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Definition of Random Variables @3 S_5R

Definition etormaistc

, ————
Given an experiment with sample space S, a random variable (r.v.) is
a function from the sample space S to the real numbers R. It is
common, but not required, to denote random variables by capital
letters.

X‘- Sw»vv\ﬁ ff e
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Example: Coin Tosses °TK
O XHH) =2 X(HT)=|; X(TH)=];

X(17) =0 2 @
Consider an experiment where w a fair coin twice. The sample

space consists of four possible outcomes: 5 {HH,HT ,TH, TT}.

Here are some random variables on this space (for practice, you can
think up some of your own). Each r.v. is a numerical summary of

some aspect of the experiment () re pavt s ¢ G
@ X: the number of Heads. ( Y(HH) = o

@ Y: the number of Tails. Y(rH) =2-Xeu)
@ /: equals 1 if the first toss lands Heads and O otherwise.- 2 -2 HJ

é IcHH) =1 ; L1 (HT)=I

LCTtTH) =0, L(Tt)=0,
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Discrete Random Variable

p(X=0;) ~
S Gee) A e e

Definition

A random variable X is said to be discrete if there is a finite list of
values ar; @, ..., 2 or an infinite list of values aj, a5, -~ such that
P(X =a; for some j) = 1. If X is a discrete r.v., then the Tinite or
countably infinite set of values x such that P(X = x) > 0 is called

the support of X. Lear )
Suppsrt rf’ CON ‘(’sS.{,‘W ‘S H/Tg X+ & %h%;\
X is " _
|Io /} \P(le)zlp(”””)ll!)o X J—ng
4 \
T\ PWX=0)=P(t" )= 50,
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Probability Mass Function @

-
A
Py & )= p(X=x
= /7( /.S: X(S):xg)
Definition
The probability mass function (PMF) of a discrete r.v. X is the
function px given by px(x) = P(X = x). Note that this is positive if

x is in the support of X, and 0 otherW|se

XO DP =R
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_ 4
Example: Coin Tosses P X=x) 2 (se Xi)=x  sesh
(D X=0 @ =1} jtx=) =pix=o) = p177) - #
X=| @8 =HLw Pxct) =p(¥=1) = PCiirom). 4

L, X2 2 &) s HH  J Pxz) 3z P(X=2) =plint )< 7
Consider an experiment where we Zcoss a fair cointwice. -Fhe éam“ble

space consists of four possible outcomes: S = {HH,HT, TH, TT}.
Here are some random variables on this space (for practice, you can
think up some of your own). Each r.v. is a numerical summary of

some aspect of xperiment Kx-fo,1,2 Pxio) =%

piaf. [XETonh  Pxees =%

Yo X: the number of Heads. YERe-$5] P = &
Y6 ® Y the number of Tails. Sumrore of x ’Q' p'm).: z
otherwise.

1s)®_I: equals 1 if the first toss lands Heads an
- Pare

@9 Py o/ =Px) UX“V“’""S «)/Pz(x):"

) Pz =) =pleo)=pCfTH, T )= £ xepor |
Prc)=pQ=y = pclunne]) -7
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Example: Coin Tosses
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Valid PMFs

Theorem

Let X be a discrete r.v. with support x1, xa,.). (assume these values
are distinct arid, for notational simplicity, that the support is
countably infinite; the analogous results hold if the support is finite).
The PMF px of X must satisfy the following two criteria:

° NW: B((x) > 0 if x = x; for some j, and P&(x) =0

otherwise; —

o (Sumsto ) 3%, px (x) = 1.
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Bernoulli Distribution
iz

P(O(:X) = chPP)'-X o X=oor (

~ ol Zmaul‘;'
Co (X, - e¥ue)f” = 7 ‘
Definition @4 03 Gt

An r.v. X-is said to have the Bernoulli distribution with parameteﬁiy
if PIX =1 =pand P(X =0) =1— p, where 0 < p < 1. We write

this as X ~ Bern(p). The symbol ~ is read “is distributed as’ .
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Indicator Random Variable
[A) =p

g A

othepwd ¢

Definition
The indicator random variable of an event A is the r.v. which equals

1 if A occurs and 0 otherwise. We will denote the indicator r.v. of A
by'oré ) Note that /4 ~ Bern( ) with p ={ P(A).

indater fynctin ”«“"

f‘ x€A .
‘['A (?</ /5
o

B bhev\/u(yje
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Story: Bernoulli Trial

An experiment that can result in either a "success” or a "failure”
(but not both) is called a Bernoulli trial. A Bernoulli random variable
can be thought of as the indicator of success in a Bernoulli trial: it

equals 1 if success occurs and 0 if failure occurs in the trial.
—_— L —— T
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G

Xeron]

Story: Binomial Distribution

Suppose that n independent Bernoulli trials are performed, each with
the same success probability p. Let X be the number of successes.
The distribution of X is called the Binomial distribution With
parameters n and p. We write X ~ Bin(n, 85 to mean that X has
the Binomial distribution with parameters n and p, where nﬁa
positive integer and 0 < p < 1.
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Binomial PMF | > Succes &
0 fulme .

@o 9(°(o(91;.

Theorem oy 7D b"wv/ Sequene
If X ~ Bin(n, p), then the PMF of X is Y

V'/k ((o‘/

fork=0,1,---,n (and P(X = k) = 0 otherwise).

Ziyu Shao (ShanghaiTech) Lecture 3: Random Variables October 15, 2024 17 /70



Binomial PMF

Bin(10, 1/2) Bin(10, 1/8)
- (10, 172) - (10, 18)
3 3
o o |
3 3
w w
g5 221
51 51
ol o] e o 1.
24 1 1 1 } ’ g4 } } ; r y
0 2 4 6 8 10 2 4 6 8 10
X X
Bin(100, 0.03) Bin(9, 4/5)
« = , =2
3 3
o | o
3 3
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. le, . |
24 1 1 1 ' ' 2L ' ! } + T
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Binomial PMF

Theorem

Let X ~ Bin(n, p), and g =1 — p (we often to de the
failure probability of a Bernoulli trial). Therf n — 2"“ m
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Luch Sender Luser)

Example: Statistical Multiplexing

X # f WW/%M In &roug (eques, ("oﬁép)'_
N o
) Bomols tmick - Acthe prob. (F) |
Uctire wers >
BN, P
u‘k‘b%’("w The )multiplexor ) ND Stxt&w‘“(’ /hal¢

{7 ( /y: k ) shared medlum

/N o
et J O
P=o.

ketot, w)

N=3¢ p(X)(o)<0,000?
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Example: Statistical Multiplexing

multiplexor

shared medium
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Example: Multiple Access (Aloha Protocol)

-
é/fﬂg E?@.

shared wireless satellite
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Example: Multiple Access (Aloha Protocol)

(U € ke Thre-slot X~ @ dewces Gzuns,
L—g _ S \n-uuw,,\,,t,,
Tine ~Slotted Abha XA Bz\nc/\//p) ‘

mart devices sharing a WiFi access point (e.g., in starbucks)

° 2 2 devices transmit simultaneously lead to collision

@ Aloha Protocol: proposed by Norman Abramson in the later

1960s -
@ Each device transmits with probabilit@dependently

@ What is the transmission rate (the number of successful

transmissions per unit t|me jca,) E(X—l) - pX=1)
(X=1

Meaxmice fir) . o<p< |

( ~ . / N
7€) =0 ; Flo)<o =>pX .+ =0 )P oo 2 N peey
= %e) = kgm0 22 oy 2 03¢
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Example: Multiple Access (Aloha Protocol)
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Urn Model w
forn ( wib)

An urn is filled with w white and b black balls, then drawing n balls
out of the urn

T —

e with replacement: Bin(n, w/(w + b)) distribution for the
number of white balls obtained

@ without replacement: Hypergeometric distribution
N
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Story: Hypergeometric Distribution
P(Xfﬁ-) (la) (n'/z)

C w+b ‘
Consider an urn with w white balls and b black baIIs We dra alls

out of the urn at random without replacement, “such that all ( )
samples are egually likely. Let X be the number of white balls in the
sample. Then X is said to have the Hypergeometric distribution with

parameters w, b, and n; we denote this by X ~ HGeom(w, b, n).
—_——————
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Hypergeometric PMF

Theorem
If X ~ HGeom(w, b, n), then the PMF of X is

(F) ()
k — k
P(X = k) = ! ,
w+ b
(")
for integers k satisfying 0 < k < w and 0 < n— k < b, and
P(X = k) = 0 otherwise.
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Identical Distribution X7 _H&om (wibn)

X 2 ~ N
fint  sumpled toq - MS wh Sompled bads.
J° —_

Second (ol uy Colerr 49 < white bk

Sampled t49 - Yeg oy o
Theorem

The HGeom( W, b, ;[’ and HGeom(n, w + b — n, w) distributions are
identical. That is, if X ~ HGeom(w, b, n) an
Y ~ HGeom(n,w + b — n,w), then X and Y have the same

—

distribution.

Y frot dolor ty .

!e(,f)’?‘ &M\ﬂf.l fﬁ )
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Story: Discrete Uniform Distribution

Let C be a finite, nonempty set of numbers. Choose one of these

numbers uniformly at random (i.e., all values in C are equally likely).
Call the chosen number X. Then X is said to have the Discrete
Uniform distribution with parameter C; we denote this by

X ~ DUnif(C).
/_/-J-)/‘ (xeC)

PX= X) = ((cf
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Zipf Distribution

o Zipf's Law & Zipf distribution: American linguist George
Kingsley Zipf (1902-1950)

@ Popularity distribution: popularlty of the i*" most popular term
is proportional to 1//

o If X ~ Zipf(a > 0), then PMF of X is:
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Example of Zipf Distribution: Word Frequency

= @ power Lo
A vy -t it
S Hewsy tui(
& QOE
3 W) vé=3
2

10
IN | |
I I lmT IT FOR YOU WASWITHON AS HAVE BUT BE THEY
BRENE REEE BE =
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Examples of Zipf Distribution

@ The world population lives in several large cities, a greater

number of medium-sized cities, and a vast number of small
/_—______ e
towns.

SO
@ There are a few websites that get lots of hits, a greater number
. -, .
of websites that get a moderate number of hits, and a vast
number of websites that hardly get any hits at all.

@ A library has a few books that everyone wants to borrow (best
sellers), a greater number of books that get borrowed

occasionally (classics), and a vast number of books that hardly
ever get borrowed. ‘

—
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Defin ition ///‘\ d«‘!orc-fe PMTF D Y:x/
C D T_ \ rw. —_—

?LXSX) :‘ | ntinawes
\u l 4 u,> _piF O(X (X)
Theorem

The cumulative distribution function (CDF) of an r.v. X is the

function Fx givem by Fx(x) = P(X < x). When there is no risk of

ambiguity, we sometim‘e(s\ﬁJ the subscript and just write F (or
CDE.

some other letter) for
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Example

f
PMF
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0.8 1.0

0.6

0.2

0.0

FUs)=p(X<ls)

= Pix=e) tP(X=1)

Let X ~ {Bm(4 ,1/2),)the PMF and CDF of X:
Fule)=rFu.s)

e
-

Coll
o

U945 s 4

A+) = pxsx
SpOEo) + LK V@
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Example X 2 :{%ﬂf\(erwfw.c :f Aomu P(X<40)=0.9
‘\——s
o Sebgmdey P (x<56) = |
1 - :
[ B @57?—)b0 :

0.8 r“”—ﬂ I ““““ , R SRR
.6 ------------------------------------------------
ZA04F -] 4 ]

02F - 4o

O: 1 .1' n L l. 1 n ./). E 1 L 1
20 40 60 > g0 100

Number of iterations
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Valid CDFs

Any CDF F has the following properties.
@ Increasing: If@, then F(x1) < F(x2).
° Rw: the CDF is continuous except possibly for

having some jumps. Wherever there is a jump, the CDF is
continuous from the right. That is, for any a, we have

F(a) = lim F(x).

x—at
@ Convergence to 0 and 1 in the limits: F{X)l*’[x{y
lim F(x)=0and lim F(x)=1
X—>—00 X—>00
——
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Definitio
inition <
s— T or — % R

S ?~> X(S) "*‘) }[Xu))

Theorem

For a eriment with sample space S, an r.v. X, and_w?n
g :@g(X) is the r.v. that maps s to g(X(s)) for all s € S.
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PMF of g(X)

DX)= x*

Theorem

Let X be a discrete r.v. and g : R — R. Then the support of g(X) is

the set of all y such that g(x) = y for at least one x in the support
of X, and the PMF of g(X) is

Pe(X)=y)= ) P(X=x)

x:g(x)=y

for all y in the support of g(X).
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Example: Maximum of Two Die Rolls

mefx,yz rv 4 [' li2.% 4, 6;
0

17 PUmexton=1) pex=1, y=1) = piX=1) pir= )
bt A

We roll two fair 6-sided dice. Let X be the number on the first die
and Y the number on the second die. What is the PMF of

max(X,Y).

o

R lD( N\A)(()(,Y):ZJ :P(}(C_f,rf;x) f’P(X:Z/)/:n)

J
- . - = .
TP 122 ) = 6 S (2
o) . A (o
3 P(_may(x.\(/ =) - 3 c=3 35 ¢
i e
L 72 C ¢
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Example: Sympathetic Magic
O Y=2X fY=y) £ 2pix-y
PUY=Y )=pX=9) =piX=1)

@ Given an r.v. X, trying to get the PMF of 2X by multiplying the
PMF of X by 2.
o Claiming that because X and Y have the same distribution, X
must always equal Y iie, P(X =Y) =1 px=y) pixea) -1
([

) (‘_w f . p(Y"—\) =pPy=0 =3
(‘9 (ocs ¢o\n X 2 indiat, x)¢ Hea&,e\/g);t,)

-‘Q&- L9 n Y - Tui

X/Y /L/ﬂcm(‘/l) ’ But X:\:Y
XY=l > Ty 96
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Independence of Two R.V.s

o

Definition Tolt COF \adivibl COF X
Random variables X and Y are said to gpindependent if

\
PX<x,Y<y)=P(X<x)P(Y<y),

for all x,y € R. In the discrete case, this is equivalent to the

condition
2

Joht PinF M. pmm,
PX=x,Y=y)=P(X=x)P(Y=y)

for all x,y with x in the support of X and y in the support of Y.
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Independence of Many R.V.s

PLARB)= PA)pes)
vt A B.C ndejerdens,

Pebacy = pgypreo

PlcaA ) =pec) pusy

Definition PLANBac) = i Jpusjprc !
Random variables ?ril\’ 5 L;T)f,, are independent if T st o,
EAY (ca)

P(Xlgxly"'7Xn§Xn):P(X1le)"'P(XnSXn)

for all xq,---,x, € R. For infinitely many r.v.s, we say that they are
independent if every finite subset of the r.v.s is independent.
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We will often work with random variables that are independent and
have the same distribution. We call such r.v.s independent and

identically distributed, or i.i.d. for short.

@ Independent & lIdentically Distributed

° Ir;gependent & NOT lIdentically Distributed
@ Dependent & Idem
° m& NOT Identically Distributed

—_— T ~————
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Binomial Distribution

Theorem

If X ~ Bin(n, p), viewed as the number of successes iru
independent Bernoulli trials with success probability p, then we can

write X = X1 + - - - + X,, where the X; are i.i.d. Bern(p).
N~~~
XC = 1(

‘s
Urlat p Swuaﬁwu}
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Binomial Distribution

Theorem

If X ~ Bin(n, p), Y ~ Bin(m, p), and X is independent of Y, then
X + Y ~ Bin(n'+ m, p) B -
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Proof 1: LOTP XoBYcnp) 5 Y~ Binimips

X Uy <he
PUxtY=f ) Ok Cntm

LOTP R

— L PixtYy=k

1)
M
~
%

|
M
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Proof 2: Representation
X bwenyp).
Yo Bacm,p)

X Y

X:X“‘- ”’t— XV; ,

Xd ~Llid .

berncp)
Y/: Yl‘t~r,‘—er/ \//ﬁ/\ll‘k.“/,

Femcp)
(X XD + (e 1y, )
ﬂtm

A Rewncp)
X+ Y ~ B (e, p)
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Proof 3: Story

eath toul -
Saccess wen py
Y.

x N TF(' ff&qesj ;n N /\d«ﬂf&w&we Zenouin; rlaly
nm - - - -

X/k\( 2 4 v% foﬂé (u.aef/ R ‘n y‘_(.‘v‘
KA&Y{\/ [;1\/\ (VH‘M,P)
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Conditional Independence of R.V.s

() =p(-(2-2)

Definition
Random variables X and Y are conditionally independent given an
rv. Z if for all x,y € R and all z in the support of Z,

PX<x,Y<y|lZ=2z)=P(X<x|Z=2z)P(Y <y|lZ=2).
—_— ——

For discrete r.v.s, an equivalent definition is to require

PX=x,Y=y|lZ=2)=P(X=x|Z=2)P(Y =y|Z=2).

V4
—
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Conditional PMF

{P(Xi)() P XeJhng

() (.)( Lredite phng
Definition pXx(2-2), XCouppont.

For any discrete r.v.s X and Z, the function P(X = x|Z = z), when
considered as a fi ion ofﬁbr fixed z, is called the conditional
PMF of X giver(}x:%

N
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Example: Bayesian Network

c /P(X- /?(VZD

o140 N

B

0{0.9 0.1
1]0.2 0.8
0{0.9 0.1
1

0.01 0.99 /

4 E//M,(.(y
\
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Example: Bayesian Network

@ A probabilistic graphical model proposed by(Judea Pearl)n 1985

@ Represents a set of random variables and their cond|t|ona|
- ——————
dependencies

A
@ Node: random variables
,_\_’_“’__’_/

@ Edge: conditional dependency

@ Topology: a directed acyclic graph (DAG)

M
@ Each node has a conditional probability table (CPT) with input
from its parent nodes.

@ Popular models for inference and leaning
(—_V’v#
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Connection

@ Binomial = Hypergeometric: conditioning

@ Hypergeometric = Binomial: taking a limit
<_¢/_\
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)(TY/\-’ gz\n CIHM/F)

Connection DX X ¥eYor
J X, XNz,
@ P(/X‘»X/)érY:r‘) = /7()(—&\[:),)71«-
R R T
P&y pUeY=r)
Theorem

If X ~ Bin(n, p), Yg;EBiI_l(ﬁ,Jﬁ, and X is independent of Y, then

the conditional distribution of X given X +Y = r is HGeom(n, m, r).
_ GRS

( n&:\ )K(w,ﬂ,r

v
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Connection
)\/ T Wth — o9 |

SMP(’gr Wﬁh/wﬁhmt vepla@me, ¢

Theorem

If X ~ HGeom(w, b, n) and N :@ oo such that
p = w/(w + b) remains fixed, then the PMF of X converges to the
Bin(n, p) PMF.
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© Information Theory & Entropy
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Information Theory & Other Fields

Information
Theory

Portfolio Theory
Kelly Gambling
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Entropy Ko P f Lo X=1x]

e othenise .

Hix) = pe)lsy, il =
= I : ("/ﬁl—‘L’ = (,%/ -~ o
p(x) and"

Definition
Given a random variable X with a probability mass function
a support X. The entropy of X is defined by @

H(X) = = p(x)logap(x)
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Entropy of Discrete Uniform Distribution
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@ X has a uniform distribution ovef ;)outcomes.

° p(x)=/k

@ Then the entropy of X is

H(X) = - ZP(X)Ingp(X) == Z %/ngi @

x=1 x=1
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You have

3 lapparently identical gold coins. One of them is false b t
is virtually indistinguishable form the others. You also have a balance
with two pans, but without weights. Accordingly, any measurement ‘\\
will tell you if the loaded pans weight the same or, if not, which \
weighs more. How many measurements are needed to find the false

Eij? (D h (ons . ome »f thew o futse |
VI g = g (e,

@ n(ajlj ;(pyf/“ = j_”;;k =3"2 2h+|

Vv
o
N

Ziyu Shao (ShanghaiTech) Lecture 3: Random Variables October 15, 2024 66 /70



Solution

Ziyu Shao (ShanghaiTech)

Lecture

Random Variables



Entropy Bounds in General
-) n(}jLﬁ Z ("’7Jk

Number of
Maximum Coins L
Known Goal L Weighings for ¢
for n weighings R
coins
Whether target coin is lighteror
T E Identify coin 3" [logs(c)]
heavier than others = .
PP . . 3" -1
Target coin is different from others | Identify coin > ] [logs(2¢+1)]
t coin is different from others, Jldentify if unique coin exists, and 3 = 1
‘ " unia : [logy (2¢ + 3)]
or aﬂ coins are the same whether it is lighter or heavier 2
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Summary 1

=R
. What cayn g g =
- happen? B
(o] 1-1-]
distributions random variables numbers
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