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Discrete vs. Continuous
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Continuous Random Variables

Definition
An r.v. has a continuous distribution if its CDF is differentiable. We
also allow there to be endpoints (or finitely many points) where the
CDF is continuous but not differentiable, as long as the CDF is
differentiable everywhere else. A continuous random variable is a
random variable with a continuous distribution.
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Probability Density Function

Definition
For a continuous r.v. X with CDF F , the probability density function
(PDF) of X is the derivative f of the CDF, given by f (x) = F ′(x).
The support of X , and of its distribution, is the set of all x where
f (x) > 0.
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Illustration of PDF
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Illustration of PDF
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PDF vs. PMF
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PDF to CDF

Theorem
Let X be a continuous r.v. with PDF f . Then the CDF of X is given
by

F (x) =

∫ x

−∞
f (t) dt.
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Including or Excluding Endpoints
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Valid PDFs

Theorem
The PDF f of a continuous r.v. must satisfy the following two
criteria:

Nonnegative: f (x) ≥ 0;

Integrates to 1:
∫∞
−∞ f (x) dx = 1.
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Example: Logistic Distribution

The logistic distribution has CDF

F (x) =
ex

1 + ex
, x ∈ R.

Find the pdf.
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Example: Rayleigh Distribution

The Rayleigh distribution has CDF

F (x) = 1− e−x2/2, x > 0.

Find the pdf.
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PDF Properties
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Expectation of A Continuous R.V.

Definition
The expected value (also called the expectation or mean) of a
continuous r.v. X with PDF f is

E (X ) =

∫ ∞

−∞
xf (x) dx .
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Expectation via Survival Function

Theorem
Let X be a continuous and nonnegative r.v. Let F be the CDF of X ,
and G (x) = 1− F (x) = P(X > x). The function G is called the
survival function of X . Then

E (X ) =

∫ ∞

0

G (x)dx
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Proof
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LOTUS : Continuous

Theorem
If X is a continuous r.v. with PDF f and g is a function from R to
R, then

E (g (X )) =

∫ ∞

−∞
g (x) f (x) dx .
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Symmetry Property

Continuous r.v.s that are independent and identically distributed have
an important symmetry property: all possible rankings are equally
likely.

Theorem
Let X1, · · · ,Xn be i.i.d. from a continuous distribution. Then
P (Xa1 < · · · < Xan) = 1/n! for any permutation a1, . . . , an of
1, . . . , n.
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Proof
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Uniform Distribution

Definition
A continuous r.v. U is said to have the Uniform distribution on the
interval (a, b) if its PDF is

f (x) =

{
1

b−a
if a < x < b

0 otherwise

We denote this by U ∼ Unif (a, b).
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CDF of Uniform Distribution
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PDF & CDF
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Example

Suppose X1,X2, . . . ,Xn are i.i.d Unif(0, 1) random variables and let
Y = min(X1,X2, . . . ,Xn) be their minimum. Find E (Y ).

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 26 / 94



Outline

1 Probability Density Functions

2 Uniform Distribution

3 Basic Monte Carlo Simulation

4 Exponential Distribution

5 Normal Distribution

6 Central Limit Theorem

7 Moment Generating Functions

8 More Generating Functions

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 27 / 94



Universality of the Uniform

Given a Unif(0, 1) r.v., we can construct an r.v. with any
continuous distribution we want.

Conversely, given an r.v. with an arbitrary continuous
distribution, we can create a Unif(0, 1) r.v.

Other names:
▶ probability integral transform
▶ inverse transform sampling
▶ the quantile transformation
▶ the fundamental theorem of simulation

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 28 / 94



Universality of the Uniform

Theorem
Let F be a CDF which is a continuous function and strictly increasing
on the support of the distribution. This ensures that the inverse
function F−1 exists, as a function from (0, 1) to R. We then have the
following results.

1 Let U ∼ Unif (0, 1) and X = F−1(U). Then X is an r.v. with
CDF F .

2 Let X be an r.v. with CDF F . Then F (X ) ∼ Unif (0, 1).
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Proof: Universality of the Uniform
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Example: Universality with Logistic
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Histogram

Introduced by Karl Pearson

A graphical representation of the distribution of numerical data

An estimate of the probability distribution (density estimation)
of a continuous variable

To construct a histogram, the first step is to “bin” the range of
values: divide the entire range of values into a series of intervals
and then count how many values fall into each interval.

The bins are usually specified as consecutive, non-overlapping
intervals of a variable.
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Histogram & PDF

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 33 / 94



Example: Universality with Rayleigh
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Histogram & PDF
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Exponential Distribution

Definition
A continuous r.v. X is said to have the Exponential distribution with
parameter λ if its PDF is

f (x) = λe−λx , x > 0.

We denote this by X ∼ Expo(λ). The corresponding CDF is

F (x) = 1− e−λx , x > 0.
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Expo(1) PDF & CDF
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Memoryless Property

Definition
A distribution is said to have the memoryless property if a random
variable X from that distribution satisfies

P (X ≥ s + t|X ≥ s) = P (X ≥ t)

for all s, t > 0.
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Memoryless Property
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Minimum of independent Expos

Let X1, · · · ,Xn be independent, with Xj ∼ Expo (λj). Let
L = min(X1, · · · ,Xn). Show that L ∼ Expo (λ1 + · · ·+ λn), and
interpret this intuitively.
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Failure (Hazard) Rate Function

Definition
Let X be a continuous random variable with pdf f (t) and CDF
F (t) = P(X ≤ t). Then the failure (hazard) rate function r(t) is

r(t) =
f (t)

1− F (t)

.

r(t): an instantaneous failure rate of t-year-old-item

r(t) = λ for exponential distribution with parameter λ
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Why Exponential Distribution

Some physical phenomena, such as radioactive decay, truly do
exhibit the memoryless property.

The Exponential distribution is well-connected to other named
distributions (Poisson distribution)

The Exponential serves as a building block for more flexible
distributions, such as the Weibull distribution, that allow for a
wear-and-tear effect (where older units are due to break down)
or a survival-of-the-fittest effect (where the longer you’ve lived,
the stronger you get).
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Memoryless Property

Theorem
If X is a positive continuous random variable with the memoryless
property, then X has an Exponential distribution.
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Proof
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Geometric Distribution is also Memoryless

Exponential distribution as the “continuous counterpart” of the
Geometric distribution (or First Success Distribution)

Recall that the First Success distribution can be viewed as the
number of flips needed to get a “success.”

The distribution of the remaining number of flips is independent
of how many times we have flipped so far.

The same holds for the Exponential distribution, which is the
time until “success.”
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Standard Normal Distribution

Definition
A continuous r.v. Z is said to have the standard Normal distribution
if its PDF φ is given by

φ (z) =
1√
2π

e−z2/2, −∞ < z < ∞.

We write this as Z ∼ N (0, 1) since, as we will show, Z has mean 0
and variance 1.
The standard Normal CDF Φ is the accumulated area under the PDF:

Φ(z) =

∫ z

−∞
φ(t)dt =

∫ z

−∞

1√
2π

e−t2/2dt.
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PDF & CDF
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Property of Standard Normal PDF & CDF

φ for the standard Normal PDF, Φ for the CDF and Z for the
r.v.

Symmetry of PDF: φ(z) = φ(−z).

Symmetry of tail areas: Φ(z) = 1− Φ(−z).

Symmetry of Z and −Z : If Z ∼ N (0, 1), then −Z ∼ N (0, 1).

Mean is 0 and variance is 1.
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Verify the Validity of PDF
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Mean & Variance
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Normal Distribution

Definition
If Z ∼ N (0, 1), then

X = µ+ σZ

is said to have the Normal distribution with mean µ and variance σ2.
We denote this by X ∼ N (µ, σ2).
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Normal CDF and PDF

Theorem
Let X ∼ N (µ, σ2). Then the CDF of X is

F (x) = Φ

(
x − µ

σ

)
,

and the PDF of X is

f (x) = φ

(
x − µ

σ

)
1

σ
.
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68-95-99.7% Rule
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Sample Mean

Definition
Let X1, ...,Xn be i.i.d. random variables with finite mean µ and finite
variance σ2. The sample mean X̄n is defined as follows:

X̄n =
1

n

n∑
j=1

Xj .

The sample mean X̄n is itself an r.v. with mean µ and variance σ2/n.
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Central Limit Theorem

Theorem
As n → ∞,

√
n

(
X̄n − µ

σ

)
→ N (0, 1) in distribution.

In words, the CDF of the left-hand side approaches the CDF of the
standard Normal distribution.
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CLT Approximation

For large n, the distribution of X̄n is approximately N (µ, σ2/n).

For large n, the distribution of nX̄n = X1 + . . .+ Xn is
approximately N (nµ, nσ2).
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CLT Approximation: Example
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Poisson Convergence to Normal

Let Y ∼ Pois(n). We can consider Y to be a sum of n i.i.d. Pois(1)
r.v.s. Therefore, for large n,

Y ∼ N (n, n)
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Binomial Convergence to Normal

Let Y ∼ Bin(n, p). We can consider Y to be a sum of n i.i.d.
Bern(p) r.v.s. Therefore, for large n,

Y ∼ N (np, np(1− p)).
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Continuity Correction: De Moivre-Laplace

Approximation

P(Y = k) = P(k − 1

2
< Y < k +

1

2
)

≈ Φ(
k + 1

2
− np√

np(1− p)
)− Φ(

k − 1
2
− np√

np(1− p)
).

Poisson approximation: when n is large and p is small

Normal approximation: when n is large and p is around 1/2.
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De Moivre-Laplace Approximation

P(k ≤ Y ≤ l) = P(k − 1

2
< Y < l +

1

2
)

≈ Φ(
l + 1

2
− np√

np(1− p)
)− Φ(

k − 1
2
− np√

np(1− p)
).

Very good approximation when n ≤ 50 and p is around 1/2.
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Example

Let Y ∼ Bin(n, p) with n = 36 and p = 0.5.

An exact calculation: P(Y ≤ 21) = 0.8785

CLT approximation:
P(Y ≤ 21) ≈ Φ( 21−np√

np(1−p)
) = Φ(1) = 0.8413

DML approximation:
P(Y ≤ 21) ≈ Φ( 21.5−np√

np(1−p)
) = Φ(1.17) = 0.879
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History

1733: normal distribution was introduced by French
mathematician Abraham DeMoivre

Abraham DeMoivre (1667–1754): worked at betting shop,
computing the probability of gambling bets in all types of games
of chance. Also a close friend of Isaac Newton.

1809: rediscovered by German mathematician Karl Friedrich
Gauss, and then people call it the Gaussian distribution.
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History

During the mid-to-late 19th century, most statisticians started to
believe that the majority of data sets would have histograms
conforming to the Gaussian bell-shaped form.

Indeed, it came to be accepted that it was “normal” for any
well-behaved data set to follow this curve.

Following the lead of the British statistician Karl Pearson, we
also call “normal distribution”.
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Family of Normal Distribution

Chi-Square Distribution: Found by Karl Pearson

Student-t Distribution: Found by Student (William Gosset)

F-distribution: Found by Ronald Fisher
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Family of Normal Distribution
Given i.i.d. r.v.s Xi ∼ N (0, 1), Yj ∼ N (0, 1), i = 1, . . . , n,
j = 1, . . . ,m. Then we have

Chi-Square Distribution

χ2
n = X 2

1 + . . .+ X 2
n

Student-t Distribution

t =
Y1√

X 2
1+...+X 2

n

n

F-distribution:

F =
X 2
1+...+X 2

n

n
Y 2
1 +...+Y 2

m

m

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 69 / 94



Outline

1 Probability Density Functions

2 Uniform Distribution

3 Basic Monte Carlo Simulation

4 Exponential Distribution

5 Normal Distribution

6 Central Limit Theorem

7 Moment Generating Functions

8 More Generating Functions

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 70 / 94



Moment Generating Function

Definition
The moment generating function (MGF) of an r.v. X is
M(t) = E (etX ), as a function of t, if this is finite on some open
interval (−a, a) containing 0. Otherwise we say the MGF of X does
not exist.
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Bernoulli MGF
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Uniform MGF
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Why MGF is Important

The MGF encodes the moments of an r.v.

The MGF of an r.v. determines its distribution, like the CDF
and PMF/PDF.

MGFs make it easy to find the distribution of a sum of
independent r.v.s.
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Moments via Derivatives of the MGF

Theorem
Given the MGF of X , we can get the nth moment of X by evaluating
the nth derivative of the MGF at 0: E (X n) = M (n)(0).
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MGF Determines the Distribution

Theorem
The MGF of a random variable determines its distribution: if two
r.v.s have the same MGF, they must have the same distribution. In
fact, if there is even a tiny interval (−a, a) containing 0 on which the
MGFs are equal, then the r.v.s must have the same distribution.
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MGF of A Sum of Independent R.V.s

Theorem
If X and Y are independent, then the MGF of X + Y is the product
of the individual MGFs:

MX+Y (t) = MX (t)MY (t) .
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MGF for Binomial & Negative Binomial
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MGF of Location-scale Transformation

Theorem
If X has MGF M(t), then the MGF of a + bX is

E
(
et(a+bX )

)
= eatE

(
ebtX

)
= eatM (bt) .
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MGF for Normal
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Sum of Independent Poisson
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Sum of Independent Normals
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Sum is Normal
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Generating Functions

Three kinds of generating functions
▶ Probability Generating Functions (PGF): related to Z-transform
▶ Moment Generating Function (MGF): related to Laplace

transform
▶ Characteristic Functions (CF): related to Fourier transform
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Recall: Probability Generating Function

Definition
The probability generating function (PGF) of a nonnegative
integer-valued r.v. X with PMF pk = P(X = k) is the generating
function of the PMF. By LOTUS, this is

E
(
tX

)
=

∞∑
k=0

pkt
k .

The PGF converges to a value in [−1, 1] for all t in [−1, 1] since∑∞
k=0 pk = 1 and

∣∣pktk∣∣ ≤ pk for |t| ≤ 1.
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Motivation of Characteristic Function

Probability generating functions(PGF): handling
non-negative integral random variables

Moment generating functions(MGF): handling general
random variables

Some integrals of MGF may not be finite

Characteristic Function: equally useful with MGF and
guarantee finiteness
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Characteristic Function

Definition
The characteristic function of a random variable X is the function
ϕ : R → C defined by

ϕ(t) = E (e itX ), i =
√
−1.

Ziyu Shao (ShanghaiTech) Lecture 5: Continuous Random Variables October 31, 2024 88 / 94



Applications of Generating Functions

An easy way of calculating the moments of a distribution

Powerful tools for addressing certain counting and combinatorial
problems

An easy way of characterizing the distribution of the sum of
independent random variables

Tools for dealing with the distribution of the sum of a random
number of independent random variables.
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Applications of Generating Functions

Play a central role in the study of branching processes

Provide a bridge between complex analysis and probability

Play a key role in large deviations theory, that is, in studying the
asymptotic of tail probabilities of the form P(X ≥ c), when c is
a large number

Powerful tools for proving limit theorems, such as laws of large
numbers and the central limit theorem
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Summary 1
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Summary 2
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Summary 3
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