algorithm

Step 1: Generate Y ⇠ Unif(a, b).
Step 2: Generate Z ⇠ Unif(0, c).
Step 3: If Z  f (Y ), set X = Y . Otherwise go back to step 1.
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Acceptance-Rejection Method

Algorithm Acceptance-Rejection Algorithm

Step 1: Generate Y ⇠ g .
Step 2: Generate Z ⇠ Unif(0, c · g(Y )).
Step 3: If Z  f (Y ), set X = Y . Otherwise go back to step 1.
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Acceptance-Rejection Method

Suppose one can generate samples (relatively easily) from PDF g

How can random samples be simulated from PDF f ?

Algorithm Acceptance-Rejection Algorithm

Let c denote a constant such that c � supy
f (y)
g(y) . Then:

Step 1: Generate Y ⇠ g .
Step 2: Generate U ⇠ Unif(0, 1).
Step 3: If U  f (Y )

c·g(Y ) , set X = Y . Otherwise go back to step 1.
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Acceptance-Rejection Method

Theorem
(i) The random variable generated by the Acceptance-Rejection

method has the desired PDF f .

(ii) The number of iterations of the algorithm that are needed is a

first-success random variable with mean c .

(iii) c � 1
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Proof
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Proof
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Example: Beta Distribution

An r.v. X is said to have the Beta distribution with parameters
a and b, a > 0 and b > 0, if its PDF is

f (x) =
1

� (a, b)
x
a�1 (1� x)b�1 , 0 < x < 1,

where the constant �(a, b) is chosen to make the PDF integrate
to 1. We write this as X ⇠ Beta(a, b).

Beta distribution is a generalization of uniform distribution.

Use the Acceptance-Rejection Method to generate a random
variable with distribution Beta(2, 4)
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Solution
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Solution
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Example: Normal Distribution

Use the Acceptance-Rejection Method to generate a random
variable with distribution N(0, 1)
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Solution
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Monte Carlo Integration
We can use the sample mean to approximate the expectation:

E [g(X )] ⇡ 1

n

nX

i=1

g(Xi).

Now we have integration
Z b

a

g(x)dx = (b � a)

Z b

a

g(x) · 1

b � a
dx .

Drawing n samples (empirical samples) from Unif(a, b):

X1,X2, . . . ,Xn ⇠ Unif(a, b).

Monte Carlo Integration:
Z b

a

g(x)dx ⇡ 1

n

nX

i=1

g(Xi)(b � a).
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Monte Carlo Integration
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Example: ⇡ as An Integration

Evaluate the integration

Z 1

0

4

1 + x2
dx .

g(x) = 4/(1 + x
2), 0 < x < 1.

X1, . . . ,Xn: samples from Unif(0, 1).

Monte Carlo Integration:

Z 1

0

4

1 + x2
dx ⇡ 1

n

nX

i=1

4

1 + X 2
i

.
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Example
Evaluate the integration

Z 4

0

s

x +

r
x +

q
x +
p
x dx .

Corresponding

g(x) =

s

x +

r
x +

q
x +
p
x .

X1, . . . ,Xn: samples from Unif(0, 4).
Monte Carlo Integration:

Z 4

0

s

x +

r
x +

q
x +
p
x dx ⇡ 4

n

nX

i=1

s

Xi +

r

Xi +

q
Xi +

p
Xi .
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Example: Area of Batman Curve

Challenging and Fun

https://mathworld.wolfram.com/BatmanCurve.html
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Example: Estimation of Probability

Indicator: bridge between expectation and probability

Given event A:

IA(x) =

(
1 if x 2 A

0 Otherwise
.

For random variable X :

P(X 2 A) = 1 · P(X 2 A) + 0 · P(X /2 A)

= E (IA(X ))

⇡ 1

n

nX

i=1

IA(Xi).
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Example: Estimation of ⇡

(−1, 1) (1, 1)

(−1, −1) (1, −1)

(0, 0) 1
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Example: Estimation of ⇡
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Example: Estimation of ⇡
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Useful Tools: Importance Sampling

Standard Monte Carlo integration is great if you can sample
from the target distribution (i.e. the desired distribution)

But what if you can’t sample from the target?

Importance Sampling: draw the sample from a proposal
distribution and re-weight the integral using importance weights
so that the correct distribution is targeted
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Importance Sampling

H = Ef [h(Y )] =

Z
h(y)f (y)dy

h is some function and f is the PDF of random variable Y

When the PDF f is di�cult to sample from, importance
sampling can be used

Rather than sampling from f , you specify a di↵erent PDF g , as
the proposal distribution.

H =

Z
h(y)f (y)dy =

Z
h(y)

f (y)

g(y)
g(y)dy =

Z
h(y)f (y)

g(y)
g(y)dy
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Importance Sampling

H = Ef [h(Y )] =

Z
h(y)f (y)

g(y)
g(y)dy = Eg


h(Y )f (Y )

g(Y )

�

Hence, given an iid sample Y1, . . . ,Yn from PDF g , our
estimator of H becomes

Ĥ =
1

n

nX

j=1

h(Yj)f (Yj)

g(Yj)
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Example: Gaussian Tail Probability

Evaluate the probability of rare event c = P(Y > 8), where
Y ⇠ N(0, 1).
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Solution
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Sample Mean: Recall

Definition
Let X1, ...,Xn be i.i.d. random variables with finite mean µ and finite
variance �2. The sample mean X̄n is defined as follows:

X̄n =
1

n

nX

j=1

Xj .

The sample mean X̄n is itself an r.v. with mean µ and variance �2/n.
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Strong Law of Large Numbers (SLLN)

Theorem
The sample mean X̄n converges to the true mean µ pointwise as

n!1, with probability 1. In other words, the event X̄n ! µ has

probability 1.
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Weak Law of Large Numbers (WLLN)

Theorem
For all ✏ > 0, P

���X̄n � µ
�� > ✏

�
! 0 as n!1. (This form of

convergence is called convergence in probability).
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Widely Applications: Photo Stacking with PC
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Widely Applications: Photo Stacking with PC
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Widely Applications: Night Model with Smart
Phone
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Widely Applications: Photo Stacking with Smart
Phone
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Cauchy-Schwarz Inequality: Recall

Theorem
For any r.v.s X and Y with finite variances,

|E (XY )| 
p
E (X 2)E (Y 2).
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Jensen’s Inequality

If f is a convex function, 0  �1,�2  1,�1 + �2 = 1, then for any
x1, x2,

f (�1x1 + �2x2)  �1f (x1) + �2f (x2).
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Jensen’s Inequality

Theorem
Let X be a random variable. If g is a convex function, then

E (g(X )) � g(E (X )). If g is a concave function, then

E (g(X ))  g(E (X )). In both cases, the only way that equality can

hold is if there are constants a and b such that g(X ) = a + bX with

probability 1.
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Quick Examples
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Entropy

Let X be a discrete r.v. whose distinct possible values are
a1, a2, ..., an, with probabilities p1, p2..., pn respectively (so
p1 + p2 + · · ·+ pn = 1).

The entropy of X is defined as follows:
H (X ) =

Pn
j=1 pj log2 (1/pj).

Using Jensen’s inequality, show that the maximum possible
entropy for X is when its distribution is uniform over
a1, a2, . . . , an, i.e., pj = 1/n for all j .

This makes sense intuitively, since learning the value of X
conveys the most information on average when X is equally
likely to take any of its values, and the least possible information
if X is a constant.
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Proof
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Kullback-Leibler Divergence

Let p = (p1, ..., pn) and r = (r1, ..., rn) be two probability vectors (so
each is nonnegative and sums to 1). Think of each as a possible PMF
for a random variable whose support consists of n distinct values.
The Kullback-Leibler divergence between p and r is defined as

D (p, r) =
nX

j=1

pj log2 (1/rj)�
nX

j=1

pj log2 (1/pj) .

Show that the Kullback-Leibler divergence is nonnegative.

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 69 / 88



Proof
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Markov’s Inequality

Theorem
For any r.v. X and constant a > 0,

P (|X | � a)  E |X |
a

.
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Proof
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Chebyshev’s Inequality

Theorem
Let X have mean µ and variance �2

. Then for any a > 0,

P (|X � µ| � a)  �2

a2
.
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Proof
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Cherno↵’s Inequality

Theorem
For any r.v. X and constants a > 0 and t > 0,

P (X � a) 
E
�
e
tX
�

eta
.
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Proof
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Cherno↵’s Technique

Theorem
For any r.v. X and constants a,

P (X � a)  inf
t>0

E
�
e
tX
�

eta

P (X  a)  inf
t<0

E
�
e
tX
�

eta
.
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Proof
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Example: Normal Distribution

Given X ⇠ N (µ, �2), for arbitrary constant a > µ, find the Cherno↵
bound on P(X > a).
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Solution
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Hoe↵ding Bound

Theorem
Let the random variables X1,X2, . . . ,Xn be independent with

E (Xi) = µ, a  Xi  b for each i = 1, . . . , n, where a, b are

constants. Then for any ✏ � 0,

P(|1
n

nX

i=1

Xi � µ| � ✏)  2e
� 2n✏2

(b�a)2 .
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Application: Parameter Estimation

Instead of predicting a single value p̂ for the parameter p, we given
an interval that is likely to contain the parameter:

Definition
A 1� � confidence interval for a parameter p is an interval
[p̂ � ✏, p̂ + ✏] such that

Pr (p 2 [p̂ � ✏, p̂ + ✏]) � 1� �.
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Application Example: Monte Carlo Method for
Estimation ⇡

A point chosen uniformly at random in the square has
probability ⇡/4 of landing in the circle
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Example: Monte Carlo Method for Estimation ⇡
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Example: Monte Carlo Method for Estimation ⇡

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 85 / 88



Summary 1
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Summary 2

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 87 / 88



References

Chapter 10 of BH

Chapter 5 of BT

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 88 / 88


