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Expectation of A Discrete R.V.

Definition

The expected value (also called the expectation or mean) of a
discrete r.v. X whose distinct possible values are xq, x>, - - - is defined
by

09 = 3 (GP0t=x)

If the support is finite, then this is replaced by a finite sum. We can

also write
E =S x P(X=x
(X) ; value P(MF t )

where the sum is over the support of X.
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Distribution Cl.f]

L
‘f Eix) :ELY/ ﬂP X~y

—_

Theorem

If X and Y are discrete r.v.s with the same distribution, then
E(X) = E(Y) (if either side exists).

(oo  wy s
X, f E(X/:E,(\//
? Wi o}é ~§o
\(ﬂ [f lo et
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Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024 5/91



Linearity

The expected value of a sum of r.v.s is the sum of the individual
expected values.

Theorem
For any r.v.s X, Y and any co

E(X+Y):E(X)®

E(cX) = cE(X)
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Monotonicity of Expectation

Z=x-y. FER) g
/, (22/ O_> . Vw
=EIx)- Eoy
Theorem ' /
Let X and Y be r.v.s such that X > Y with probability 1) Then
E(X) > E(Y), with equality holding if and only if X = Y with

probability 1.

7
"2 g 2 By )

'\]E X Gd Y e lmﬁmwa
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Expectation via Survival Function

[ Fox)= PUX <50
distrimation,
Theorem
Let X be a sflonnegative inte, .v. Let F be the CDF of X
and G =1- > x)I The function G is called the

survi al functlon of X. Then

P(X>n)
\\,//7/ - = (x> s
That is, we can obtain the expectation of X by summ

survival function (or, stated otherwise, summing up tail probab///t/es
of the distribution). ).

=
=3 plLxZm)
m=|

-_
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Law Of The Unconscious Statistician (LOTUS)

-—

ﬁ(K) s oo
(gix)= -
Theorem M S
If X is a discrete r.v. and g is a function from R to R, then

g(x) P(X=x)

= T T

where the sum is taken over all possible values o

— dk%ﬂfg 29
°f gu0

v

K —
FGu0) = ?_‘ y.p (JLX):gj

-
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Variance and Standard Deviation £

X

?/

Definition
The variance of an r.v. Xis

Ver (x/ < Varcy )

Var (X) = E(X — EX)*.

The square root of the variance is called the standard deviation (SD):

SD (X) = v/ Var (X).
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Properties of Variance , 2
Ex) Z(EX)

-
e For any r.v. X, Var(X) :@ (EX)*.

e Var(X+ ¢) = Var(X) for any constant c.

o Var(eX) = @Var(X) for any constant c.

o If X and Y are independent, then

Var(X+ Y) = Var(X) + Var(Y).

ar]X! > 0 with equality if and only if P(X = a) = 1 for some
constant a.
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Geometric Distribution Q)/O/ k=02

trials -
el als ?(,X:IZ) - Cf-P)h-P
Tt K tiws K

- k Z [
bt etV - 4P ¢ 22r7)
Consider a sequence of independent Bernoulli trials, each with the
same success probability p € (0,1), with trials perf until a

success occurs. Let X be the number of failures before the first
successful trial. Then X has the Geometric distribution with
parameter p; we denote this by X ~ Geom(p).

-
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. Method ( : e NV - -
Geometric PMF™ ™ 1" B0 = 2= ppock) =5 £ 4%
Method 2+  P(X20)=| ; !

b2 PiX2k ) = (- p()«k)

~ b P(X<h-1) :4-;/;0@) Pr T ok
)= =l
Theorem -*;‘:Lz P Ib; 5:"9;
If X ~ Geom(p ) then ‘the PMF ofX is

= > =P
\/ (/FT(X = k)

fork=0,1,2,..., whereqg=1— p. ’

. Se o
= E(X) = E/?()(?k) = EP(%Z&)

o0
S U S
k= = - 2

—_—

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024 16 /91



1% B0 P(X2a|Xz0) =piX24)

Memoryless Property /

29 k2 P X2tk | 2tk )
POCHE, )2k pxo i)

pPiX2k) = on )
P(Xk )

‘Lm-k
1k
P(X> n+ kX > k)= P(X>n) g7 \/

00 =Pz

K=-90 -, N=22o

Theorem
If X ~ Geom(p), then for any positive integer n, =

>
PUxze0 [X280) <P (X2 20)

S
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|DA S )/ k— > _ P(X;Mk)
Memoryless Property POcmb(xor) = oo = Pen)

= Pixzack) <P X20) . P X2l
¥ > P = P oo
> p(x20) =) et
Theorem 37 G‘én):P(’XZ"J ;, G) mpues,

Suppose for any positive integer n, discrete random variable X _ /
satisfies ’

lP(XZ n+k|X2 k):P(XZn) G(l)ipcx)/l)

for k=/0,1,2,).., then X ~ @om@ ’@55759

i b

40 Gt ) 2 Gl G ) N =p=(9&a2) '«‘ﬁtg
_ :il. ;
22 kel D @)= crcuy = &y =7* ’

S Gl = & 29T D Pu2n) =" <)

—
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Memoryless Property

Onen.

P X2tk |xok) —p (32,

Theorem
Geometric distribution is the one and the only o

distribution that is memoryless.

discrete

\J

Ft’?‘t Succa(% O%trihar o
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First Success Distribution

@ ?l%c:i XA Geompp)

¥ " Fsg
Definition \f: I+ X

In a sequence of independent Bernoulli trials with success probability
p, let Y be the number of trials until the first successful trial,
‘including the success. Then Y has the First Success distribution with
parameter p; we denote this by Y(CFS(p))_ -

se % Toxctbaole (iéf /) > Gesndp )
owrs W?ﬂ/

Su Prrt 7)767
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Example: Geometric & First Success Expectation

O Pixak )¢t
\
\ E(X) = /T;Z ;F/,./
eom(p) and Y ~ FS(p), find E(X) and E(Y).
D
27 Y= + X
EcY) = tE(x/
= kT =
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Story: Negative Binomial Distribution n X “¢ere
~ rth s

N+ pr fvw‘;.(,;

p(X=n)

e last triaC v
V\*\'f‘—} ”f;\-‘u.}; P

nxX ;o v
In a sequence of independent Bernoulli trials with success probabitity
p, if X'is the number of failures before the r" success, then X is said

to have the Negative Binomiak distribution with parameters r and p,
denoted XN NBm(r, p). W @ X A Comm i)

\

\\,) e,

= ’Hr'()in_{;r

n
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Negative Binomial PMF coex)l
N~ ~e————

C o
Theorem n
If X ~ NBin(r, p), then the PMF of X is
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Geometric & Negative Binomial @
?<\ (S (T'faw\Lf) X] N # U/f X b—e'(u—-re the lIé / @

P
&t
BQ/\(T{»AF/ @t ¥ ’%X betwee, | V' omd 1V

Theorem

Let X ~ NBin(r, p), viewed as the number of failures before the rth
success in a sequence of independent Bernoulli trials with success
probability p. Then we can write X = X1 + - - - + X, where the X; are

i.i.d. Geom(p).
@ X2 ntk | X2k )

f(X2n )
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Example: Expectation
Methog (. P (X=n) = (”JW") P’

Let X ~ NBin(r, p), find E(X).

/V\eﬂwA 2
X’— X(T*# Xr X;a(teamw)

=) E(Y) = )« +e0x,) L\Ec)(c)T _;:F

~ o f
}/ - F J
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Model: Coupon Collector

—

Suppose there are n types of toys, which you are collecting one by
one, with the goal of getting a complete set. When collecting toys,
the toy types are random (as is sometimes the case, for example,
with toys included in cereal boxes or included with kids' meals from a
fast food restaurant). Assume that each time you collect a toy, it is
equally likely to be any of the n types” Let N denote the number of
toys neWﬁnd E(N) and Var(N).

—_—
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Solution: Coupon Collector

[O' N 1 H ,]L ’t,y} necded te obtaun U Tyirec *7415’2/5

N= Ni+ N+ Mt - N,

OOL OB

T —_ ) — —
N = Ny e

o oand e )
2 @ Lllect the neww Type ’]ﬁﬁj w-p. ’ﬂ

Nena Fsclx)

70 Myt N e md-R)
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. N N
Solution: Coupon Collector K~Few) 5 Ex)=3

n<Jj-1)
N ~Fs (5 <o N
1) =y = o

4‘ ) NT /\((_Q_. ‘{‘N,‘ = E(N}:E(Nt{-”""/qn)

SEWN)* HEW, )

‘+n/'f'y|,~"{‘n

%>>( G\\ V‘C(J\A 4‘0:177/
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Application: Peer-to-Peer System

o Target file is decomposed into@pieces.@,

@ Each peer randomly downloads pieces and uploads pieces from
its neighbors.

@ O(nln n) downloads to complete the downloading file.

@ The last block problem: missing the last piece (stop at 99%

downloading progress)
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Application: Peer-to-Peer System

@ Solution adopted by BitTorrent:
» tries to download a block that is @d among its

neighbors
» maximize the diversity of content in the system, i.e., make the
number of replicas of each block as equal as possible.

m 3

Which piece:
to download

Local rarest first policy
_— TT—

[1]2 [
_—
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Socewrs

Properties of Indicator R.V. [ of edench
Iy - f
4 0 bherwise

Let A and B be events. Then the following properties hold.
(1] gIA)k = I, for any positive integer k. ey B ol':o; k2
Q ) =1— I,
Q lang = Ials.
Q lavs=Ia+1Ig— lalg.

[
@ IAUB = ‘—l(Adyc ll-l c.C

@ AN
- [’ IAC.IgC -‘Z@l”(('l/-})a‘lﬂ)

= (\~1l4-1z ’('lA"lt;) QLA*L?’ZA-ZB
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Fundamental Bridge Between Probability and
Expectation

_ ZA:)_/‘ / ’f A ocenrs

© Ithen e

EIa) - (- pa) + O .C-pay)
Theorem ,

There is a one-to-one correspo n events and indicator
r.v.s, and the probability of an event A is the expected value of its

indicator r.v. l:
[(P(AY ¥ Eln)
‘\ S~~—_"

)]
_
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R 53
Example: Booler's Inequality "/ v ”;{EY‘/Y/

<ty LA UV-UA) S TA) 4 )i
LHg RHS .
‘f LhS=o V' Rus2o

{L}“-l ) Ot lat A pecun

UA)<ZP et 2y
PHJ;(

-

<2 E] 1 (AU Uk ) S E(2b)« «1,,)

CCA L. (/An) < Plao+ ot plhay

For any n events Ay, Ay, ... ,A
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Example: Inclusion-Exclusion Formula

i© \'\‘KJ_CAHJH-(/AM) ll(A,L)‘,uA,‘):l(z,n---;Q)

= LAY L (A = (FTAD) (LA ) (F T ()

N 5—’1(/4 )t 2 LAYLA) -t

For any events Ay, ..., A, i< v ZU;)M
P (U A,-) =Y PA) =D PANA)+ D PANANA)
i=1 i i< i<k
— e (-D)"™P(AL N N AY).

o

20 Lhwoh) = TL) — Taoimy) t COM LAY 1A )

<~ 77 o

- %-Z(AC) - EI(AL/'AI) S +(")M"1(A|A'~'AA-V\)

3%

Tﬂ“‘df Expectation o both Sec.

- —
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Solution: Inclusion-Exclusion Formula
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Moments of Indicator Methods

[X) Xo«».

@ Given nevents Aq,..., A, and indicators /;,j=1,...,n

o\()_d: > i1 li: the number of events that occur

° Q: i) lili: the number of pairs of distinct events that occur
° E((3) =i P(ANA) 121y = 2r) 1) =104 085 )

]

FTE(XR) =230 PAIN A + E(X). B )= pihca; )
> Var(X) = 232, P(AiN Aj) + E(X) — g»z.

\/E()/(:_—‘)S = )ETXIJ-jETKJ = ?;P‘Ma/l)‘)
= )= End + 2 Zpdeo;)
=) ar(x)= Ex*) - E(xj -
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( X /\—g)\«) (n,p)

o]

Moments of Binomial Random Variables
lo. Conside~ N hdepedene Bernouly - trals, @ach _\4 wop P

lent As - The o pra Vv L; = 1(A;) ~ Berncp)

VRS
2° #'f—“‘-(“fﬁt el (X = :I"-Zj Q)‘ ETx<] = ;E(Zf) :‘73::7"?
. —A-"—_:’ &_;_;’—\
_ Ay Ay Memdec 2 —
O X))« Zrwen) S EFbsra) - Z0 (1) vy
< <o ? -

= ?;(XCX‘")) = Nin-y P2 D EB{L‘) = EpJd+n Ln—yPZ

=np tneyp®

P Ver(X) 2B )~ €59 = mwap) [ pron) = Zunz;)
= 2L

® E((§)] = 2 Pherkrane) = == d
Sg<b T o e s ) pie) 2
<k = gskﬂ - (;‘)FB

e = (Rt
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O vd pu

Poisson Distribution
oo v
.kZPL 9(1/!) = |
& B v
> ’—E ’,'A :R [
I o
Definition %3 L 07
An r.v. X has the Poisson distribution with parameter \ if the PMF
of X'is ok
P(X=K) =", k=0,1,2,--
We write this as X ~ Pois(\).

& ExX) =Var(x)= )

— N ——e—,————————
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Example: Poisson Expectation & Variance
~ 2o

O EBx) = th-Pth:k) = FR-PO{:&)
-0 =

= S h ) e‘a)k _ 2
ke - TR ©
©o by
< prpg XA
e/ =i k0!
T N—"—

ce A = )n

D Var(x) :@_
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Poisson Approximation

Let Ay, Ay, - -, A, be events with p; = P(A;), where n is large, the p;
are small, and the A; are independent or weakly dependeny. Let —

X

count how_many of the A; occur. Then X is approximately Pois(\),
with A ~—
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Example: Birthday Problem Revisited

_——
(- m P—eop(e s CN';_) paivs af pesple

. “th
A) - the )t ﬂ?a/\fsf P{op(t }'\kvz “+he Jame bwﬂ\%"

PM}): (-i;— _ A S m
‘3651365 = 34 , V=1, .. CA-)

rhex =i, 2

()

20 1' = J
J =LA ) . n=(%), x 2 #afbl\“t“ymtah,
- =1
=7

o
3 Poisin, Approw
toum
e X /,‘\_/\Fn}s(/\)/ %‘Jn-z} :(:)4...
- ECEE

47 prb (Ae least | bremdey metr ) Sp(XxzH) = FP(x<i)

= I'P(OC:O) = |- e’;] / e A:(:;)f;} = 222

%

e 2 0cp02
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Poisson & Binomial

@ Poisson =— Binomial : conditioning
@ Binomial = Poisson: taking a limit
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Sum of Independent Poissons Oﬁﬂ\)
L°TF h )t 2

POXtY =k ) = = POz (x5 ) pes

Pocy=k) = 2 Posvblies Jnes) | A

POCb3 (%25 ) poes )

¢ M

A b ¥

- N
= %P( b)) per) = e m el
Theorem o < Y=ko) puei) e h) i

If X ~ Pois(@, Y ~ Pois(\), and X is independent of Y, then
X—|- YN POiS(>\1 —+ )\2) -

P
S o) F AP eony KAN
A BNE b)) - R A0,
e o Gelgansf
- =(A+h)

) f i Cé)ﬂ,;-/’\f'f O\Vr)z)'b ‘

/\'/a)‘J (/)/’f'/‘x)
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. . . O0<tsn
Poisson Given A Sum of Poissons

BE a0 POk Kty=n )
Az ;Ei M}? M _ Pk, )ﬂ-)’;i
% ) PURtYen )
“ Pix=k) PO=nk)
Theorem i Postzn)

If X ~ Pois(\1), Y ~ Pois(X2), and X is independent of Y, then thé
conditional distribution of X given X4+ Y = n is = nis Bin(n, A1/(A1 + A2)).

T N~——
s e
k\

W),

(A )" )

n:

(kj(m/h/ (“z /W’
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Poisson Approximation to Binomial
9\‘—'\? J 6‘[[»/&4 h LOS/{SA) / Q(NZ,‘nLn,P)

b )= N )b " Nt
POGE) = Ch )it ™ = gt

PmE of X. AA-D- ki) k
Theorem - T'_— ¥ ‘Aﬂk

If X ~ Bin(n, p) and we let n — oo and p — 0 such that A = np
= —

remains fixed, then the PMF of X converges to the Pois(\) PMF.

More generally, the same ‘conclusion holds if n — oo and p — 0 in

A

such a way that np converges to a constant \. np — X
_ \(r\—uf b))
SR woa A S

’me _ ak L B}

A2 iy Clckw). ("T)J'Cl"%) . C('/%)‘#

! — e
YY) kb ‘
"~ — e cetgr S Py

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation October 22, 2024

55 /91



Proof

Ziyu Shao (ShanghaiTech)

Lecture 4: Expectation



Visitors to A Website ’f@f;fys}f., e sie (50)
Yo Yapisd)  Aenp-a | XA Bhinp)

/_‘_:(Dé, P=exto b
P(lY; k) = e/‘;ik l:o, lLe . \\QP( XZ 32 )

PR

The owner of a certain website is studying the distribution of the

number of visitors to the site. Every day, a million people
independently decide whethér to visit the site, with probability

M
p =2 x 107 of visiting. Give a good approximation for the
probability of getting at least three visitors on a particular day.

- T
PX23) 2 parzs) = -pives) = )Ptz ey

~[-%e-* 20323
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Typical Distance Measures

@ Total Variation Distance
-

ullback-Leibler Divergence>

@ Jensen—Shannon Divergenc;

e Bhattacharyya Distance

asserstein Distance (sr called “Kantorovich—-Rubinstein™)

—_———
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Total Variation Distance
e TR el

@ Distance measure between two probability distributions

@ Apply such measure to characterize the accuracy of Poisson
approximation

Definition W
The total variation distance between two distributions 1 and v on

a countable set €} is e

——

4
drv(p, v))=Il n—v

N~
=< JICBS&;VWX) € gucx/) - f\(. \+ |)ﬂ’_

—_—
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O K ~terncp) . W)=p s peorzify Hn)=o, aza
Example
\/ & [/C = e"’f” g
~ P S(P), ") - L"Zo) Eol/l.m):/

® ldryé/#u) - X

XeN

Moc)—wx){ = IH(')—uw)‘ +'““)‘*t')l+r/ﬂm©)_VM)/
- M2 — X

=Lt lmver (o (Fun) Cevio)vn] <Crerpes]

Let 1 be the distribution with (1) = p and ;(0) =1 — p. Let v be a
Poisson distribution with mean p. Then we have dr(y, V)

ePzip

= ePoc) + pret 4 et per] 2 Lebsp

= ke?) <opp - 2p?

@ dtu (Ho) Sfl R ~tem ).

VAP,
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The Law of Small Numbers Lau 7& Rare Eerts

Theorem
Given independent random variables Y1, --- , Y, such that for any
1<m = . Let

S,=Yi+---+7Y,. Suppose

me—>>\€(0,oo) as n— oo,

m=1

and

max p, — 0 asn— oo,
1<m<n

then

drv(Sn, Poi(A)) — 0 as n — oo.

i
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Gap of Poisson Approximation

@ A bound on the gap due to Hodges and Le Cam (1960):

drv(Sn, Poi())) <

e by Sethod (C.Stein 1987) we can have a tighter
bound on the gap: T

dT\/(S,,, POI()\)) S
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Probability Generating Function

DO &? & Pl (1)

.o L‘”"ﬁ‘l’ll
Definition o

The probability generating function (PGF) of a nonnegative
intewmth PMF px = P(X = k) is the generating

function of the PMF. By LOTUS, thisis

The PGF converges to a value in [—1, 1] for all tin [—1,1] since

Yo Pk =1land [pt| < pifor [(f ST
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Example: Generating Dice Probabilities <X <36
O Ete ] = Zrockgt 2pe )

& x= X\+ D EER) g (X ]

TECeX ) e TeX) seree ) = Q:H—X/J)‘
Let X be the total from rolling 6 fair dice, and let Xi, ..., X be the

individual roIIs.éWhat SPX=18Y e gy (8.
— _ ‘ =
@ et JE %PLX.—.)“).H :;z"(tﬂ‘wr‘)

e
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. X\ - _
Solution Flt")=fe) =
T [: 1‘*’ + 6t7f2lf7 To6th e hel d o526 4 grgen

} e
+ 56 + bt + )46 tv"j + 2247¢'¢ +2356 "7

’f'f 3906 19  dupitro 4 fi332 €20 ) 4oy 422

——

T MG F Bud £ % 2850 €55 4 24y

LU + 12 + I5b¢ 29 T 4slede 4u50431

5
LR Y2 ALy v t 6T 434 ]

—
?
0 «

ﬁl'— PUX3) < pik-2e >
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PGF and Moments PeFof X — Bk

e /_/
O a¢) = nimé - bo + %mh &

j‘“‘) = MPK-k.fH (7((t)( - %o'()k K = % Pe. ke
?:‘_',_——— t=1 7 kT ke
= EIiX]) .,
Let X be a nonnegative integer-valued r.v. with PMF p, = P(X = k),
and the PGF of Xis(g(t) E > oo PxtS, we have
o E(X) =g (t)]=1 @ Ilec) =p, + g Pe. kb1
o E(X(X—1)) =g"(t)e=1

"““l)

) = §DK.L~(k—‘).(;£‘L o,
=, 14

0,1,
5 N | ) o ’\-‘—W
4 é‘f)/t:( = -lpbgck—u) = E?k-ktk—u

— =X

—_—

= e[ X))
= 6lx%) —€(x )
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PGF and Moments
Q)

J’e@JJQ
PMF =
J=°) = Po =p(X=0)
®, lit)

Par of X —
‘j(tJ_ L;OOPKtk ‘P°+ I(p)(tk

of X
e d

T N —————
S pe kg
=

9'tc) =7 =PX=0)

= PI - )—-?ILKél‘/
Pix=k) =

2]
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PGF and Moments
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n li)\d }

bern w) -

Binomial PMF © X ~#nnps  X= Xiro 4 Xa

P&F of X
O Guct) - arex] - et ] - i)

- et ]

— = (zoexi )" = (pt h
Ky %& 1) +4)

hi<) ha o) BeX]) = tPap) s clp =ptrg (G=1p)

-

n
@ dxe) = { 5 9le) = nPg"l 5 o) =(2 g

7)((1/(0)
- Pk = T (lt/ ?L R
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Binomial Moments
©

P&t
9 &)= nt ety
D

Ixit)=wt+4)" .

/2=

6)(/(f/t—t__‘

np
N
3 n-

Il = a0p < erxiey)

%]
N

44/] =7
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, - 9= W H
Example: Pattern Matching_ S

D Pk=p=k) ., P=0 Pl=0 5 Pe=p*; 0y = crpsp? = gp°

P = HT T W H
L2 3 4

—_—

P Fyst -Step Method
Suppose a coin with probability(pfor heads is tossed repeatedly, and

we obtain a sequence of H and T (H denotes Head and T denotes
Tail). Let N denote the number of toss to observe the first
occurrence of the pattern “HH". Find E(N) and Var(N).

VY ~—=

)’*33 ;5 Ifesut{% the frse oss -S/:HwT

B:Pu\(:h) = f(“:h/ S/rH)ﬂ—P(N:ﬂ)‘SIZT)

———
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. (3
Example: Pattern Matchln@ T

2 3. k
0 —
e PLN:P. S:H "
@ 7 ) ) @‘EJS@;
- P(Sn:H) PSSy = T) “P(N=k-2) B Jet Hu
—_ ﬁf ¥
= P-4 Pr-2a t&{;;
Pa PNk, S=T7) T
| 2 3 .k
= ?(51:‘!') -P(N:’k-l} (_\0/—/
=€ Py . K s o ge¢
FA for <he fie
+mg |

NPz PG patapy k23

Pﬂ:"f P=o s &:Pz

-

L=y

—
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Methed 2 . Fiad 9GL 5 etnd

Example: Pattern Matching b))

k= p‘é-[ ?—(-Pk,) Pz /173

@ P&F#"/f'lﬁ:zsrw} Pozeibzo, piy
= &~

On the other hud |

= pat? + IV/HK —pt {,I[),_t

Pe=Pit + byt b23

b~ z k 5>
hz} ﬂkt cth 41 Pestg ) = th.(q ¢ + %’Pu-?z-t“

)Pt = Pt ¢ K g6 Dby b
Jt) ‘L‘tgbu + P1¢ E“t

-

\zand a0
= Pe-ch. T poge? <*
4+ E‘an P9t Ekt
= - 9ct) T Pat? 9it)
_ PPt
= 39 T e
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Example: Pattern Matching IMF of w

O varof H: ga) - P20
44 ~pg¢?

Ew) = Jof =9'a) = -

g a2y

forck) = 3% e) xgluy ~30.,]" = _HPse’

9494

far (o
9, P@; 2 EiN)= £ >4

V‘V(N): 22

Ziyu Shao (ShanghaiTech) Lecture 4: Expectation



Ziyu Shao (ShanghaiTech)

Example: Pattern Matching

Lecture 4: Expectation



Outline

© Reading for Fun

Ziyu Shao (ShanghaiTech)

Lecture 4: Expectation



Probability Method

@ Paul Erdos initiated this method: Erdds Method

@ Widely used in information theory & combinatorics & theoretical
computer science

@ Main idea: to prove the existence of a structure with certain
properties using probability or expectation
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Principle |

e First we construct an appropriate probability space of structures.

@ Then we show that a randomly chosen element in this space has
the desired properties with positive probability

Theorem (The Possibility Principle)

Let A be the event that a randomly chosen object in a collection has
a certain property. If P(A) > 0, then there exists an object with such
property. -
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Principle Il

Theorem (The Good Score Principle)

Let X be the 'of a randomly chosen object. If E(X) > ¢, then
there exists an object with a score of at least c.
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Example: Graph Coloring

e Complete graph (clique): a simple undirected graph in which
every pair of distinct vertices is connected by a unique edge.

e Complete graph K,: a graph with n nodes and (}) edges.

Ky K K Ks

o (5
£
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Example: Graph Coloring

Theorem

Given a complete graph K, (n>3), if (") 2-()+1 < 1, then it is
possible to color the edges of K,, with two colors so that it has no
monochromatic K, subgraph (1 < m < n).
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Testing Polynomial Identities

@ Randomized algorithms can be dramatically more efficient than
their best known deterministic counterparts.

@ Input two polynomials @ and R over n variables, with
coefficients in somé field, and decides whether Q@ = R.

e Example: Q(x1,x) = (1 + x1)(1+ x2),
R(Xl,X2) =1 =+ X1 + Xo + X1 X0.

e n-variable polynomial []._;(x; + xi11) expands into O(2")
monomials.
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The Schwartz-Zippel Algorithm

@ A Monte Carlo algorithm with a bounded probability of false
positive and no false negative.

@ Input polynomial M(xy, ..., x,) and test whether M =0

(M=Q-R).

@ Assign values ry, ..., r, chosen independently and uniformly at
random from a finite set S to xq, ..., X,.

o Test if M(ry,...,r,) =0, outputting “Yes" if so and “No”
otherwise.

e If “No”, then M # 0.

o If "Yes”, it is possible that M £ 0 but ry, ..., r, happens to be a
zero of M.
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Schwartz-Zippel Lemma

Lemma

Let M € F(xi, Xz, ...,X,) be a non-zero polynomial of total degree

d > 0 over a field F. Let S be a finite subset of F and let ri, r», ..., r,
be selected at random independently and uniformly from S. Then

d
PM(ri,r2, ..., 1) =0] < Gk
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Remarks

o If we take the set S to have cardinality at least twice the degree
of our polynomial (|S| > 2d), we can bound the probability of
error (false positive) by 1/2.

@ This can be reduced to any desired small number by repeated
trials.
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Summary 1

With replacement Without replacement

ixed number of trials @ _Berge_\g\grggt;ii
i mber of succes Negative Binomial }}\Iegative Hypergeomet@
7
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Summary 2

HGeom

Conditioning

Bin

Conditioning

Pois
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Summary 3

. What can o000
- happen? oooa

distributions random variables events numbers

PX = x) =F(x)

CDFF PX =x)

generate ‘
PMF

story
name, parameters

E(X), Var(X), SD(X)

function of r.v.

LOTUS EX), EX), EQC), .

E(g(X))
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