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Expectation of A Discrete R.V.

Definition

The expected value (also called the expectation or mean) of a
discrete r.v. X whose distinct possible values are xq, x>, - - - is defined
by

X)ZXJ X = x))

If the support is finite, then this is replaced by a finite sum. We can

also write
E =S x P(X=x
(X) ; value P(MF t )

where the sum is over the support of X.
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Distribution

Theorem

If X and Y are discrete r.v.s with the same distribution, then
E(X) = E(Y) (if either side exists).
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Linearity

The expected value of a sum of r.v.s is the sum of the individual
expected values.

Theorem

For any r.v.s X, Y and any constant c,

E(X+Y) = EX)+ EY)
E(cX) = cE(X)
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Monotonicity of Expectation

Theorem

Let X and Y be r.v.s such that X > Y with probability 1. Then

E(X) > E(Y), with equality holding if and only if X =Y with
probability 1.
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Expectation via Survival Function

Theorem

Let X be a nonnegative integer-valued r.v. Let F be the CDF of X,
and G(x) =1 — F(x) = P(X > x). The function G is called the
survival function of X. Then

E(X)=)_G(n)

n=0

That is, we can obtain the expectation of X by summing up the
survival function (or, stated otherwise, summing up tail probabilities
of the distribution).
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Proof
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Law Of The Unconscious Statistician (LOTUS)

Theorem
If X is a discrete r.v. and g is a function from R to R, then

E(g(X) = Zg x) P(X

where the sum is taken over all possible values of X.
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Variance and Standard Deviation

Definition
The variance of an r.v. Xis

Var (X) = E(X — EX)*.

The square root of the variance is called the standard deviation (SD):

SD (X) = v/ Var (X).
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Properties of Variance

e For any rv. X, Var (X) = E(X?) — (EX)*.

e Var(X+ ¢) = Var(X) for any constant c.

e Var(cX) = Var(X) for any constant c.

o If X and Y are independent, then
Var(X + Y) = Var(X) + Var(Y).

e Var(X) > 0 with equality if and only if P(X = a) = 1 for some
constant a.
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Story: Geometric Distribution

Consider a sequence of independent Bernoulli trials, each with the
same success probability p € (0, 1), with trials performed until a
success occurs. Let X be the number of failures before the first
successful trial. Then X has the Geometric distribution with
parameter p; we denote this by X ~ Geom(p).
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Geometric PMF

Theorem
If X ~ Geom(p), then the PMF of X is

PX=K) = ¢'p
fork=0,1,2,..., whereq=1— p.
v
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Memoryless Property

Theorem
If X ~ Geom(p), then for any positive integer n,

P(X > n+ kX > k) = P(X> n)

fork=0,1,2,....
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Memoryless Property

Theorem

Suppose for any positive integer n, discrete random variable X
satisfies
P(X > n+ kX > k)= P(X> n)

for k=10,1,2,..., then X ~ Geom(p).
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Memoryless Property

Theorem

Geometric distribution is the one and the only one discrete
distribution that is memoryless.
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First Success Distribution

Definition

In a sequence of independent Bernoulli trials with success probability
p, let Y be the number of trials until the first successful trial,
including the success. Then Y has the First Success distribution with
parameter p; we denote this by Y ~ FS(p).

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024 20/91



Example: Geometric & First Success Expectation

Let X ~ Geom(p) and Y ~ FS(p), find E(X) and E(Y).
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Story: Negative Binomial Distribution

In a sequence of independent Bernoulli trials with success probability
p, if X is the number of failures before the r" success, then X is said
to have the Negative Binomial distribution with parameters r and p,
denoted X ~ NBin(r, p).
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Negative Binomial PMF

Theorem
If X ~ NBin(r, p), then the PMF of X is

n+r—1 rn
P(XZH)Z( 1 )pq

forn=20,1,2---, whereq=1—p.
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Geometric & Negative Binomial

Theorem

Let X ~ NBin(r, p), viewed as the number of failures before the rth
success in a sequence of independent Bernoulli trials with success

probability p. Then we can write X = X + - - - + X, where the X; are
i.i.d. Geom(p).
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Example: Expectation

Let X ~ NBin(r, p), find E(X).

Ziyu Shao (ShanghaiTech)

Lecture 4: Expectation



Example

Wi

_»,1

Ko higER WL
aﬁmmmg@ a8y

g

Ziyu Shao (ShanghaiTech)

Lecture 4: Expectation



LKEDTE WA
FhReEa

o
=

LR

i E g Ll |
RERE WP
HE NN @
C# HuduE .
HE S Aww
FHAT* Kok, &
& FLwrd: uw
BEoles HLHE
FiHE {Nwes
W Tatuiy g I
Lob -8 T S BT
TEK | wthew g
SRR £ A
REQRE

27 /91

October 22, 2024

Expectation

o
=
=l
=1
9]
@
=

Ziyu Shao (ShanghaiTech)



L

bl kg
CEL E B ]
ATk wWeLT

SN LRt TS g

wed HHdeT |
HeruwmtamEn
Bal Hawe AF
E L Rt e
Lt REILE &
HEN %I,
WD EAw g
MEH AN S
H¥uimdl | TR |
wWi-wg fwEir

Lecture 4: Expectation

Ziyu Shao (ShanghaiTech)



Example:

108

Ziyu Shao (ShanghaiTech)

Lecture 4: Expectation



Example:
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Model: Coupon Collector

Suppose there are n types of toys, which you are collecting one by
one, with the goal of getting a complete set. When collecting toys,
the toy types are random (as is sometimes the case, for example,
with toys included in cereal boxes or included with kids' meals from a
fast food restaurant). Assume that each time you collect a toy, it is
equally likely to be any of the n types. Let N denote the number of
toys needed until you have a complete set. Find E(N) and Var(N).
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Solution: Coupon Collector
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Application: Peer-to-Peer System

@ Target file is decomposed into n pieces.

@ Each peer randomly downloads pieces and uploads pieces from
its neighbors.

@ O(nln n) downloads to complete the downloading file.

@ The last block problem: missing the last piece (stop at 99%
downloading progress)
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Application: Peer-to-Peer System
@ Solution adopted by BitTorrent:

» tries to download a block that is least replicated among its
neighbors

» maximize the diversity of content in the system, i.e., make the
number of replicas of each block as equal as possible.

é.
SLLTTT
Local rarest first policy
BER

-
Which pieces /
to download
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Properties of Indicator R.V.

Let A and B be events. Then the following properties hold.
@ (Ia)" = I, for any positive integer k.
Q Ine=1—1I,.
Q g = lals.
Q lavs=Ia+Ig— lalg.
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Fundamental Bridge Between Probability and
Expectation

Theorem

There is a one-to-one correspondence between events and indicator
r.v.s, and the probability of an event A is the expected value of its
indicator r.v. l:

P(A) = E(1a).
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Example: Booler's Inequality

For any n events Ay, Ay, ... A,
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Example: Inclusion-Exclusion Formula

For any events Ay, ... A,
P (U A,-) =D PA) =D PANA)+ D PANANA)
i=1 i i<j i<j<k

e (CD)™P(ALN N A,
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Solution: Inclusion-Exclusion Formula
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Moments of Indicator Methods

e Given nevents Aq,..., A, and indicators /;, j=1,...,n.
o X=>", I the number of events that occur

o (3) =X, il the number of pairs of distinct events that occur

° E((3) =i P(ANA)
> E(X?) =23 P(AINA) + E(X).
> Var(X) =23, P(AiN A)) + E(X) — (E(X))*.
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Moments of Binomial Random Variables
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Poisson Distribution

Definition
An r.v. X has the Poisson distribution with parameter \ if the PMF

of Xis ok
P(X=k) = eT k=0,1,2,--

We write this as X ~ Pois(\).
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Example: Poisson Expectation & Variance
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Poisson Approximation

Let Ay, Ay, -+, A, be events with p; = P(A;), where n is large, the p;
are small, and the A; are independent or weakly dependent. Let

szn:/(Aj)

count how many of the A; occur. Then X is approximately Pois(\),
with A =37 p;.
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Example: Birthday Problem Revisited
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Poisson & Binomial

@ Poisson =— Binomial : conditioning
@ Binomial = Poisson: taking a limit
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Sum of Independent Poissons

Theorem
If X ~ Pois(A1), Y ~ Pois(X2), and X is independent of Y, then
X+ Y ~ Pois(A1 + \2).
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Poisson Given A Sum of Poissons

Theorem

If X ~ Pois(A1), Y ~ Pois(X2), and X is independent of Y, then the
conditional distribution of X given X+ Y = n is Bin(n, A1 /(A1 + A2)).
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Poisson Approximation to Binomial

Theorem

If X ~ Bin(n, p) and we let n — oo and p — 0 such that A = np

remains fixed, then the PMF of X converges to the Pois(\) PMF.
More generally, the same conclusion holds if n — oo and p — 0 in
such a way that np converges to a constant \.
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Proof
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Visitors to A Website

The owner of a certain website is studying the distribution of the
number of visitors to the site. Every day, a million people
independently decide whether to visit the site, with probability

p =2 x 107 of visiting. Give a good approximation for the
probability of getting at least three visitors on a particular day.
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Typical Distance Measures

@ Total Variation Distance
@ Kullback—Leibler Divergence
@ Jensen—Shannon Divergence
e Bhattacharyya Distance

@ Wasserstein Distance (or called “Kantorovich—Rubinstein")
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Total Variation Distance

@ Distance measure between two probability distributions

@ Apply such measure to characterize the accuracy of Poisson
approximation
Definition
The total variation distance between two distributions 1 and v on
a countable set Q is

drp,v) = p—v v

NGl

xEQ
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Example

Let 1 be the distribution with p(1) = pand u(0) =1 —p. Let v be a
Poisson distribution with mean p. Then we have dr{u,v) < p?.
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The Law of Small Numbers

Theorem

Given independent random variables Y1, --- , Y, such that for any
1<m<n P(Yy,=1)=pmand P(Y,, —0)—1—pm Let
S.=Y1+---+Y,. Suppose

me—>>\€(0,oo) as n— oo,

m=1

and

max p, — 0 asn— oo,
1<m<n

then

drv(Sn, Poi(A)) — 0 as n — oo.
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Gap of Poisson Approximation

@ A bound on the gap due to Hodges and Le Cam (1960):

dry(Sn, Poi(N)) < ) P

m=1

@ by Stein-Chen method (C.Stein 1987) we can have a tighter
bound on the gap:

dr(Sn, Poi(\)) < min(1, %) mz_:l ..
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Probability Generating Function

Definition

The probability generating function (PGF) of a nonnegative
integer-valued r.v. X with PMF p, = P(X = k) is the generating
function of the PMF. By LOTUS, this is

E(E) =Y pett

The PGF converges to a value in [—1, 1] for all tin [—1,1] since
> ropk=1and |pct"| < py for [t] < 1.
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Example: Generating Dice Probabilities

Let X be the total from rolling 6 fair dice, and let Xi, ..., X be the
individual rolls. What is P(X = 18)7

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024 66 /91



Solution
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PGF and Moments

Let X be a nonnegative integer-valued r.v. with PMF p, = P(X = k),
and the PGF of Xis g(t) = 3.2, pkt*, we have

o E(X) = g(t)]e=x
o E(X(X=1)) =g"(t)[=1
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PGF and Moments
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PGF and Moments
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Binomial PMF
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Binomial Moments
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Example: Pattern Matching

Suppose a coin with probability p for heads is tossed repeatedly, and
we obtain a sequence of H and T (H denotes Head and T denotes
Tail). Let N denote the number of toss to observe the first
occurrence of the pattern “HH". Find E(N) and Var(N).
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Probability Method

@ Paul Erdos initiated this method: Erdds Method

@ Widely used in information theory & combinatorics & theoretical
computer science

@ Main idea: to prove the existence of a structure with certain
properties using probability or expectation
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Principle |

e First we construct an appropriate probability space of structures.

@ Then we show that a randomly chosen element in this space has
the desired properties with positive probability

Theorem (The Possibility Principle)

Let A be the event that a randomly chosen object in a collection has
a certain property. If P(A) > 0, then there exists an object with such

property.

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024 80/91



Principle Il

Theorem (The Good Score Principle)

Let X be the score of a randomly chosen object. If E(X) > c, then
there exists an object with a score of at least c.
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Example: Graph Coloring

e Complete graph (clique): a simple undirected graph in which
every pair of distinct vertices is connected by a unique edge.

e Complete graph K,: a graph with n nodes and (}) edges.

Ky K Ko Ks

o (5
£
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Example: Graph Coloring

Theorem

Given a complete graph K, (n > 3), if (") 2-()+1 < 1, then it is
possible to color the edges of K,, with two colors so that it has no
monochromatic K, subgraph (1 < m < n).
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Testing Polynomial Identities

@ Randomized algorithms can be dramatically more efficient than
their best known deterministic counterparts.

@ Input two polynomials @ and R over n variables, with
coefficients in some field, and decides whether @ = R.

o Example: Q(x1,x) = (1 + x1)(1 + x2),
R(Xl,X2) =1 =+ X1 + Xo + X1 X0.

@ n-variable polynomial []._;(x; + xi11) expands into O(2")
monomials.
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The Schwartz-Zippel Algorithm

@ A Monte Carlo algorithm with a bounded probability of false
positive and no false negative.

@ Input polynomial M(xi, ..., x,) and test whether M =0

(M=Q-R).

@ Assign values ry, ..., r, chosen independently and uniformly at
random from a finite set S to xq, ..., X,.

o Test if M(r,...,r,) =0, outputting “Yes" if so and “No”
otherwise.

e If “No”, then M # 0.

o If “Yes”, it is possible that M £ 0 but ry, ..., r, happens to be a
zero of M.
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Schwartz-Zippel Lemma

Lemma

Let M € F(xi, Xz, ...,x,) be a non-zero polynomial of total degree

d > 0 over a field F. Let S be a finite subset of F and let ri, ry, ..., r,
be selected at random independently and uniformly from S. Then

d
PM(ri,r2, ..., 1) =0] < Gk
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Remarks

@ If we take the set S to have cardinality at least twice the degree
of our polynomial (|S| > 2d), we can bound the probability of
error (false positive) by 1/2.

@ This can be reduced to any desired small number by repeated
trials.
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Summary 1

With replacement Without replacement

Fixed number of trials Binomial Hypergeometric
Fixed number of successes Negative Binomial Negative Hypergeometric
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Summary 2

HGeom

Conditioning

Conditioning

Pois
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@ Chapters 4 & 6 of BH
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