Lecture 7: Monte Carlo Methods

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

December 3, 2024

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 1 / 88

4 D F

 \triangleright \rightarrow \exists \rightarrow

э

Outline

History of Monte Carlo

- ² Sampling: Random Variable Generation
- ³ Monte Carlo Integration
- ⁴ Asymptotic Analysis: Law of Large Numbers
- ⁵ Non-asymptotic Analysis: Inequalities

4 0 8

Outline

History of Monte Carlo

- **Sampling: Random Variable Generation**
- **Monte Carlo Integration**
- Asymptotic Analysis: Law of Large Numbers
- ⁵ Non-asymptotic Analysis: Inequalities

4 0 F ∢母

Motivation I

If you can not calculate a probability or expectation exactly, then you have three powerful strategies:

Vo Simulations using Monte Carlo Methods

 \curvearrowright Approximations using limiting theorems

- \triangleright Poisson approximation: The Law of Small Numbers
- Sample mean limit: The Law of Large Numbers
- Normal approximation: The Central Limit Theorem.

Bounds (upper and lower bounds) on probability using inequalities.

Motivation II

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 5 / 88

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

4 0 8 ∢母 \sim э

Monte Carlo Methods

- One of the top ten algorithms for science and engineering in 20th century
- Monte Carlo Methods, Simplex Method, Fast Fourier Transform, Quicksort, QR Algorithm...

4 D F

Widely Applications

Monte Carlo methods have been used in various tasks, including

- \bullet Sampling from the underlying probability distribution $f(x)$ and simulating a random system Sampling

Simulating

Sampling

Stimation

Stimation Applications

lo methods have been used in various tasks, including

ling from the underlying probability distribution $f(x)$

iting a random system

ling from posterior distribution for bayesian inference ons

have been used in various tasks, including

<u>e underlying</u> probability distribution $f(x)$

om system

sterior distribution for bayesian inference

th numerical integration
 $f(x) = \int f(x)h(x)dx$.

et function to find its m
	- Sampling from po<u>sterior distr</u>ibution for bayesian inferenc<u>e</u>
	- **•** Estimation through numerical integration

ions

\nis have been used in various tasks, he underlying probability distribu

\ndom system

\nposterior distribution for Bayesian

\ngraph numerical integration

\n
$$
c = E_{\pi}(h(x)) = \int f(x)h(x)dx
$$

\nget function to find its maxima

Optimizing a target function to find its maxima or minima Optimizing

Classical Example: Estimation of π

€⊡

 \Rightarrow Þ

Classical Example: Estimation of π

目

Classical Example: Estimation of π

イロン イ部ン イミン イモンジ 白

History

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 11 / 88

イロメ イ部メ イヨメ イヨメー

重

Monte Carlo Methods

• Basic Monte Carlo methods: formally proposed by Stanislaw Ulam & John Von Neumann in 1940s at Los Alamos National Lab (Named after a casino in Monaco)

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 12 / 88

Monte Carlo Trolley

Analog computer invented by Enrico Fermi in 1946

4日下

∢母 \sim э

Markov Chain Monte Carlo Methods

Metropolis-Hastings Algorithm: formally proposed by Nicholas Metropolis et al in 1950s at Los Alamos National Lab, then extended in 1970 by Wilfred Keith Hastings

Markov Chain Monte Carlo Methods

- Gibbs Sampling Algorithm: proposed in 1984 by brothers Stuart Geman (1949-) and Donald Geman (1943-).
- Gibbs sampling is named after the physicist Josiah Willard Gibbs (1839-1903), in reference to an analogy between the sampling algorithm and statistical physics.

Outline

History of Monte Carlo

² Sampling: Random Variable Generation

Monte Carlo Integration

Asymptotic Analysis: Law of Large Numbers

⁵ Non-asymptotic Analysis: Inequalities

4 0 F ∢母 э

Randomness Generation

- Earlier days: manual techniques including coin flipping, dice rolling, card shuffling, and roulette spinning
- Early days: physical devices including noise diodes and Geiger counters (https://github.com/nategri/chernobyl_dice)

Randomness Generation

- The prevailing belief: only mechanical or electronic devices could
- produce truly random sequences
The book: A Million Random D
Devistes (boogd on Tranium res The book: *A Million Random Digits With 100,000 Normal Deviates* (based on Uranium radiation) echanical or electronic devices
nces
m Digits With 100,000 Normal
radiation)
ulation with deterministic
- Current days: computer simulation with deterministic algorithms, also called pseudorandom number generator The prevail
produce tru
The book:
Deviates (E
Current day
algorithms, nness Generation
prevailing belief: only mechanical or
uce truly random sequences
book: A Million Random Digits With
ates (based on Uranium radiation)
ent days: computer simulation with or
ithms, also called pseudorandom n ration
f: only m<u>echanica</u>
m sequences
n Random Digits
Wranium radiatie
wuter simulation w
led pseudorandom echanical or electronic de

nces

m Digits With 100,000 N

radiation

llation with deterministic

orandom number genera echanical or electronic dev

oces

1 Digits With 100,000 Nor

radiation

lation with deterministic

prandom number generato

Sampling

- Assuming an algorithm is available for generating $\text{Unif}(0, 1)$ random numbers
- Two elementary methods for generating random variables (or samples)
	- Inverse-transform method: operates on the CDF
	- \triangleright The acceptance-rejection method: operates on the PDF (or PMF)

Inverse Transform Method

- Given a Unif $(0, 1)$ r.v., we can construct an r.v. with any continuous distribution we want.
- Conversely, given an r.v. with an arbitrary continuous distribution, we can create a $Unif(0, 1)$ r.v.
- Other names:
	- \triangleright probability integral transform
	- \blacktriangleright inverse transform sampling
	- \blacktriangleright the quantile transformation
	- \triangleright the fundamental theorem of simulation

Inverse Transform Method: Recall

Theorem

Let F be a CDF which is a continuous function and strictly increasing on the support of the distribution. This ensures that the inverse function (F^{-1}) *exists, as a function from* $(0,1)$ *to* $\mathbb R$ *. We then have the following results.*

- 1 Let $U \sim \text{Unif } (0,1)$ and $X = F^{-1}(U)$ Then X is an r.v. with *CDF F.*
- 2 Let X be an r.v. with CDF F. Then $F(X) \sim \text{Unif}(0,1)$.

 $\boldsymbol{\mathsf{Algorithm}}{}$ Inverse-Transform Method: (PDF $\boldsymbol{\mathcal{G}}$ ase ρ \overrightarrow{P}

input: Cumulative distribution function *F*.

output: Random variable *X* distributed according to *F*. verse-Transform
mulative distribut
andom variable
J from Unif(0, 1)
U L

- 1: Generate *U* from Unif(0*,* 1).
- 2: $X \leftarrow F^{-1}(U)$ $\frac{1}{\pi}$ Cumu

ate U fr

ate U fr
 $\frac{F^{-1}(U)}{N}$
- 3: return *X*

Histogram & PDF: Example

重

 $u \nsim \mu \rightarrow (0,22)$ Box-Muller Method: Recall $= 22$ Unfw. Let $U \sim \text{Unif}(0, 2\pi)$, and let \bigtriangledown Expo(1) be independent of U. Define $X = \sqrt{2T} \cos U$ and $Y = \sqrt{2T} \sin U$. Then *X* and *Y* are independent, and their marginal distributions are standard normal distribution. $u_2 \wedge u_n f_{(o,y)}$ $U = 22U_L$ Algorithm Normal Random Variable Generation: Box-Muller Ap-

proach

output: Independent standard normal random variables *X* and *Y* . 1: Generate two independent random variables, U_1 and U_2 , from *Unif* (0*,* 1). 2° . \top \land ϵ xpo \cup $2: X \leftarrow (-2 \ln U_1)^{3/2} \cos(2 \pi U_2)$ $\frac{c_0}{f}F_1(t) = h e^{-t}$, to 3: $Y \leftarrow (-2 \ln U_1)^{1/2} \sin(2\pi U_2)$ 4: return *X*, *Y* \Rightarrow $F_t^{-1}(u) = -ln(1-u)$ $U \sim 0$ 0 $H(t) \sim \nu n \dot{A}(\nu \nu)$ (0×10^6) Ω Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 24 / 88

Acceptance-Rejection Method	1. $\sqrt[4]{6}$	1. $\sqrt[4]{6}$	1. $\sqrt[4]{6}$	1. $\sqrt[4]{6}$																															
2) $\sqrt[4]{x}$	3. $\sqrt[4]{x}$	4. $\sqrt[4]{x}$	5. $\sqrt[4]{x}$	6. $\sqrt[4]{x}$	7. $\sqrt[4]{x}$	8. $\sqrt[4]{x}$	9. $\sqrt[4]{x}$	10. $\sqrt[4]{x}$	11. $\sqrt[4]{x}$	12. $\sqrt[4]{x}$	13. $\sqrt[4]{x}$	14. $\sqrt[4]{x}$	15. $\sqrt[4]{x}$	16. $\sqrt[4]{x}$	17. $\sqrt[4]{x}$	18. $\sqrt[4]{x}$	19. $\sqrt[4]{x}$	10. $\sqrt[4]{x}$	11. $\sqrt[4]{x}$	11. $\sqrt[4]{x}$	12. $\sqrt[4]{x}$	13. $\sqrt[4]{x}$	14. $\sqrt[4]{x}$	15. $\sqrt[4]{x}$	16. $\$										

Acceptance-Rejection Method

- f_{y} g, s upport ϵ
- Suppose one can generate samples (relatively easily) from PDF *g*
- How can random samples be simulated from PDF *f* ?

Algorithm Acceptance-Rejection Algorithm

Let *c* denote a constant such that \sqrt{c} sup_y $\frac{f(y)}{g(y)}$. Then: Step 1: Generate $Y \sim \pi$ Step 2: Generate μ_{\sim} Unif(0, 1). Step 3: If $\underline{U} \leq \frac{f(Y)}{c \cdot g(Y)},$ set $X = Y$. Otherwise go back to step 1.

 Ω

Proof (c) event A = M =
$$
\frac{f(Y)}{C \cdot g(Y)}
$$

\n $f_Y(Y|A) = \frac{p(A|Y-Y)}{p(A)} \cdot f_Y(Y)$
\n
$$
\int_{P(A)} p(A|Y=y) = p(\underbrace{U \leq \frac{f(Y)}{C \cdot g(Y)} |Y=y}) = P(U \leq \frac{f(Y)}{C \cdot g(y)} |Y=y)
$$
\n
$$
= P(U \leq \frac{f(Y)}{C \cdot g(Y)}) = \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{F(Y)}
$$
\n
$$
= \frac{p(U \leq \frac{f(Y)}{C \cdot g(Y)})}{\frac{f(Y)}{C \cdot g(Y)}} = \frac{f(Y)}{C \cdot g(Y)}
$$
\n
$$
\frac{p(U \leq t) = t, \text{etc.}
$$
\n
$$
= \int \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot dy \quad (Y \wedge g)
$$
\n
$$
= \int \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot dy \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n
$$
= \frac{f(Y)}{C \cdot g(Y)} \cdot \frac{f(Y)}{Y(Y)} \cdot \frac{f(Y)}{Y(Y)} \quad (Y \wedge g)
$$
\n $$

 299

Proof

イロトメ団トメミトメミト $\overline{\text{Re Carlo Methods}}$ December 3, 2024 $30/88$

活

Example: Beta Distribution

An r.v. *X* is said to have the *Beta distribution* with parameters *a* and *b*, *a >* 0 and *b >* 0, if its PDF is $Q = 1, 6 = 1$

$$
f(x)=\frac{1}{\beta(a,b)}x^{a-1}(1-x)^{b-1}, \ 0
$$

where the constant $\beta(a, b)$ is chosen to make the PDF integrate to 1. We write this as $X \sim \text{Beta}(a, b)$.

- Beta distribution is a generalization of uniform distribution.
- Use the Acceptance-Rejection Method to generate a random variable with distribution *Beta*(2*,* 4)

Solution
$$
\frac{object}{pop}
$$

\n 0 3: $Unif(0,1)$, $g(x) = 1$, $0 \le x < 1$
\n $0 \le x \le 1$
\n $$

Solution

Example: Normal Distribution \bigoplus $Z \wedge N(\bullet, \nu)$ $(-\infty, +\infty)$ $X = |Z|$ (0, +00) $(p(x\le x) = p(x|\le x) = 2p(x\le x)$ $=$ $\int_{0}^{x} \frac{1}{\sqrt{x}} e^{-\frac{1}{2}x^{2}} dx$ \Rightarrow $f_{x}(x) = \sqrt{\frac{2}{x}} e^{-\frac{1}{2}x^{2}}$, $e < x < \infty$

 $9 \wedge \frac{1}{2}$ $\wedge \frac{1}{2}$

Use the Acceptance-Rejection Method to generate a random variable with distribution *N*(0*,* 1)

> $C \geq$ sup $\frac{f(y)}{g(y)} = \frac{g(y)}{y} \sqrt{\frac{2}{2}} e^{\frac{-y^2 + y}{2}} = \sqrt{\frac{2e}{y}} (y^* = 1)$ $Chude$ $C = \sqrt{\frac{2}{3}}$ $\Rightarrow \frac{f(y)}{f(y)} = e^{\int y \frac{1}{2}y^2 - \frac{1}{4}} = e^{\frac{1}{2}(y^2+y^2)}$

Solution Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 35 / 88

Solution

店

 2990
Outline

History of Monte Carlo

Sampling: Random Variable Generation

³ Monte Carlo Integration

⁴ Asymptotic Analysis: Law of Large Numbers

⁵ Non-asymptotic Analysis: Inequalities

4 0 F ∢母 Þ

Monte Carlo Integration

We can use the sample mean to approximate the expectation:

1 *n* X*n*

i=1

 \int^b

• Now we have integration

 \int^b

a

Drawing n samples (empirical samples) from Unif(*a, b*):

 $E[g(X)]$

 $g(x)dx = (b - a)$

$$
X_1, X_2, \ldots, X_n \sim \text{Unif}(a, b). \qquad \text{[for } a \in \text{[G]}(S))
$$

 $\int_{a}^{b} g(x) \cdot \frac{1}{b}$

b a

dx.

 $X_{1}, \ldots X_{n}$ = $E(X) \wedge \frac{1}{n}(X_{1+n}X_{n})$

 $9(x_1)$

g(*Xi*)*.*

Monte Carlo Integration: Z *^b a g*(*x*)*dx* ⇡ 1 *n* X*n i*=1 *g*(*Xi*)(*b a*)*.* Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 38 / 88

Monte Carlo Integration

D.

 2990

Example: π as An Integration

Evaluate the integration

$$
\int_0^1 \frac{4}{1+x^2} dx.
$$

•
$$
g(x) = \frac{4}{1 + x^2}, 0 < x < 1.
$$

• X_1, \ldots, X_n : samples from Unif(0, 1).

• Monte Carlo Integration:

$$
\int_0^1 \frac{4}{1+x^2} dx \approx \left(\frac{1}{n}\sum_{i=1}^n \frac{4}{1+X_i^2}\right)
$$

 \leftarrow \Box

Example

Evaluate the integration

ation

$$
\int_0^4 \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}} dx.
$$

• Corresponding

$$
\sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}.
$$
\n
$$
g(x) = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}.
$$
\nples from Unif(0, 4).

\negration:

\n

- X_1, \ldots, X_n : samples from Unif(0, 4).
- Monte Carlo Integration:

Monte Carlo Integration:
\n
$$
\int_0^4 \sqrt{x + \sqrt{x + \sqrt{x}} dx} \approx \frac{4}{n} \sum_{i=1}^n \sqrt{x_i + \sqrt{x_i} + \sqrt{x_i} + \sqrt{x_i}}
$$
\n\nShao (ShanghaiTechn)
\n
$$
Letermine 7: Monte Carlo Methods
$$
\n\nDecember 3, 2024 41/88

Example: Area of Batman Curve

€⊡

Example: Estimation of Probability

- Indicator: bridge between expectation and probability
- Given event *A*: $I_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$ 0 Otherwise *.*
- For random variable *X*:

$$
\frac{P(X \in A) = 1 \cdot P(X \in A) + 0 \cdot P(X \notin A)}{\neq E(I_A(X))}
$$

$$
\approx \frac{1}{n} \sum_{i=1}^{n} I_A(X_i).
$$

Example: Estimation of π

Example: Estimation of π

 299

Useful Tools: Importance Sampling

- Standard Monte Carlo integration is great if you can sample from the target distribution (i.e. the desired distribution) Explored: The Sam
Monte Carlo integration is
Integrated distribution (i.e. the
Exploran't sample from the
- But what if you can't sample from the target?
- **Importance Sampling**: draw the sample from a proposal distribution and re-weight the integral using importance weights so that the correct distribution is targeted Importance Sampling
te Carlo integration is great if
t dis<u>tribution (i.e. the desired</u>
u can't sample from the targ
Sampling: draw the sample f
d re-weight the integral using
rrect distribution is targeted **Solution: Solution**

<u>arlo integration is great if you contribution (i.e. the desired distril

in't sample from the target?
 pling: draw the sample from a (

-weight the integral using importion is targeted</u> f you can sam
d distribution)
et?
r<u>om a propos:</u>
importance ean sample

<u>bution)</u>

(proposal)

tance we Tools: Importance Sampling

andard Monte Carlo integration is great if you can s

m the target distribution (i.e. the desired distribution

t what if you can't sample from the target?
 portance Sampling: draw the sample

Importance Sampling

$$
H = E_f[h(Y)] = \int \frac{h(y)f(y)}{y} dy
$$

- *h* is some function and *f* is the PDF of random variable Y
- When the PDF *f* is difficult to sample from, importance sampling can be used
- Rather than sampling from *f*, you specify a different PDF(g) as the proposal distribution.

$$
H = \int h(y)f(y)dy = \int \frac{h(y)f(y)}{g(y)}g(y)dy = \int \frac{h(y)f(y)}{g(y)}g(y)dy
$$

つへへ

Importance Sampling

$$
H = E_f[h(Y)] = \underbrace{\int \underbrace{\left(\frac{h(y)f(y)}{g(y)}g(y)dy}_{\text{Hence, given an iid sample } Y_1, \dots, Y_n \text{ from PDF } g, \text{ our estimator of } H \text{ becomes}}
$$
\n
$$
\hat{H} = \underbrace{\frac{1}{n} \sum_{j=1}^n \frac{h(Y_j)f(Y_j)}{g(Y_j)}}_{\text{Hence, given } H \text{ becomes}}
$$

 \bullet

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 49/88

イロト イ部 トイヨ トイヨト

重

Example: Gaussian Tail Probability Evaluate the probability of rare event^{or} $Y \sim N(0, 1)$. P (-b < Y < 3) $= 0.997$ ample: Gaussian Tail Probability ($P(-5 < Y < 3$)

Method 1 : $C = P(Y > 8) = E[1(Y > 8)]$
 $\frac{1}{\pi} \int_{S=1}^{R} I(Y > 8) \frac{1}{\pi} \frac{P(Y_{i...}, Y_{i...}, Y_{i...}, Y_{i...})}{P(Y_{i...}, Y_{i...}, Y_{i...})}$ $P(Y>8)$ il Probabili
= $E[L(Y>8)]$
 $\frac{1}{k} \sum_{i=1}^{n} I(Y_i)$ robability ($P(-5 < Y < 3)$
 $T(x > 8)$)
 $T(x \wedge x_{i(6y)})$ h(y)=1(y>8) I $\lambda \frac{1}{n} \sum_{s=1}^{n} I(r_{s}y)$ $=\int_{0}^{1}$ if $\frac{1}{2}$ $-5 < Y < 3$)

= 0.9

There
 $\sqrt{\frac{Y_{i}}{Y_{i}} + \frac{Y_{i}}{Y_{i}}}}$
 $\sqrt{\frac{Y_{i}}{Y_{i}} + \frac{Y_{i}}{Y_{i}}}}$
 $\sqrt{\frac{Y_{i}}{Y_{i}} + \frac{Y_{i}}{Y_{i}}}}$ Social Tail Probability

(P(Y>8) = E[1(Y>8)]

(2 $\frac{1}{h} \frac{p}{\sum_{i=1}^{n} I(Y_i) P(x_i)}$

(1) = T(Y)

(1) = T(Y) $\frac{1}{\sqrt{2}}$
Evaluate the $Y \sim N(0, 1)$. $Method$ 2: Choose $GNN(8,1)$, Y_L $\frac{14}{\sqrt{2}}$
 $\frac{1}{\sqrt{2}}$ (Y > 8), where $\frac{1}{2}$
 $\frac{1}{2}$ c bability of rare event $c = \mathbb{P}(Y > 8)$, where
 $h \cdot d_2$: $c h \cdot e \cdot e \cdot g \cdot \pi(8,1)$, $Y_{1},...,Y_{n} \neq e \cdot g$
 $\pi \cdot \pi \cdot \frac{n}{\sum_{j=1}^{n} h(Y_j) f(Y_j)} = \frac{1}{n} \cdot \frac{n}{\sum_{j=1}^{n} I(Y_j > g)} \cdot \frac{\pi}{\sqrt{\sum_{j=1}^{n} I(Y_j > g)}}$ $\frac{l}{1}$. 28), where $\frac{h(y) = 1(y)}{2}$

28), where $\frac{1}{2}$

28), where $\frac{1}{2}$

2 $\frac{1}{2}$
 $\frac{1}{2}$ $=$ $\frac{1}{n}$ $\sum_{j=1}^{n} I(y_j, y_j)$. &z Method 2 : Chaose θ $\wedge N(8,1)$

C $\pi \frac{1}{n} \sum_{j=1}^{n} \frac{h(Y_j) f(Y_j)}{g(Y_j)} = \frac{1}{n} \frac{1}{j}$

= $\frac{1}{n} \sum_{j=1}^{n} L(Y_j > 8) e^{-8Yj + 32}$ -8 Yj +32 $\frac{1}{\sqrt{2}}e^{-\frac{1}{2}(Y_3 - 2)^2}$ 1.50000 ; $C_2 6.25 \times 10^{-16}$

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 50 / 88

 Ω

Solution

 2990

 $\overline{}$

Outline

History of Monte Carlo

- **Sampling: Random Variable Generation**
- **Monte Carlo Integration**

⁴ Asymptotic Analysis: Law of Large Numbers **tionary of Monte Carlo**

Sampling: Random Variable Generation

Monte Carlo Integration
 Asymptotic Analysis: Law of Large Numbers

Non-asymptotic Analysis: Inequalities

⁵ Non-asymptotic Analysis: Inequalities

4 **D F** ∢母 э

Sample Mean: Recall

The sample mean \bar{X}_n is itself an r.v. with mean μ and variance $\!\!\left.\!({\sigma^2}/{n}\right\!\!{}\!\!{}\!\!{}\!\!$

Strong Law of Large Numbers (SLLN) $X_{1,1}$, X_{1} (i.d. $x.u.$ 9 = Continues functor $g(x_i)$ $g(x_i)$ isd. $E(g(x)) = \int_{a}^{b} g(x) \frac{1}{\cos 0} dx$ Theorem *The sample mean* X_n *converges to the true mean* μ *pointwise as* $n \to \infty$, with probability 1. In other words, the event $\bar{X}_n \to \mu$ has *probability* 1*.*

 θ by sline $\frac{g(x_1 + \cdots + g(x_n))}{n}$ $\frac{w_{n+1}}{n}$ \in $(g_{1} \times J)$ $\overrightarrow{n-200}$ $=$ $\int_{c}^{b} f(x) dx$ => $\frac{(b-a)}{n} \sum_{c=1}^{n} g(x_c)$ $\frac{w \cdot R}{n} \int_{0}^{b} g(x) dx$ 200 Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 54 / 88

Weak Law of Large Numbers (WLLN)				
X_n	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}
X_1, Y_2, Y_3	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}
Theorem	For all $\epsilon > 0$, $\mathbb{R}(\sqrt{X_n} - \mu) > \epsilon$	$\rightarrow 0$ as $n \rightarrow \infty$. (This form of convergence is called convergence in probability).		
\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	
\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	
\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	
\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	
\mathbb{R}	\mathbb{R}	\mathbb{R}		
\mathbb{R}	\mathbb{R}	\mathbb{R}		
\mathbb{R}	\mathbb{R}	\mathbb{R}		
\mathbb{R}	\mathbb{R}	\mathbb{R}		
\mathbb{R}	\mathbb{R}	\mathbb{R}		

Widely Applications: Photo Stacking with PC

イロト イ押ト イヨト イヨト

目

Widely Applications: Photo Stacking with PC

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

э

Widely Applications: Night Model with Smart Phone

Andes (Shanghaitech) Lecture 7: 2024 58 / 88

イロト イ押ト イヨト イヨト

 QQ

目

Widely Applications: Photo Stacking with Smart Phone

 \leftarrow \Box

Widely Applications: Photo Stacking with Smart Phone

4 **D F**

Widely Applications: Photo Stacking with Smart Phone

イロト イ押ト イヨト イヨト

Outline

History of Monte Carlo

- **Sampling: Random Variable Generation**
- **Monte Carlo Integration**
- Asymptotic Analysis: Law of Large Numbers
- ⁵ Non-asymptotic Analysis: Inequalities

4 0 F ∢母 э

Cauchy-Schwarz Inequality: Recall

Theorem

For any r.v.s X and Y with finite variances,

12 Inequality: Recall

\n12 With finite variances,

\n
$$
|E(XY)| \leq \sqrt{E(X^2)E(Y^2)}
$$

э

 QQ

 $\left\{ \left. \left(\left. \Box \right. \right| \mathbb{R} \right) \times \left(\left. \mathbb{R} \right. \right| \right\}$, $\left\{ \left. \left. \mathbb{R} \right| \right\}$, $\left\{ \left. \mathbb{R} \right| \right\}$

4 0 F

If *f* is a convex function, $0 \leq \lambda_1, \lambda_2 \leq 1, \lambda_1 + \lambda_2 = 1$, then for any *x*1*, x*2,

$$
f(\lambda_1x_1+\lambda_2x_2)\leq \lambda_1f(x_1)+\lambda_2f(x_2).
$$

 \leftarrow \Box

 \Rightarrow

∍

Jensen's Inequality

Theorem

Let X be a random variable. If g is a convex function, then $E(g(X)) > g(E(X))$. If *g* is a concave function, then $E(g(X)) \leq \overline{g(E(X))}$. In both cases, the only way that equality can *hold is if there are constants a and b such that* $g(X) = a + bX$ with *probability* 1*.*

Quick Examples

\n
$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\frac{3}{5} & \frac{3}{5} & \frac{3}{5} & \frac{27}{5} & \frac
$$

 2990

K ロ メ イ 部 メ ペ 差 メ ペ 差 メ ニ 差

Entropy

- Let *X* be a discrete r.v. whose distinct possible values are $a_1, a_2, ..., a_n$, with probabilities $p_1, p_2...$, p_n respectively (so $p_1 + p_2 + \cdots + p_n = 1$.
- The *entropy* of X is defined as follows: $H(X) = \bigotimes_{j=1}^n p_j \log_2{(1/p_j)}.$
- Using Jensen's inequality, show that the maximum possible entropy for X is when its distribution is uniform over a_1, a_2, \ldots, a_n , i.e., $p_i = 1/n$ for all *j*.
- This makes sense intuitively, since learning the value of *X* conveys the most information on average when *X* is equally likely to take any of its values, and the least possible information if *X* is a constant.

医毛囊 医毛囊 医心包

Proof \bigcirc Construct $a \rightarrow v.$ Y s+ $w \cdot p$, $\frac{p}{p}$
 $w \cdot p$, $\frac{p}{p}$ \Rightarrow $E(Y)$ $Y = \begin{bmatrix} \overrightarrow{p_1} \\ \overrightarrow{p_2} \end{bmatrix}$ $=$ $\frac{1}{h}$. $\frac{p}{h}$ + $\frac{1}{h}$. $\frac{p}{h}$ + $\frac{1}{h}$. $w.p. p_n$ $\widehat{=n}$ $\circled{1} \quad \underline{\underline{H}(\underline{x})} \stackrel{A}{=} \frac{\underline{S}(\underline{p}) \log_{2}(\underline{p})}{\underline{I}(\underline{p})} = \underline{E}[\log_{2}Y] \le \log_{2}E[Y] = \log_{2}n$ \Rightarrow $max_{n}(k(x)) \le log_{n} n$ θ p_1 . . . P_1 ヌー・トレート P_{ij} when $X \wedge 0$ $\overline{(h^2/h^2)}$, $h = p_{2m} - p_m = \frac{1}{n}$, $H(X) = \frac{n}{2\pi n} b_{2m} = log n$ $\Rightarrow \max_{P_{1,1},P_{1}} H(x) \geq log_2 n$ $\Rightarrow \max_{p_{i_1}, p_{i_2}} \mu(x) = \log_2 n$ $P_{\alpha\rightarrow} \rho_{\alpha}$

э

 Ω

イロト イ押 トイヨ トイヨト

Let $\mathbf{p} = (p_1, ..., p_n)$ and $\mathbf{r} = (r_1, ..., r_n)$ be two probability vectors (so each is nonnegative and sums to 1). Think of each as a possible PMF for a random variable whose support consists of *n* distinct values. The *Kullback-Leibler* divergence between p and r is defined as

$$
D(\mathbf{p}, \mathbf{r}) = \sum_{j=1}^{n} p_j \log_2 (1/r_j) - \sum_{j=1}^{n} p_j \log_2 (1/p_j).
$$

Show that the Kullback-Leibler divergence is nonnegative.

 $\textcircled{1} \quad D(P,r) = \sum_{j=j}^{P} p_j \log_i \frac{1}{r_j} - \frac{n}{r_j} p_j \log_i \frac{1}{r_j} = \frac{n}{r_j} p_j \log_i \frac{r_j}{r_j}$ Proof $= -\sum_{j=1}^{\infty} p_j \log_2 \frac{r_j}{p_j},$ (\mathcal{L}) Construct a n.v. r, s.t $P(Y = \frac{r_j}{p_j}) = p_j$, $j = 1, 2, ..., n$ \Rightarrow $E(Y) = \frac{n}{\sum_{i=1}^{n} P_i} . P_i = \frac{n}{\sum_{i=1}^{n} V_i} = 1$ (3) $D(P,r) = -E[log_1 r]$ $> -log_2(E[r]) = -log_2 1 = 0$

4 0 8

→ 何 ▶

э

Proof
$$
P(|x| \ge a) \le \frac{1}{a}E|x|
$$
 and
\n
$$
\frac{\partial \sum_{i=1}^{n} f(x_i) \ge 0}{\sqrt{1 - \frac{1}{a}(x_1 - x_2)}} = E[\frac{1}{a}(x_1 - x_2 - x_1)]
$$
\n
$$
\frac{\partial \sum_{i=1}^{n} f(x_i)}{\sqrt{n}}
$$
\n

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 72/88

イロト イ部 トイヨ トイヨト

重
Chebyshev's Inequality
\n
$$
P(|X + | \ge a) = P(|X + |^2 \ge a^2) \le \frac{1}{a^2} E(|X + |^2)
$$
\n
$$
= \frac{1}{a^2} Var(X)
$$
\n
$$
= \frac{1}{a^2} Var(X)
$$
\n
$$
= \frac{1}{a^2} Var(X)
$$
\n
$$
P(|X - \mu| \ge a) \le \frac{a^2}{a^2}
$$
\n
$$
= \frac{1}{a^2} \sigma^2
$$
\n
$$
= \frac{1}{a^2} Var(X_{n+1} | X_{n+1} | X_{
$$

Proof

店

 2990

イロトメ 御 トメ 差 トメ 差 トー

 \rightarrow \equiv \rightarrow э

← ロ → → ← 何 →

Proof

 2990

メロトメ 御 トメ 君 トメ 君 トー 君

4 0 F → 何 ▶ 化重新化重新

э

Proof

メロトメ 御 トメ 君 トメ 君 トリー君

Example: Normal Distribution^{-E(etx})
 ω $M_{\alpha F} \neq \chi$ $M_{\alpha G} \neq M_{\alpha G}$ θ $P(X>a)$ $\leq h \int_{\tau a} \frac{E(e^{tx})}{e^{ta}} = \int_{\tau a} h \int_{\tau a} f(t) dt$

Given $X \sim \mathcal{N}(\mu, \sigma^2)$, for arbitrary constant $a > \mu$, find the Chernoff bound on $P(X > a)$.
 $f(t) = \frac{M_{X}(t)}{a+a} = e^{\frac{t^2b^2t^2 + (H-a)t}{2}}$ $= e^{\frac{1}{2}\sigma^2 \int (t + \frac{\mu a}{\sigma^2})^2 - \frac{(\mu a)^2}{\sigma^2}}$ $\Rightarrow e^* = \frac{a\mu}{\sigma^2} > 0$ $\Rightarrow P(x>a) \leq f(t^2) = e^{-\frac{(a\mu)^2}{2\sigma^2}}$
 $\overbrace{(a-\mu+\epsilon)}^{\Rightarrow P(x>a) \leq f(t^2)}$
 $\leq e^{-\frac{(a\mu)^2}{2\sigma^2}}$

 200

Solution

店

 2990

メロトメ 御 トメ 君 トメ 君 ト

Hoeffding Bound

Theorem

Let the random variables X_1, X_2, \ldots, X_n be independent with $E(X_i) = \mu$, $\left(\frac{a}{2} \le X_i \le \frac{b}{2}$ *for each* $i = 1, \ldots, n$, where a, b are *constants.* Then for any $\epsilon > 0$,

$$
\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}\right|-\underline{\mu}\right|\geq\epsilon)\leq\boxed{2e^{-\frac{2n\epsilon^{2}}{(b-a)^{2}}}}.
$$

 $O(e^{-n \epsilon^2})$

4 **D F**

目

 200

イ母 ト イヨ ト イヨ トー

pplication: Parameter Estimation
 $\hat{r} \in \text{Spec} \hat{r} \in \hat{r}$

tead of predicting a single value $\hat{\beta}$ for the pinterval that is likely to contain the parameter

efinition
 $\frac{1-\delta \text{ confidence interval}}{-\epsilon, \hat{p}+\epsilon}$ such that
 $Pr(\hat{p} \in$ O - Application: Parameter Estimation

Festel Constant Constant

Instead of predicting a single value \hat{p} , for the parameter \hat{p} , we given Application: Parameter Estimation $\overbrace{P\cdot E} \leq P \leq \overbrace{P}^{\dagger} E \quad \overbrace{P} \quad \overbrace{P}^{\dagger} \leq E$ \hat{p} - ξ s $p \leq \hat{p}$ + ξ

single value \hat{p} for the parameter:
 \Rightarrow

single value \hat{p} for the parameter:
 \Rightarrow
 \Rightarrow e)

gle value $\hat{\beta}$ for the parameter:

(ontain the parameter:

($\hat{\beta}$) for a parameter ($\hat{\beta}$) s an i

($\hat{\beta}$) = $\hat{\beta}$ = $\hat{\beta}$) = $\hat{\beta}$

($\hat{\beta}$) = $\hat{\beta}$ = $\hat{\beta}$) = $\hat{\beta}$

($\hat{\beta}$) = $\hat{\beta}$ = $\hat{\beta$ Q I_{ξ} $\hat{\beta}$ P ξ ξ Instead of p
an interval
Definition
A 1 – δ cor
[$\hat{\rho}$ – $\epsilon, \hat{\rho}$ + an interval that is likely to contain the parameter: Definition A 1 δ confidence interval for a parameter *p* is an interval 8= 0. 05 . $[\hat{\rho} - \epsilon, \hat{\rho} + \epsilon]$ such that $Pr\left(\hat{p} \in [\hat{p} - \epsilon, \hat{p} + \epsilon]\right) \geq 1 - \delta.$ $\frac{p_{\Gamma}(\sqrt{2-p}+\epsilon)-\sum_{i=0}^{n}1-\delta_{i}}{p_{\Gamma}(\sqrt{2-p}+\epsilon)-\sum_{i=0}^{n}1-\epsilon}$ 200 Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 82 / 88

 $2 - 4W = 4 \cdot \pi \frac{1}{2} z$

Example: Monte Carlo Method for Estimation ⇡ = \Pr ($|w - \frac{2}{5}|$ $> \frac{2}{4}$) = P ($\frac{1}{h} \frac{1}{\frac{1}{h^{2}}z_{0}} = E(z) \frac{2}{5} \frac{4}{4}$) Hoeffdig's $\leq 2e^{-\frac{2n(\frac{\epsilon}{4})^2}{(1-\omega)^2}} = 2e^{-\frac{1}{2}n\epsilon^2}$ \Rightarrow { = { $8\frac{6}{5}$ } 16 => Pr (z = (2 - $\sqrt{\frac{8log d}{n}}$, 2 + $\sqrt{\frac{8log d}{n}}$) > 1-8

 Ω

イロト イ押ト イヨト イヨト

Example: Monte Carlo Method for Estimation π

Summary 1

イロメス 御き スミメス ミメー

÷.

Summary 2

Ziyu Shao (ShanghaiTech) Lecture 7: Monte Carlo Methods December 3, 2024 87 / 88

References

- Chapter 10 of BH
- Chapter 5 of BT

4 0 8 ← 一句 \rightarrow 重