

Lecture 4: Expectation

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

October 22, 2024

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Outline

- Expectation & Variance
- Quantities 2 Quantities 2
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Expectation of A Discrete R.V.

Definition

The expected value (also called the expectation or mean) of a discrete r.v. X whose distinct possible values are x_1, x_2, \cdots is defined by

$$E(X) = \sum_{j=1}^{\infty} x_j P(X = x_j)$$

If the support is finite, then this is replaced by a finite sum. We can also write

$$E(X) = \sum_{x} \underbrace{x}_{\text{value}} \underbrace{P(X = x)}_{\text{PMF at } x}$$

where the sum is over the support of X.

Distribution

Theorem

If X and Y are discrete r.v.s with the same distribution, then E(X) = E(Y) (if either side exists).

Linearity

The expected value of a sum of r.v.s is the sum of the individual expected values.

Theorem

For any r.v.s X, Y and any constant c,

$$E(X+Y)=E(X)+E(Y)$$

$$E(cX) = cE(X)$$

Monotonicity of Expectation

$$Z = X - Y. \quad 2^{\circ} \cdot \overline{E(Z)} \quad E_{\circ}$$

$$= \overline{E(X - Y)}$$

$$= \overline{E(X)} - \overline{E(Y)}$$

Theorem

Let X and Y be r.v.s such that $X \ge Y$ with probability 1) Then $E(X) \ge E(Y)$, with equality holding if and only if X = Y with probability 1.

if
$$X$$
 and Y are independent
$$E(X:Y) = E(X) \cdot E(Y)$$

Expectation via Survival Function

of Tail distribution

$$F(x) = P(X \leq x)$$

Theorem

Let X be a nonnegative integer-valued x. Let x be the CDF of x, and x and x and x be a nonnegative integer-valued x. The function x is called the survival function of x. Then

Survival function of X.

$$E(X) = \sum_{n=0}^{\infty} G(n)$$

That is, we can obtain the expectation of X by summing up the survival function (or, stated otherwise, summing up tail probabilities of the distribution).

= I p(x2m)

Proof
$$E(X) = \sum_{n=1}^{\infty} p(x_n)$$

$$= \sum_{n=1}^{\infty} p(x_n) = \sum_{n=1}^{\infty} p(x_n)$$

$$= \sum_{n=1}^{\infty} p(x_n) = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} p(x_n)$$

$$= \sum_{n=1}$$

Law Of The Unconscious Statistician (LOTUS)

Theorem

If X is a discrete r.v. and g is a function from \mathbb{R} to \mathbb{R} , then

$$E(g(X)) = \sum_{x} g(x) P(X = x)$$

where the sum is taken over all possible values of X.

$$E(g(x)) = \sum_{y} y \cdot p(g(x) = y)$$

Variance and Standard Deviation 🛫 🛫

Definition

The variance of an r.v. X is

$$Var(X) = E(X - EX)^{2}.$$

The square root of the variance is called the $standard\ deviation\ (SD)$:

$$SD(X) = \sqrt{Var(X)}$$

Properties of Variance

- For any r.v. X, $\operatorname{Var}(X) = (E(X^2) (EX)^2$.
- Var(X+c) = Var(X) for any constant c.
- $Var(CX) = c^2 Var(X)$ for any constant c.
- If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).
- $Var(X) \ge 0$ with equality if and only if P(X = a) = 1 for some constant a.

Properties of Variance

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Story. Geometric Distribution

k),0)

R=0,1,2,...

ktl trials.

$$P(X=k) = CI-P)^{k} \cdot P$$

First K trials X

Consider a sequence of independent Bernoulli trials, each with the same success probability $p \in (0,1)$, with trials performed until a success occurs. Let X be the number of **failures** before the first successful trial. Then X has the Geometric distribution with parameter p; we denote this by $X \sim Geom(p)$.

Geometric PMF Method (: E(X) = \int k. p(X=k) = \int k qk. p

Method 2: p(X>0)=1;

Method 2:
$$P(X \ge 0) = 1$$
;
 $k \ge 1$; $P(X \ge k) = 1 - p(x \ge k)$
 $= k \cdot P(X \le k - 1) = 1 - \sum_{s=0}^{k+1} P(X = s)$

Theorem
$$= \begin{bmatrix} \frac{1}{2} & \frac{$$

If $X \sim \text{Geom}(p)$, then the PMF of X is

$$P(X=k) = \frac{(-P) \cdot \frac{F_1}{F_2}}{(-P) \cdot \frac{F_2}{F_2}}$$

for
$$k = 0, 1, 2, ...,$$
 where $q = 1 - p$.

$$= \sum_{k=0}^{\infty} p(x) + \sum_{k=0}^{\infty} p(x) = \sum_{k=0}^{$$

= P2 = (2k)

= PZ (= gk)

Memoryless Property

$$= \frac{P(x_{2}n_{1}k, x_{2}k)}{p(x_{2}k)} = \frac{P(x_{2}k)}{p(x_{2}k)}$$

Theorem

If
$$X \sim \text{Geom}(p)$$
, then for any positive integer n ,

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$

for
$$k = 0, 1, 2, \dots$$

$$P(X \ge 00 | X \ge 0) = P(X \ge 20)$$

Memoryless Property

$$P(X) = \frac{P(X) + k(X) k}{P(X) k} = P(X) = P(X)$$

$$P(X) + k(X) k$$

$$P(X \ge n + k) = p(X \ge n) \cdot p(X \ge k)$$

$$P(X \ge n) = p(X \ge n) \cdot p(X \ge n) \cdot p(X \ge n)$$

$$P(X \ge n) = p(X \ge n) = p(X \ge n) \cdot p(X \ge n)$$

$$P(X \ge n) = p(X \ge n) = p(X \ge n) \cdot p(X \ge n)$$

Theorem Suppose for any positive integer n, discrete random variable X = 1;

satisfies

$$P(X \ge n + k | X \ge k) = P(X \ge n)$$
... then $X \sim Geom(p)$.

for $k = 0, 1, 2, \dots$, then $X \sim Geom(p)$.

40. Genta = Gen). Get);
$$N = h = (3G(2) = G_{1})$$

 $N = h = (3G(2) = G_{1})$
 $= q^{2}$;
 $= q^{2}$;

Memoryless Property

Theorem

Geometric distribution is the one and the only one discrete distribution that is memoryless.

First Successful Distribution

First Success Distribution

Xn Geomip)

YN FS(D)

Definition

Y= 1+ X

In a sequence of independent Bernoulli trials with success probability p, let Y be the number of trials until the first successful trial, including the success. Then Y has the First Success distribution with parameter p; we denote this by $Y \sim FS(p)$.

50% Textbesk [-5 (P)]

Example: Geometric & First Success Expectation

$$\begin{array}{c}
\uparrow((-k)) \\
= (-p)^{k-l} \cdot p \\
k \ge 1
\end{array}$$

$$P(X \ge k) = q^k$$

$$E(X) = \frac{fP}{P} = \hat{p} - 1$$

Let $X \sim Geom(p)$ and $Y \sim FS(p)$, find E(X) and E(Y).

2°.
$$Y = 1+ \times$$

 $E(Y) = 1+ E(X)$
 $= 1+ \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$

Story: Negative Binomial Distribution

In a sequence of independent Bernoulli trials with success probability p, if X is the number of failures before the r^{th} success, then X is said to have the Negative Binomial distribution with parameters r and p, denoted $X \sim NBin(r, p)$.

Negative Binomial PMF

Theorem

If $X \sim NBin(r, p)$, then the PMF of X is

$$P(X=n) = \begin{pmatrix} n+r-1 \\ r-1 \end{pmatrix} p^r q^n$$

for $n = 0, 1, 2 \cdots$, where q = 1 - p.

$$\frac{(-r)!}{n!(-r-n)!} = \frac{(-r-n+1)...(-r)}{n!}$$

Geometric & Negative Binomial

Theorem

Let $X \sim \mathrm{NBin}(r, p)$, viewed as the number of failures before the rth success in a sequence of independent Bernoulli trials with success probability p. Then we can write $X = X_1 + \cdots + X_r$ where the X_i are i.i.d. $\mathrm{Geom}(p)$.

Example: Expectation

Method (:
$$P(X=n) = \binom{n+r-1}{n} pr_q n$$
 $\Rightarrow E(X) = \sum_{n=0}^{\infty} n \cdot p(X=n)$
 $= \sum_{n=0}^{\infty} n \cdot (n+r-1) pr_q n$

Let $X \sim NBin(r, p)$, find $E(X)$.

Method 2: $X = X_1 + \cdots + X_r = \binom{N}{n} n \cdot (n+r-1) pr_q n$
 $\Rightarrow E(X) = E(X_1) + \cdots + E(X_r) = \binom{n+r-1}{n} pr_q n$
 $\Rightarrow E(X) = E(X_1) + \cdots + E(X_r) = \binom{n+r-1}{n} pr_q n$
 $\Rightarrow E(X) = E(X_1) + \cdots + E(X_r) = \binom{n+r-1}{n} pr_q n$

= r. #

Model: Coupon Collector

Suppose there are n types of toys, which you are collecting one by one, with the goal of getting a complete set. When collecting toys, the toy types are random (as is sometimes the case, for example, with toys included in cereal boxes or included with kids' meals from a fast food restaurant). Assume that each time you collect a toy, it is equally likely to be any of the n types. Let N denote the number of toys needed until you have a complete set. Find E(N) and Var(N).

Solution: Coupon Collector

10. N: # of toys needed to obtain an types of toys.

$$N = N_1 + N_2 + N_3 + \cdots + N_n$$
 $N_1 = 1$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_3 = 9$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_3 = 9$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_3 = 9$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_3 = 9$
 $N_1 = 1$
 $N_2 = 1$
 $N_3 = 9$
 $N_3 = 9$
 $N_3 = 9$
 $N_3 = 9$
 $N_3 = 1$
 $N_3 = 1$

October 22, 2024

Solution: Coupon Collector

$$E(N_j) = \frac{n}{n - y - y} = \frac{n}{n + y + 1}$$

$$= n \left[\frac{1}{n+1} + \frac{1}{n-1} + \dots + 1 \right] = \left(n \left(\frac{N}{n-1} \right) \right)$$

Application: Peer-to-Peer System

- Target file is decomposed into n pieces. (black)
- Each peer randomly downloads pieces and uploads pieces from its neighbors.
- $\Theta(n \ln n)$ downloads to complete the downloading file.
- The last block problem: missing the last piece (stop at 99% downloading progress)

Application: Peer-to-Peer System

- Solution adopted by BitTorrent:
 - tries to download a block that is least replicated among its neighbors
 - maximize the diversity of content in the system, i.e., make the number of replicas of each block as equal as possible.

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- 4 Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Properties of Indicator R.V.

Let A and B be events. Then the following properties hold.

•
$$(I_A)^k = I_A$$
 for any positive integer k. $I^k = I$; • $I^k = I$; • $I^k = I$

$$2 I_{A^c} = 1 - I_A.$$

Fundamental Bridge Between Probability and

Expectation

Theorem

There is a one-to-one correspondence between events and indicator r.v.s, and the probability of an event A is the expected value of its

indicator r.v. I_A :

Example: Booler's Inequality

For any
$$n$$
 events A_1, A_2, \dots, A_n

$$P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$$

$$P(A_i) \leq \sum_{i=1}^{n} P(A_i)$$

$$P(A_i) \leq \sum_{i=1}^{n} P(A_i)$$

$$P(A_i) \leq P(A_i) \leq P(A_i) + P(A_i)$$

$$P(A_i) \leq P(A_i) + P(A_i)$$

$$P(A_i) \leq P(A_i) + P(A_i)$$

XEY 27 E(X)

Solution: Booler's Inequality

Example: Inclusion-Exclusion Formula

For any events
$$A_1, \ldots, A_n$$
:
$$I(A_1 \cup \cdots \cup A_n) = I(\overline{A_1} \cup \cdots \cup A_n) = I(\overline{A_1} \cap \cdots \overline{A_n})$$

$$= I(\overline{A_1}) \cdots I(\overline{A_n}) = (I - I(A_1)) \cdot (I - I(A_2)) \cdots (I - I(A_n))$$

$$\stackrel{=}{\longrightarrow} I(A_2) I(A_3) - \cdots + (-1) I(A_n)$$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k})$$

$$- \cdots + (-1)^{n+1} P(A_{1} \cap \cdots \cap A_{n}).$$

$$2^{\circ} \cdot I(A_{1} \cup \dots \cup A_{n}) = \sum_{i \in I} I(A_{i}) - \sum_{i \in I} I(A_{i}) I(A_{i}) \dots + (-i)^{n+1} I(A_{i}) \dots I(A_{n})$$

$$= \sum_{i \in I} I(A_{i}) - \sum_{i \in I} I(A_{i} \cap A_{i}) \dots + (-i)^{n+1} I(A_{i} \cap \dots \cap A_{n})$$

3°. Taking Expectation to both siles.

Solution: Inclusion-Exclusion Formula

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Moments of Indicator Methods

$$\begin{pmatrix} \chi \\ 2 \end{pmatrix} = \frac{\chi(\chi-i)}{2}$$

- Given *n* events A_1, \ldots, A_n and indicators $I_i, j = 1, \ldots, n$.
- $X = \sum_{j=1}^{n} I_j$: the number of events that occur
- $\binom{X}{2} = \sum_{i < j} I_i I_j$: the number of pairs of distinct events that occur

$$E(\binom{x}{2}) = \sum_{i < j} P(A_i \cap A_j)$$

$$E(X^2) = 2 \sum_{i < j} P(A_i \cap A_j) + E(X). \quad E(Z_2Z_3) = P(A_2 \cap A_3)$$

$$Var(X) = 2 \sum_{i < j} P(A_i \cap A_j) + E(X) - (E(X))^2.$$

$$E(\frac{x^2 - x}{2}) = \frac{1}{2} E(x^2) - \frac{1}{2} E(x) = \sum_{i < j} P(A_2 \cap A_3)$$

$$= \sum_{i < j} P(A_1 \cap A_j) + E(X) - (E(X))^2.$$

$$E(\frac{x^2 - x}{2}) = \frac{1}{2} E(x^2) - \frac{1}{2} E(x) = \sum_{i < j} P(A_2 \cap A_3)$$

$$= \sum_{i < j} P(A_1 \cap A_3)$$

$$= \sum_{i < j} P(A_2 \cap A_3)$$

$$= \sum_{i < j} P(A_2 \cap A_3)$$

$$= \sum_{i < j} P(A_2 \cap A_3)$$

Moments of Binomial Random Variables 1°. Consider n independent Bernoull trials, each \(\sqrt{\text{w.p.}} \) P.

Event Az: the ith trial V , Ij = I(A;) ~ Bern (P)

$$2^{\circ}$$
. # of successful trials. $(\chi = \sum_{j=1}^{n} I_j)$ $(\mathcal{D}' \in \mathcal{I} \times J) = \sum_{j=1}^{n} E(Z_j) = \widehat{J}_{\mathcal{I}_j} \cdot P$

$$O' \ \vec{E} \vec{I} \times \vec{J} = \sum_{j=1}^{n} \vec{E}(\vec{Z}_{j}) = \hat{\vec{S}}_{j-1}$$

$$E\left[\left(\begin{array}{c} X\\ 2\end{array}\right)\right] = \sum_{i \in j} P(A_i, A_j) = \sum_{i \in j} P(A_i) \cdot P(A_j) = \sum_{i \in j} P^i = \left(\begin{array}{c} N\\ 2\end{array}\right) \cdot P^2 \qquad \text{ if } f_{i = 1}, p_{i = 2}$$

$$\Rightarrow E(X(X-V)) = n(N-V)p^2 \Rightarrow E(X^2) = E(X) + n(N-V)p^2 = np + n(N-V)p^2$$

$$= Var(X) = E(X^{2}) - E(X) = nP(I-P) \left(Var(X) = \sum_{j=1}^{n} Var(I_{j}) = N \cdot P(I-P) \right)$$

$$E[\binom{x}{k}] = \binom{n}{k} p^k$$

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- 4 Moments and Indicators
- Poisson
- Objective between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Poisson Distribution

$$\sum_{k=0}^{\infty} p(\chi_{2k}) = 1$$

Definition

Definition

An r.v. X has the Poisson distribution with parameter λ if the PMF of X is

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \ k=0,1,2,\cdots$$

We write this as $X \sim \text{Pois}(\lambda)$.

$$\mathcal{P}$$
 $E(x) = Var(x) = \lambda$.

Example: Poisson Expectation & Variance

Poisson Approximation

Let A_1, A_2, \dots, A_n be events with $p_j = P(A_j)$, where n is large, the p_j are small, and the A_j are independent or weakly dependent. Let

$$X = \sum_{j=1}^{n} I(A_j)$$

count how many of the A_j occur. Then X is approximately $\operatorname{Pois}(\lambda)$, with $\lambda = \sum_{j=1}^n p_j$.

Example: Birthday Problem Revisited

(° m people ; (
$$\frac{m}{2}$$
) pairs of people index $j=1,2,...(\frac{m}{2})$

A): "the jth paref people have the same brindy"

$$P(A_j) = \frac{365}{365 \times 365} = \frac{1}{345}, \quad j=1,2,...(\frac{m}{2})$$

$$2^{\circ} = 1_j = \frac{1}{2}(A_j); \quad n = (\frac{m}{2}); \quad X \stackrel{d}{=} \# \text{ of birthday match.}$$

$$= \frac{m}{2}1_j;$$

$$3^{\circ} = Poisson Approximation \quad X \quad \text{Appois}(\lambda), \quad \lambda = n \cdot \frac{1}{165} = (\frac{m}{2}) \cdot \frac{1}{365}$$

$$4^{\circ} = Prob \quad (At least | birthday match) = P(X \ge 1) = P(X < 1)$$

$$= 1 - P(X = 0) = 1 - e^{-\lambda} \quad m = 23 ; \quad \lambda = (\frac{23}{3}) \cdot \frac{1}{165} = \frac{203}{347};$$

$$|P(X = 0)| = 1 - e^{-\lambda} \quad m = 23 ; \quad \lambda = (\frac{23}{3}) \cdot \frac{1}{165} = \frac{203}{347};$$

$$|P(X = 0)| = 1 - e^{-\lambda} \quad m = 23 ; \quad \lambda = (\frac{23}{3}) \cdot \frac{1}{165} = \frac{203}{347};$$

Poisson & Binomial

- Poisson \implies Binomial : **conditioning**
- Binomial ⇒ Poisson: taking a limit

Sum of Independent Poissons

$$P(X+Y=k) \stackrel{lotp}{=} \sum_{j=0}^{k} P(X+Y=k|X=j).p(X=j)$$

$$= \sum_{j=0}^{k} P(Y=k-j|X=j).p(X=j)$$

Theorem
$$\frac{b}{b} P(Y=k-1) \cdot P(X=\hat{y}) = \frac{k}{b} \frac{e^{-\lambda_1} \lambda_1^{k-1}}{(k-1)!} \cdot \frac{e^{-\lambda_1} \cdot \lambda_1^{k}}{\hat{y}!}$$

If $X \sim \operatorname{Pois}(\widehat{\lambda_{Y}})$, $Y \sim \operatorname{Pois}(\widehat{\lambda_{Y}})$, and X is independent of Y, then $X + Y \sim \text{Pois}(\lambda_1 + \lambda_2)$.

$$= e^{-(\lambda_1 + \lambda_2)} \cdot \sum_{j=0}^{k} \frac{\lambda_1^{k-j} \cdot \lambda_j^{j}}{(k+j)! j!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{j=0}^{k} \frac{\lambda_1^{k-j} \cdot \lambda_j^{j}}{(k+j)! j!} = \frac{e^{-(\lambda_1 + \lambda_2)}}{k!} \sum_{j=0}^{k} \binom{k}{j} \cdot \lambda_j^{j} \cdot \lambda_k^{k-j}} (\lambda_{j+1} \lambda_2)^{k} \cdot \wedge \ell^{0}(s, \ell_{j+1} \lambda_2)$$

Poisson Given A Sum of Poissons

$$P(X=k \mid x+Y=n)$$

$$= \frac{P(X=k, x+Y=n)}{P(x+Y=n)}$$

$$= \frac{P(X=k) \cdot P(Y=n-k)}{P(X=k) \cdot P(Y=n-k)}$$

OEKEN

Theorem

I heorem

If $X \sim \operatorname{Pois}(\lambda_1)$, $Y \sim \operatorname{Pois}(\lambda_2)$, and X is independent of Y, then the conditional distribution of X given X + Y = n is $Bin(n, \lambda_1/(\lambda_1 + \lambda_2))$.

$$= \underbrace{\frac{e^{-\lambda_{1}} \cdot \lambda_{1} k}{k!}}_{k!} \underbrace{\frac{e^{\lambda_{2}} \cdot \lambda_{1}^{n-k}}{(n-k)!}}_{(n+h_{2})^{n}} = \underbrace{\frac{n!}{k!(n-k)!}}_{k!(n-k)!} \underbrace{\frac{\lambda_{1} k}{(n+h_{2})^{n}}}_{(n+h_{2})^{n}} \underbrace{\frac{\lambda_{1} k}{(n+h_{2})^{n}}}_{(n+h_{2})^{n}}}_{(n+h_{2})^{n}}$$

Poisson Approximation to Binomial

$$\frac{\gamma = nP}{P(x=k)} = \binom{n}{k} p^{k} c+P)^{n-k} = \frac{n!}{k! (n-k)!} p^{k} (+P)^{n-k}$$

$$P = \frac{n!}{k! (n-k)!} p^{k} (+P)^{n-k}$$

$$P = \frac{n!}{k! (n-k)!} p^{k} (+P)^{n-k}$$

Theorem

If $X \sim \operatorname{Bin}(n, p)$ and we let $n \to \infty$ and $p \to 0$ such that $\lambda = np$ remains fixed, then the PMF of X converges to the $\operatorname{Pois}(\lambda)$ PMF. More generally, the same conclusion holds if $n \to \infty$ and $p \to 0$ in such a way that np converges to a constant λ .

$$= \frac{\lambda^{k}}{k!} \frac{n(n-1) \cdot (n-k+1)!}{n! \cdot n! \cdot n!} \cdot (+ \frac{\lambda^{k}}{n})^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \cdot 1 \cdot (-\frac{k}{n}) \cdot (-\frac{k-1}{n})! \cdot (+\frac{\lambda^{k}}{n})^{n} \cdot (-\frac{\lambda^{k}}{n})^{n-k}$$

$$= \frac{\lambda^{k}}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1 = e^{-\lambda} \frac{\lambda^{k}}{k!} \cdot 1 \cdot e^{-\lambda} \cdot 1 = e^{-\lambda} \frac{\lambda^{k}}{k!} \cdot 1 \cdot e^{-\lambda}$$

Proof

Visitors to A Website

Y: Yapois(A),
$$\lambda = np = 2$$

$$P(Y=k) = \frac{e^{-1} 2^k}{k!} k = 0.1,2,...$$

euch day.
He of visitor to the site
$$X \sim Bin(n,p)$$
. $\Lambda = \{0^6, P=2x\{0^{-6}\}\}$
 $P(X \ge 3)$

The owner of a certain website is studying the distribution of the number of visitors to the site. Every day, a million people independently decide whether to visit the site, with probability $p=2\times 10^{-6}$ of visiting. Give a good approximation for the probability of getting at least three visitors on a particular day.

$$P(X33) \approx P(X33) = -P(X<3) = -P(X=0) - P(X=0) - P(X=0)$$

$$= 1 - 5e^{-2} \approx 0.3233.$$

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Typical Distance Measures

- Total Variation Distance
- Kullback–Leibler Divergence
- Jensen-Shannon Divergence
- Bhattacharyya Distance
- Wasserstein Distance (or called "Kantorovich–Rubinstein")

Total Variation Distance

- Distance measure between two probability distributions
- Apply such measure to characterize the accuracy of Poisson approximation

Definition

The **total variation distance** between two distributions μ and ν on a countable set Ω is

$$\frac{d_{TV}(\mu,\nu)}{d_{TV}(\mu,\nu)} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

$$\leq \frac{1}{2} \left(\sum_{x \in \Omega} |\mu(x) + \sum_{x \in \Omega} \nu(x) \right) = \frac{1}{2} (1+1) = 1$$

$$V \cap P^{ols}(p), \qquad V(n) = \underbrace{e^{-\theta} \cdot p^n}_{\text{Also}}(n \ge 0) \qquad \underbrace{\sum_{\text{Also}}^{\infty} V(n) = 1}_{\text{Also}}$$

$$2 | 2 d_{TV}(H_{1}U) = \sum_{X \in N} |H(x) - u(x)| = |H(x) - u(x)| + |H(x) - u(x)| + \sum_{N \geq 2} |H(x) - u(x)|$$

$$= |1 - p - e^{-p}| + |p - pe^{-p}| + \sum_{N \geq 2} |U(x)| + |H(x) - u(x)| = [1 - e^{-p} - pe^{-p}]$$

Let μ be the distribution with $\mu(1) = p$ and $\mu(0) = 1 - p$. Let $\underline{\nu}$ be a Poisson distribution with mean \overline{p} . Then we have $d_{TV}(\mu, \nu) \leq p^2$,

The Law of Small Numbers

Law of Rare Events.

Theorem

Given independent random variables Y_1, \dots, Y_n such that for any $1 \le m \le n$, $\mathbb{P}(Y_m = 1) = \rho_m$ and $\mathbb{P}(Y_m = 0) = 1 - \rho_m$. Let $S_n = Y_1 + \dots + Y_n$. Suppose

$$\sum_{m=1}^n p_m \to \lambda \in (0,\infty) \quad \text{as } n \to \infty,$$

and

$$\max_{1 \leq m \leq n} p_m \to 0 \quad \text{as } n \to \infty,$$

then

$$d_{TV}(S_n, Poi(\lambda)) \rightarrow 0$$
 as $n \rightarrow \infty$.

Gap of Poisson Approximation

• A bound on the gap due to Hodges and Le Cam (1960):

$$d_{TV}(S_n, Poi(\lambda)) \leq \sum_{m=1}^{n} p_m^2,$$

• by Stein-Chen method (C.Stein 1987) we can have a tighter bound on the gap:

$$d_{TV}(S_n, Poi(\lambda)) \leq \min(1, \frac{1}{\lambda}) \sum_{m=1}^n p_m^2.$$

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- 3 Indicator R.V.s and The Fundamental Bridge
- 4 Moments and Indicators
- Poisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fur

Probability Generating Function

Definition

The probability generating function (PGF) of a nonnegative integer-valued r.v. X with PMF $p_k = P(X = k)$ is the generating function of the PMF. By LOTUS, this is

The PGF converges to a value in [-1,1] for all t in [-1,1] since $\sum_{k=0}^{\infty} p_k = 1$ and $|p_k t^k| \le p_k$ for $|t| \le 1$.

Example: Generating Dice Probabilities $6 \le \chi \le 36$

$$\bigcirc F[t^{\times}] = \frac{2}{E_{0}} p(x=k)t^{k} = f(t)$$

$$(t/8)$$

$$D = X = X + \cdots + X = X = E[t^{X}] = E[t^{X}] = E[t^{X}] = E[t^{X}] = E[t^{X}] = E[t^{X}] = E[t^{X}]$$

Let X be the total from rolling 6 fair dice, and let X_1, \ldots, X_6 be the individual rolls. What is P(X = 18)? $E(t^{\times}) = f(t)$

$$\boxed{3} \ \overline{F(t^{\times 1}]} = \frac{6}{5} p(X_{1} = 5) \cdot t^{3} = \frac{1}{6} (t + t^{1} + t^{6})$$

$$\bigoplus_{j=1}^{\infty} f(t^{x}) = \underbrace{\left(\frac{1}{6} \left(t + t^{2} + 1 + t^{6}\right) 6\right)}_{p(k^{2} + 1)} \underbrace{\frac{1}{6} \left(t + t^{2} + 1 + t^{6}\right) 6}_{p(k^{2} + 1)}$$

$$P(X=18) = \frac{3431}{66}$$

tion
$$E(t^{X}) = f(t) =$$

$$\frac{1}{66} \left[t^{6} + 6t^{7} + 21t^{8} + 56t^{9} + 126t^{10} + 252t^{11} + 456t^{12} + 756t^{13} + 1161t^{14} + 1666t^{15} + 2247t^{16} + 2856t^{17} + 3431t^{18} + 3906t^{19} + 4221t^{20} + 4332t^{21} + 4221t^{22} + 3906t^{23} + 3431t^{24} + 2856t^{25} + 2247t^{26}$$

+ 1666+17 + 1161+28 + 756+29 + 456+30 +252+31

$$P(X=a) = P(X=18) = P(X=18) = P(X=28)$$

PGF and Moments

and Moments

$$0 \quad g(t) = \sum_{k=0}^{\infty} p_k t^k = p_0 + \sum_{k=1}^{\infty} p_k t^k;$$

$$g'(t) = \sum_{k=0}^{\infty} p_k \cdot k \cdot t^{k-1} \qquad g'(t)|_{t=1} = \sum_{k=1}^{\infty} p_k \cdot k = \sum_{k=0}^{\infty} p_k \cdot k$$

Let X be a nonnegative integer-valued r.v. with PMF $p_k = P(X = k)$, and the PGF of X is $g(t) = \sum_{k=0}^{\infty} p_k t^k$, we have

•
$$E(X) = g'(t)|_{t=1}$$
• $E(X(X-1)) = g''(t)|_{t=1}$

PGF and Moments PGF of X be ody

$$0 g(t) = \sum_{k=0}^{\infty} p_{k} \cdot t^{k} = p_{0} + \sum_{k=1}^{\infty} p_{k} \cdot t^{k}$$

$$g(0) = p_{0} = p_{0}(x=0)$$

$$g(t) = \sum_{k=1}^{\infty} p_{K} \cdot k \cdot t^{k-1} = P_1 + \sum_{k=2}^{\infty} p_{K} \cdot k \cdot t^{k-1}$$

$$g(t) = P_1 = p(X=t),$$

$$entoday = deleday$$

$$p(X=k) = p_K = \frac{g(t)}{b} = \frac{g(t)}{b}$$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 めので

PGF and Moments

Binomial PMF () x ~ Bin (n,p) = X= X(+++Xn fem q);

$$\begin{aligned}
3 & g_{X}(0) = q^{n} ; g_{X}^{1}(0) = n \cdot p \cdot q^{n-1} ; g_{X}^{1}(0) = \binom{n}{2} p^{2} q^{n} z \\
& - p_{X}(0) = q^{n} ; g_{X}^{(k)}(0) = \binom{n}{2} p^{2} q^{n} z
\end{aligned}$$

Binomial Moments $p_{47} = g_{x(t)} = (p_{1} + q_{2})^{m}$. $p_{1} = q_{2}$

$$\mathcal{O} \qquad g_{x}'(t) = \frac{n p \left(p + q\right)^{n + 1}}{n \left(q + q\right)^{n + 1}} \qquad g_{x}'(t) |_{t=1} = n p = E[x]$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久で

Suppose a coin with probability p for heads is tossed repeatedly, and we obtain a sequence of H and T (H denotes Head and T denotes Tail). Let N denote the number of toss to observe the first occurrence of the pattern "HH". Find E(N) and Var(N).

$$k \ge 3$$
; S_1 : result of the first toss; $S_1 = H \text{ or } T$

$$P_K = P(N=K) = P(N=K, S_1 = H) + P(N=K, S_1 = T)$$

(3)
$$1^{\circ}$$
. $P(N=k, S_1=H)$.
= $P(S_1=H) \cdot P(S_2=T) \cdot P(N=k-2)$
= $P \cdot q \cdot P_{k-2}$

$$P(N=k, S=T)$$

$$= P(S=T) \cdot P(N=k-1)$$

$$= \mathcal{C} \cdot P_{K-1}$$

$$P_{0} = P \cdot Q \cdot P_{K-2} + Q \cdot P_{K-1} + Q \cdot P_{K-1}$$

$$P_{0} = 0; P_{1} = 0; P_{2} = P^{2}$$

$$Q = 1P$$

Find PK => E(H);

on the other hand;
$$PK = PK+1.2 + PK+2.12 = K2.3$$

$$\sum_{k=3}^{\infty} PK+k = \sum_{k=3}^{\infty} (PK+2+PK+12)t^{k} = \sum_{k=3}^{\infty} PK+4.t^{k} + \sum_{k=3}^{\infty} PK+2.t^{k} + \sum_{k=3}^{\infty} PK+2.t^{k} + \sum_{k=3}^{\infty} PK+2.t^{k} + P.2t^{2} \sum_{k=3}^{\infty} PK+2.t^{k} + P.2t^{2} \sum_{k=3}^{\infty} PK+2.t^{k} + P.2t^{2} \sum_{k=1}^{\infty} PK+2.t^{k} + PL-2t^{2} \sum_{k=1}^{\infty} PK+2.t^{k} + PL$$

$$E(N) = g(t) \Big|_{t=1} = g(t) = \frac{1}{p} + \frac{1}{p^2}$$

6
$$P \neq \frac{fair}{j}; \Rightarrow ETN = 6 > 4$$

 $Var(N) = 22$

Outline

- Expectation & Variance
- 2 Geometric and Negative Binomial
- Indicator R.V.s and The Fundamental Bridge
- Moments and Indicators
- Doisson
- 6 Distance between Two Probability Distributions
- Probability Generating Functions
- Reading for Fun

Probability Method

- Paul Erdős initiated this method: Erdős Method
- Widely used in information theory & combinatorics & theoretical computer science
- Main idea: to prove the existence of a structure with certain properties using probability or expectation

Principle I

- First we construct an appropriate probability space of structures.
- Then we show that a randomly chosen element in this space has the desired properties with positive probability

Theorem (The Possibility Principle)

Let A be the event that a randomly chosen object in a collection has a certain property. If P(A) > 0, then there exists an object with such property.

Principle II

Theorem (The Good Score Principle)

Let X be the score of a randomly chosen object. If $E(X) \ge c$, then there exists an object with a score of at least c.

Example: Graph Coloring

- Complete graph (clique): a simple undirected graph in which every pair of distinct vertices is connected by a unique edge.
- Complete graph K_n : a graph with n nodes and $\binom{n}{2}$ edges.

Example: Graph Coloring

Theorem

Given a complete graph K_n $(n \ge 3)$, if $\binom{n}{m} 2^{-\binom{m}{2}+1} < 1$, then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_m subgraph (1 < m < n).

Testing Polynomial Identities

- Randomized algorithms can be dramatically more efficient than their best known deterministic counterparts.
- Input two polynomials Q and R over n variables, with coefficients in some field, and decides whether $Q \equiv R$.
- Example: $Q(x_1, x_2) = (1 + x_1)(1 + x_2)$, $R(x_1, x_2) = 1 + x_1 + x_2 + x_1x_2$.
- *n*-variable polynomial $\prod_{i=1}^{n} (x_i + x_{i+1})$ expands into $O(2^n)$ monomials.

The Schwartz-Zippel Algorithm

- A Monte Carlo algorithm with a bounded probability of false positive and no false negative.
- Input polynomial $M(x_1, ..., x_n)$ and test whether $M \equiv 0$ (M = Q R).
- Assign values r_1, \ldots, r_n chosen independently and uniformly at random from a finite set S to x_1, \ldots, x_n .
- Test if $M(r_1, ..., r_n) = 0$, outputting "Yes" if so and "No" otherwise.
- If "No", then $M \not\equiv 0$.
- If "Yes", it is possible that $M \not\equiv 0$ but r_1, \ldots, r_n happens to be a zero of M.

Schwartz-Zippel Lemma

Lemma

Let $M \in F(x_1, x_2, ..., x_n)$ be a non-zero polynomial of total degree $d \ge 0$ over a field F. Let S be a finite subset of F and let $r_1, r_2, ..., r_n$ be selected at random independently and uniformly from S. Then

$$P[M(r_1,r_2,\ldots,r_n)=0]\leq \frac{d}{|S|}.$$

Remarks

- If we take the set S to have cardinality at least twice the degree of our polynomial $(|S| \ge 2d)$, we can bound the probability of error (false positive) by 1/2.
- This can be reduced to any desired small number by repeated trials.

Summary 1

	With replacement	Without replacement
Fixed number of trials	Binomial	Hypergeometric
Fixed number of successes	Negative Binomial	Negative Hypergeometric

Summary 2

Summary 3

References

- Chapters 4 & 6 of **BH**
- Chapter 2 of **BT**