Lecture 4: Expectation

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

October 22, 2024

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- 3 Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Expectation of A Discrete R.V.

Definition

The expected value (also called the expectation or mean) of a discrete r.v. X whose distinct possible values are x_1, x_2, \cdots is defined by

$$E(X) = \sum_{j=1}^{\infty} x_j P(X = x_j)$$

If the support is finite, then this is replaced by a finite sum. We can also write

$$E(X) = \sum_{x} \underbrace{x}_{\text{value}} \underbrace{P(X = x)}_{\text{PMF at } x}$$

where the sum is over the support of X.

Distribution

Theorem

If X and Y are discrete r.v.s with the same distribution, then E(X) = E(Y) (if either side exists).

Linearity

The expected value of a sum of r.v.s is the sum of the individual expected values.

Theorem

For any r.v.s X, Y and any constant c,

$$E(X+Y)=E(X)+E(Y)$$

$$E(cX) = cE(X)$$

Monotonicity of Expectation

Theorem

Let X and Y be r.v.s such that $X \ge Y$ with probability 1. Then $E(X) \ge E(Y)$, with equality holding if and only if X = Y with probability 1.

Expectation via Survival Function

Theorem

Let X be a nonnegative integer-valued r.v. Let F be the CDF of X, and G(x) = 1 - F(x) = P(X > x). The function G is called the survival function of X. Then

$$E(X) = \sum_{n=0}^{\infty} G(n)$$

That is, we can obtain the expectation of X by summing up the survival function (or, stated otherwise, summing up tail probabilities of the distribution).

Proof

Law Of The Unconscious Statistician (LOTUS)

Theorem

If X is a discrete r.v. and g is a function from $\mathbb R$ to $\mathbb R$, then

$$E(g(X)) = \sum_{x} g(x) P(X = x)$$

where the sum is taken over all possible values of X.

Variance and Standard Deviation

Definition

The variance of an r.v. X is

$$Var(X) = E(X - EX)^{2}.$$

The square root of the variance is called the *standard deviation (SD)*:

$$SD(X) = \sqrt{Var(X)}.$$

Properties of Variance

- For any r.v. X, $Var(X) = E(X^2) (EX)^2$.
- Var(X + c) = Var(X) for any constant c.
- $Var(cX) = c^2 Var(X)$ for any constant c.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).
- $Var(X) \ge 0$ with equality if and only if P(X = a) = 1 for some constant a.

Properties of Variance

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- 4 Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fur

Story: Geometric Distribution

Consider a sequence of independent Bernoulli trials, each with the same success probability $p \in (0,1)$, with trials performed until a success occurs. Let X be the number of **failures** before the first successful trial. Then X has the Geometric distribution with parameter p; we denote this by $X \sim Geom(p)$.

Geometric PMF

Theorem

If $X \sim \text{Geom}(p)$, then the PMF of X is

$$P(X=k)=q^kp$$

for k = 0, 1, 2, ..., where q = 1 - p.

Memoryless Property

Theorem

If $X \sim \text{Geom}(p)$, then for any positive integer n,

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$

for k = 0, 1, 2, ...

Memoryless Property

Theorem

Suppose for any positive integer n, discrete random variable X satisfies

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$

for $k = 0, 1, 2, ..., then X \sim Geom(p)$.

Memoryless Property

Theorem

Geometric distribution is the one and the only one discrete distribution that is memoryless.

First Success Distribution

Definition

In a sequence of independent Bernoulli trials with success probability p, let Y be the number of trials until the first successful trial, including the success. Then Y has the First Success distribution with parameter p; we denote this by $Y \sim FS(p)$.

Example: Geometric & First Success Expectation

Let $X \sim Geom(p)$ and $Y \sim FS(p)$, find E(X) and E(Y).

Story: Negative Binomial Distribution

In a sequence of independent Bernoulli trials with success probability p, if X is the number of failures before the r^{th} success, then X is said to have the Negative Binomial distribution with parameters r and p, denoted $X \sim NBin(r, p)$.

Negative Binomial PMF

Theorem

If $X \sim NBin(r, p)$, then the PMF of X is

$$P(X = n) = \binom{n+r-1}{r-1} p^r q^n$$

for $n = 0, 1, 2 \cdots$, where q = 1 - p.

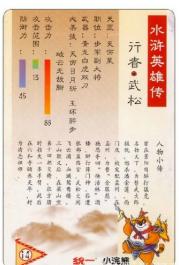
Geometric & Negative Binomial

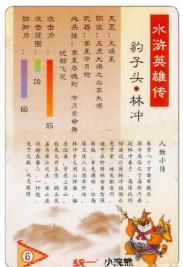
Theorem

Let $X \sim \mathrm{NBin}(r, p)$, viewed as the number of failures before the rth success in a sequence of independent Bernoulli trials with success probability p. Then we can write $X = X_1 + \cdots + X_r$ where the X_i are i.i.d. $\mathrm{Geom}(p)$.

Example: Expectation

Let $X \sim NBin(r, p)$, find E(X).



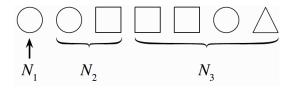


108

Model: Coupon Collector

Suppose there are n types of toys, which you are collecting one by one, with the goal of getting a complete set. When collecting toys, the toy types are random (as is sometimes the case, for example, with toys included in cereal boxes or included with kids' meals from a fast food restaurant). Assume that each time you collect a toy, it is equally likely to be any of the n types. Let N denote the number of toys needed until you have a complete set. Find E(N) and Var(N).

Solution: Coupon Collector



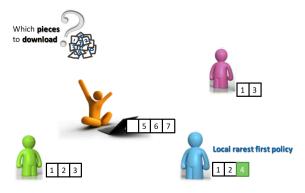
Solution: Coupon Collector

Application: Peer-to-Peer System

- Target file is decomposed into *n* pieces.
- Each peer randomly downloads pieces and uploads pieces from its neighbors.
- $\Theta(n \ln n)$ downloads to complete the downloading file.
- The last block problem: missing the last piece (stop at 99% downloading progress)

Application: Peer-to-Peer System

- Solution adopted by BitTorrent:
 - tries to download a block that is least replicated among its neighbors
 - maximize the diversity of content in the system, i.e., make the number of replicas of each block as equal as possible.



Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- 4 Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Properties of Indicator R.V.

Let A and B be events. Then the following properties hold.

- $(I_A)^k = I_A$ for any positive integer k.
- $I_{A^c} = 1 I_A$.

Fundamental Bridge Between Probability and Expectation

Theorem

There is a one-to-one correspondence between events and indicator r.v.s., and the probability of an event A is the expected value of its indicator r.v. I_A :

$$P(A) = E(I_A).$$

Example: Booler's Inequality

For any n events A_1, A_2, \ldots, A_n ,

$$P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i)$$

Solution: Booler's Inequality

Example: Inclusion-Exclusion Formula

For any events A_1, \ldots, A_n :

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k})$$
$$- \cdots + (-1)^{n+1} P(A_{1} \cap \cdots \cap A_{n}).$$

Solution: Inclusion-Exclusion Formula

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Moments of Indicator Methods

- Given *n* events A_1, \ldots, A_n and indicators $I_j, j = 1, \ldots, n$.
- $X = \sum_{i=1}^{n} I_{j}$: the number of events that occur
- $\binom{X}{2} = \sum_{i < j} I_i I_j$: the number of pairs of distinct events that occur
- $E(\binom{X}{2}) = \sum_{i < j} P(A_i \cap A_j)$
 - $\blacktriangleright E(X^2) = 2\sum_{i < j} P(A_i \cap A_j) + E(X).$
 - ► $Var(X) = 2 \sum_{i < j} P(A_i \cap A_j) + E(X) (E(X))^2$.

Moments of Binomial Random Variables

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Poisson Distribution

Definition

An r.v. X has the *Poisson distribution* with parameter λ if the PMF of X is

$$P(X = k) = \frac{e^{-\lambda} \lambda^{k}}{k!}, \ k = 0, 1, 2, \cdots$$

We write this as $X \sim \text{Pois}(\lambda)$.

Example: Poisson Expectation & Variance

Poisson Approximation

Let A_1, A_2, \dots, A_n be events with $p_j = P(A_j)$, where n is large, the p_j are small, and the A_j are independent or weakly dependent. Let

$$X = \sum_{j=1}^{n} I(A_j)$$

count how many of the A_j occur. Then X is approximately $\operatorname{Pois}(\lambda)$, with $\lambda = \sum_{j=1}^n p_j$.

Example: Birthday Problem Revisited

Poisson & Binomial

- Poisson \implies Binomial : **conditioning**
- Binomial ⇒ Poisson: taking a limit

Sum of Independent Poissons

Theorem

If $X \sim \text{Pois}(\lambda_1)$, $Y \sim \text{Pois}(\lambda_2)$, and X is independent of Y, then $X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$.

Poisson Given A Sum of Poissons

Theorem

If $X \sim \operatorname{Pois}(\lambda_1)$, $Y \sim \operatorname{Pois}(\lambda_2)$, and X is independent of Y, then the conditional distribution of X given X + Y = n is $\operatorname{Bin}(n, \lambda_1/(\lambda_1 + \lambda_2))$.

Poisson Approximation to Binomial

Theorem

If $X \sim \operatorname{Bin}(n,p)$ and we let $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains fixed, then the PMF of X converges to the $\operatorname{Pois}(\lambda)$ PMF. More generally, the same conclusion holds if $n \to \infty$ and $p \to 0$ in such a way that np converges to a constant λ .

Proof

Visitors to A Website

The owner of a certain website is studying the distribution of the number of visitors to the site. Every day, a million people independently decide whether to visit the site, with probability $p=2\times 10^{-6}$ of visiting. Give a good approximation for the probability of getting at least three visitors on a particular day.

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Typical Distance Measures

- Total Variation Distance
- Kullback–Leibler Divergence
- Jensen–Shannon Divergence
- Bhattacharyya Distance
- Wasserstein Distance (or called "Kantorovich–Rubinstein")

Total Variation Distance

- Distance measure between two probability distributions
- Apply such measure to characterize the accuracy of Poisson approximation

Definition

The **total variation distance** between two distributions μ and ν on a countable set Ω is

$$d_{TV}(\mu, \nu) = \| \mu - \nu \|_{TV}$$

= $\frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$

Example

Let μ be the distribution with $\mu(1) = p$ and $\mu(0) = 1 - p$. Let ν be a Poisson distribution with mean p. Then we have $d_{TV}(\mu, \nu) \leq p^2$.

The Law of Small Numbers

Theorem

Given independent random variables Y_1, \dots, Y_n such that for any $1 \le m \le n$, $\mathbb{P}(Y_m = 1) = p_m$ and $\mathbb{P}(Y_m = 0) = 1 - p_m$. Let $S_n = Y_1 + \dots + Y_n$. Suppose

$$\sum_{m=1}^{n} p_m \to \lambda \in (0, \infty) \quad \text{as } n \to \infty,$$

and

$$\max_{1 \le m \le n} p_m \to 0 \quad \text{as } n \to \infty,$$

then

$$d_{TV}(S_n, Poi(\lambda)) \to 0$$
 as $n \to \infty$.

Gap of Poisson Approximation

• A bound on the gap due to Hodges and Le Cam (1960):

$$d_{TV}(S_n, Poi(\lambda)) \leq \sum_{m=1}^n p_m^2,$$

 by Stein-Chen method (C.Stein 1987) we can have a tighter bound on the gap:

$$d_{TV}(S_n, Poi(\lambda)) \leq \min(1, \frac{1}{\lambda}) \sum_{m=1}^n p_m^2.$$

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Probability Generating Function

Definition

The probability generating function (PGF) of a nonnegative integer-valued r.v. X with PMF $p_k = P(X = k)$ is the generating function of the PMF. By LOTUS, this is

$$E(t^X) = \sum_{k=0}^{\infty} p_k t^k.$$

The PGF converges to a value in [-1,1] for all t in [-1,1] since $\sum_{k=0}^{\infty} p_k = 1$ and $\left| p_k t^k \right| \leq p_k$ for $|t| \leq 1$.

Example: Generating Dice Probabilities

Let X be the total from rolling 6 fair dice, and let X_1, \ldots, X_6 be the individual rolls. What is P(X = 18)?

Solution

PGF and Moments

Let X be a nonnegative integer-valued r.v. with PMF $p_k = P(X = k)$, and the PGF of X is $g(t) = \sum_{k=0}^{\infty} p_k t^k$, we have

- $E(X) = g'(t)|_{t=1}$
- $E(X(X-1)) = g''(t)|_{t=1}$

PGF and Moments

PGF and Moments

Binomial PMF

Binomial Moments

Suppose a coin with probability p for heads is tossed repeatedly, and we obtain a sequence of H and T (H denotes Head and T denotes Tail). Let N denote the number of toss to observe the first occurrence of the pattern "HH". Find E(N) and Var(N).

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Probability Method

- Paul Erdős initiated this method: Erdős Method
- Widely used in information theory & combinatorics & theoretical computer science
- Main idea: to prove the existence of a structure with certain properties using probability or expectation

Principle I

- First we construct an appropriate probability space of structures.
- Then we show that a randomly chosen element in this space has the desired properties with positive probability

Theorem (The Possibility Principle)

Let A be the event that a randomly chosen object in a collection has a certain property. If P(A) > 0, then there exists an object with such property.

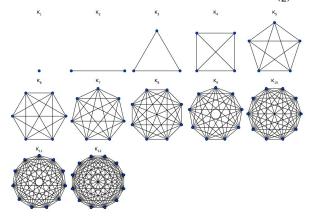
Principle II

Theorem (The Good Score Principle)

Let X be the score of a randomly chosen object. If $E(X) \ge c$, then there exists an object with a score of at least c.

Example: Graph Coloring

- Complete graph (clique): a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.
- Complete graph K_n : a graph with n nodes and $\binom{n}{2}$ edges.



Example: Graph Coloring

Theorem

Given a complete graph K_n $(n \ge 3)$, if $\binom{n}{m} 2^{-\binom{m}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_m subgraph (1 < m < n).

Testing Polynomial Identities

- Randomized algorithms can be dramatically more efficient than their best known deterministic counterparts.
- Input two polynomials Q and R over n variables, with coefficients in some field, and decides whether $Q \equiv R$.
- Example: $Q(x_1, x_2) = (1 + x_1)(1 + x_2)$, $R(x_1, x_2) = 1 + x_1 + x_2 + x_1x_2$.
- *n*-variable polynomial $\prod_{i=1}^{n} (x_i + x_{i+1})$ expands into $O(2^n)$ monomials.

The Schwartz-Zippel Algorithm

- A Monte Carlo algorithm with a bounded probability of false positive and no false negative.
- Input polynomial $M(x_1, ..., x_n)$ and test whether $M \equiv 0$ (M = Q R).
- Assign values r_1, \ldots, r_n chosen independently and uniformly at random from a finite set S to x_1, \ldots, x_n .
- Test if $M(r_1, ..., r_n) = 0$, outputting "Yes" if so and "No" otherwise.
- If "No", then $M \not\equiv 0$.
- If "Yes", it is possible that $M \not\equiv 0$ but r_1, \ldots, r_n happens to be a zero of M.

Schwartz-Zippel Lemma

Lemma

Let $M \in F(x_1, x_2, ..., x_n)$ be a non-zero polynomial of total degree $d \ge 0$ over a field F. Let S be a finite subset of F and let $r_1, r_2, ..., r_n$ be selected at random independently and uniformly from S. Then

$$P[M(r_1,r_2,\ldots,r_n)=0]\leq \frac{d}{|S|}.$$

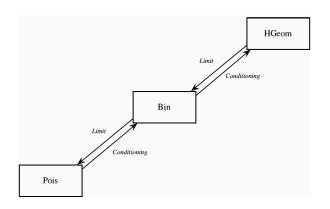
Remarks

- If we take the set S to have cardinality at least twice the degree of our polynomial $(|S| \ge 2d)$, we can bound the probability of error (false positive) by 1/2.
- This can be reduced to any desired small number by repeated trials.

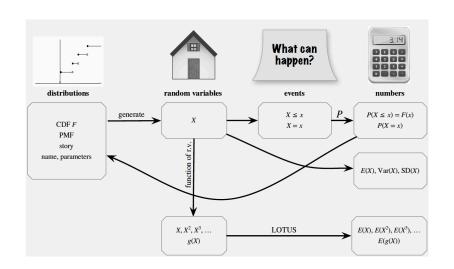
Summary 1

	With replacement	Without replacement
Fixed number of trials	Binomial	Hypergeometric
Fixed number of successes	Negative Binomial	Negative Hypergeometric

Summary 2



Summary 3



References

- Chapters 4 & 6 of **BH**
- Chapter 2 of **BT**