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Probabilistic Model
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Definition of Random Variables

Definition
Given an experiment with sample space S , a random variable (r.v.) is
a function from the sample space S to the real numbers R . It is
common, but not required, to denote random variables by capital
letters.
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Example: Coin Tosses

Consider an experiment where we toss a fair coin twice. The sample
space consists of four possible outcomes: S = {HH ,HT ,TH ,TT}.
Here are some random variables on this space (for practice, you can
think up some of your own). Each r.v. is a numerical summary of
some aspect of the experiment

X : the number of Heads.

Y : the number of Tails.

I : equals 1 if the first toss lands Heads and 0 otherwise.
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Discrete Random Variable

Definition
A random variable X is said to be discrete if there is a finite list of
values a1, a2, . . . , an or an infinite list of values a1, a2, · · · such that
P(X = aj for some j) = 1. If X is a discrete r.v., then the finite or
countably infinite set of values x such that P(X = x) > 0 is called
the support of X .
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Probability Mass Function

Definition
The probability mass function (PMF) of a discrete r.v. X is the
function pX given by pX (x) = P(X = x). Note that this is positive if
x is in the support of X , and 0 otherwise.
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Example: Coin Tosses
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Valid PMFs

Theorem
Let X be a discrete r.v. with support x1, x2,... (assume these values
are distinct and, for notational simplicity, that the support is
countably infinite; the analogous results hold if the support is finite).
The PMF pX of X must satisfy the following two criteria:

Nonnegative: pX (x) > 0 if x = xj for some j , and pX (x) = 0
otherwise;

Sums to 1:
∑∞

j=1 pX (xj) = 1.
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Bernoulli Distribution

Definition
An r.v. X is said to have the Bernoulli distribution with parameter p
if P(X = 1) = p and P(X = 0) = 1− p, where 0 < p < 1. We write
this as X ∼ Bern(p). The symbol ∼ is read “is distributed as”.
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Indicator Random Variable

Definition
The indicator random variable of an event A is the r.v. which equals
1 if A occurs and 0 otherwise. We will denote the indicator r.v. of A
by IA or I (A). Note that IA ∼ Bern(p) with p = P(A).
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Story: Bernoulli Trial

An experiment that can result in either a “success” or a “failure”
(but not both) is called a Bernoulli trial. A Bernoulli random variable
can be thought of as the indicator of success in a Bernoulli trial: it
equals 1 if success occurs and 0 if failure occurs in the trial.
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Story: Binomial Distribution

Suppose that n independent Bernoulli trials are performed, each with
the same success probability p. Let X be the number of successes.
The distribution of X is called the Binomial distribution with
parameters n and p. We write X ∼ Bin(n, p) to mean that X has
the Binomial distribution with parameters n and p, where n is a
positive integer and 0 < p < 1.
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Binomial PMF

Theorem
If X ∼ Bin(n, p), then the PMF of X is

P (X = k) =

(
n
k

)
pk (1− p)n−k

for k = 0, 1, · · · , n (and P(X = k) = 0 otherwise).
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Binomial PMF
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Binomial PMF

Theorem
Let X ∼ Bin(n, p), and q = 1− p (we often use q to denote the
failure probability of a Bernoulli trial). Then n − X ∼ Bin(n, q).
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Example: Statistical Multiplexing
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Example: Statistical Multiplexing
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Example: Multiple Access (Aloha Protocol)
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Example: Multiple Access (Aloha Protocol)

N smart devices sharing a WiFi access point (e.g., in starbucks)

≥ 2 devices transmit simultaneously lead to collision

Aloha Protocol: proposed by Norman Abramson in the later
1960s

Each device transmits with probability p independently

What is the transmission rate (the number of successful
transmissions per unit time)?
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Example: Multiple Access (Aloha Protocol)
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Urn Model

An urn is filled with w white and b black balls, then drawing n balls
out of the urn

with replacement: Bin(n,w/(w + b)) distribution for the
number of white balls obtained

without replacement: Hypergeometric distribution
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Story: Hypergeometric Distribution

Consider an urn with w white balls and b black balls. We draw n balls
out of the urn at random without replacement, such that all

(
w+b
n

)
samples are equally likely. Let X be the number of white balls in the
sample. Then X is said to have the Hypergeometric distribution with
parameters w , b, and n; we denote this by X ∼ HGeom(w , b, n).
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Hypergeometric PMF

Theorem
If X ∼ HGeom(w , b, n), then the PMF of X is

P (X = k) =

(
w
k

)(
b

n − k

)
(

w + b
n

) ,

for integers k satisfying 0 ≤ k ≤ w and 0 ≤ n − k ≤ b, and
P(X = k) = 0 otherwise.
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Identical Distribution

Theorem
The HGeom(w , b, n) and HGeom(n,w + b − n,w) distributions are
identical. That is, if X ∼ HGeom(w , b, n) and
Y ∼ HGeom(n,w + b − n,w), then X and Y have the same
distribution.
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Story: Discrete Uniform Distribution

Let C be a finite, nonempty set of numbers. Choose one of these
numbers uniformly at random (i.e., all values in C are equally likely).
Call the chosen number X . Then X is said to have the Discrete
Uniform distribution with parameter C ; we denote this by
X ∼ DUnif(C ).
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Zipf Distribution

Zipf’s Law & Zipf distribution: American linguist George
Kingsley Zipf (1902-1950)

Popularity distribution: popularity of the i th most popular term
is proportional to 1/i .

If X ∼ Zipf (α > 0), then PMF of X is:

P(X = k) =
1

kα+1∑∞
j=1(

1
j
)α+1

, k = 1, 2, . . .
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Example of Zipf Distribution: Word Frequency
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Examples of Zipf Distribution

The world population lives in several large cities, a greater
number of medium-sized cities, and a vast number of small
towns.

There are a few websites that get lots of hits, a greater number
of websites that get a moderate number of hits, and a vast
number of websites that hardly get any hits at all.

A library has a few books that everyone wants to borrow (best
sellers), a greater number of books that get borrowed
occasionally (classics), and a vast number of books that hardly
ever get borrowed.
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Definition

Theorem
The cumulative distribution function (CDF) of an r.v. X is the
function FX given by FX (x) = P(X ≤ x). When there is no risk of
ambiguity, we sometimes drop the subscript and just write F (or
some other letter) for a CDF.
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Example

Let X ∼ Bin(4, 1/2), the PMF and CDF of X :
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Example
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Valid CDFs

Any CDF F has the following properties.

Increasing: If x1 ≤ x2, then F (x1) ≤ F (x2).

Right-continuous: the CDF is continuous except possibly for
having some jumps. Wherever there is a jump, the CDF is
continuous from the right. That is, for any a, we have

F (a) = lim
x→a+

F (x) .

Convergence to 0 and 1 in the limits:

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1
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Definition

Theorem
For an experiment with sample space S , an r.v. X , and a function
g : R → R, g(X ) is the r.v. that maps s to g(X (s)) for all s ∈ S .
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PMF of g(X )

Theorem
Let X be a discrete r.v. and g : R → R. Then the support of g(X ) is
the set of all y such that g(x) = y for at least one x in the support
of X , and the PMF of g(X ) is

P (g (X ) = y) =
∑

x :g(x)=y

P (X = x)

for all y in the support of g(X ).
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Example: Maximum of Two Die Rolls

We roll two fair 6-sided dice. Let X be the number on the first die
and Y the number on the second die. What is the PMF of
max(X ,Y ).
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Example: Sympathetic Magic

Given an r.v. X , trying to get the PMF of 2X by multiplying the
PMF of X by 2.

Claiming that because X and Y have the same distribution, X
must always equal Y , i.e., P(X = Y ) = 1.
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Independence of Two R.V.s

Definition
Random variables X and Y are said to be independent if

P (X ≤ x ,Y ≤ y) = P (X ≤ x)P (Y ≤ y) ,

for all x , y ∈ R. In the discrete case, this is equivalent to the
condition

P (X = x ,Y = y) = P (X = x)P (Y = y)

for all x ,y with x in the support of X and y in the support of Y .
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Independence of Many R.V.s

Definition
Random variables X1, . . . ,Xn are independent if

P (X1 ≤ x1, · · · ,Xn ≤ xn) = P (X1 ≤ x1) · · ·P (Xn ≤ xn)

for all x1, · · · , xn ∈ R. For infinitely many r.v.s, we say that they are
independent if every finite subset of the r.v.s is independent.
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I.I.D.

We will often work with random variables that are independent and
have the same distribution. We call such r.v.s independent and
identically distributed, or i.i.d. for short.

Independent & Identically Distributed

Independent & NOT Identically Distributed

Dependent & Identically Distributed

Dependent & NOT Identically Distributed
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Binomial Distribution

Theorem
If X ∼ Bin(n, p), viewed as the number of successes in n
independent Bernoulli trials with success probability p, then we can
write X = X1 + · · ·+ Xn where the Xi are i.i.d. Bern(p).
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Binomial Distribution

Theorem
If X ∼ Bin(n, p), Y ∼ Bin(m, p), and X is independent of Y , then
X + Y ∼ Bin(n +m, p)
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Proof 1: LOTP
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Proof 2: Representation
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Proof 3: Story
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Conditional Independence of R.V.s

Definition
Random variables X and Y are conditionally independent given an
r.v. Z if for all x , y ∈ R and all z in the support of Z ,

P (X ≤ x ,Y ≤ y |Z = z) = P (X ≤ x |Z = z)P (Y ≤ y |Z = z) .

For discrete r.v.s, an equivalent definition is to require

P (X = x ,Y = y |Z = z) = P (X = x |Z = z)P (Y = y |Z = z) .
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Conditional PMF

Definition
For any discrete r.v.s X and Z , the function P(X = x |Z = z), when
considered as a function of x for fixed z , is called the conditional
PMF of X given Z = z .

Ziyu Shao (ShanghaiTech) Lecture 3: Random Variables October 15, 2024 55 / 70



Example: Bayesian Network
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Example: Bayesian Network

A probabilistic graphical model proposed by Judea Pearl in 1985

Represents a set of random variables and their conditional
dependencies

Node: random variables

Edge: conditional dependency

Topology: a directed acyclic graph (DAG)

Each node has a conditional probability table (CPT) with input
from its parent nodes.

Popular models for inference and leaning
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Connection

Binomial =⇒ Hypergeometric: conditioning

Hypergeometric =⇒ Binomial: taking a limit
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Connection

Theorem
If X ∼ Bin(n, p), Y ∼ Bin(m, p), and X is independent of Y , then
the conditional distribution of X given X +Y = r is HGeom(n,m, r).
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Connection

Theorem
If X ∼ HGeom(w , b, n) and N = w + b → ∞ such that
p = w/(w + b) remains fixed, then the PMF of X converges to the
Bin(n, p) PMF.
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Information Theory & Other Fields
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Entropy

Definition
Given a random variable X with a probability mass function p(x) and
a support X . The entropy of X is defined by

H(X ) = −
∑
x∈X

p(x)log2p(x)
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Entropy of Discrete Uniform Distribution

X has a uniform distribution over k outcomes.

p(x) = 1/k

Then the entropy of X is

H(X ) = −
k∑

x=1

p(x)log2p(x) = −
k∑

x=1

1

k
log2

1

k
= log2k
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Balance Puzzle

You have 13 apparently identical gold coins. One of them is false but
is virtually indistinguishable form the others. You also have a balance
with two pans, but without weights. Accordingly, any measurement
will tell you if the loaded pans weight the same or, if not, which
weighs more. How many measurements are needed to find the false
coin?
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Solution
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Entropy Bounds in General
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Summary 1
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