Lecture 10: Statistical Inference

Ziyu Shao

School of Information Science and Technology ShanghaiTech University

December 24, 2024

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 1 / 92

4 0 8

 \Rightarrow э

Outline

- ¹ Overview of Statistical Inference
- ² Point Estimation: Frequentist Perspective
- ³ Point Estimation: Bayesian Statistical Inference
	- Beta & Gamma Distribution
	- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Outline

¹ Overview of Statistical Inference

- Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Probability & Statistics

 $\mathbf{A} = \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

D.

Statistical Inference

- The process of extracting information from available data Example 18

acting information from available date

acting" in EE
- Called "Learning" in CS
- Called "Signal Processing" in EE I Inference

Decess of extractin

"Learning" in CS

"Signal Processin ss of extractin

earning" in CS

gnal Processin forma
in EE

Important Concepts

Our Focus: Parameterized Statistical Inference

- Given a parametric distribution model (a family of PMFs or $PDFs$) $\mathcal{F} = \{p(x; \theta) \mid \theta \in \mathcal{R}\}\$
- \bullet θ is an unknown parameter in a parameter space $\mathcal R$
- Now given (random)sample from such model: $X = (X_1, \ldots, X_n)$
- How to make parameterized statistical inference?

つひい

Example: Parameterized Distribution Model

Parameterized Statistical Inference: Bayesian versus Frequentist

- \bullet Difference relates to the nature of the unknown parameter θ
- \bullet Treated as an random variable Θ with prior (known) distribution: Bayesian approach
- \bullet Treated as an unknown constant θ : frequentist approach

つひい

Core Tasks of Statistical Inference

←□

э

Outline

- **Overview of Statistical Inference**
- ² Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Statistical Inference: Frequentist Perspective

- Hypothesis testing: $H_0: \theta = 1/2$ versus $H_1: \theta = 3/4$
- Composite hypotheses: $H_0: \theta = 1/2$ versus $H_1: \theta \neq 1/2$ \bullet
- "keep estimation **error** $\widehat{\Theta} \theta$ small" Estimation: design an estimator $\widehat{\Theta}$, to \bullet

4 **D F**

Point Estimation: Frequentist Perspective

- Given parameterized distribution model $p(x; \theta)$ (PMF or PDF)
- \bullet θ : unknown parameter.
- Random sample: $X = (X_1, \ldots, X_n)$
- Point Estimation refers to providing a single "best guess" of parameter θ based on random sample X
- **•** Estimator $\hat{\Theta} = g(\boldsymbol{X})$: a function of sample X
- **•** Estimate $\hat{\theta} = g(x)$: when observed date is *x*, i.e., $X = x$

Estimation Method: Maximum Likelihood Estimation (MLE)

- \bullet We observe a particular data $\mathbf{x} = (x_1, \ldots, x_n)$,
- Likelihood: the probability (or probability density) of seeing data χ under different values of parameter θ , i.e., $p(\mathbf{x}; \theta)$
- A maximum likelihood estimate (MLE) is a value of the parameter θ that maximizes the likelihood $p(x; \theta)$ over all possible values:

$$
\hat{\theta} = \arg\max_{\theta} p(\mathbf{x}; \theta)
$$

$$
\frac{1}{\sqrt{2}}\exp\left(\frac{1}{2} \log \frac{1}{2} \
$$

 Ω

 $P(X; \Theta)$

MLE under Independent Case

Random Sample: *{Xi}* are i.i.d., we have

$$
\log[p(\mathbf{x};\theta)] = \log \prod_{i=1}^{n} p(x_i;\theta) = \sum_{i=1}^{n} \log[p(x_i;\theta)]
$$

Thus a maximum likelihood estimate (MLE) under independent case is shown as follows:

$$
\hat{\theta} = \arg \max_{\theta} p(\mathbf{x}; \theta) = \arg \max_{\theta} \log[p(\mathbf{x}; \theta)]
$$

$$
= \arg \max_{\theta} \sum_{i=1}^{n} \log[p(x_i; \theta)]
$$

Example: Biased Coin Problem

\n
$$
1^{\circ} \qquad n \qquad (0)
$$
\n
$$
P: Unkow
$$
\nExample: Biased Coin: P problem

\n
$$
P: Unkow
$$
\nConsider $X = (X_1, ..., X_n)$, $X_2 \wedge P$ form (9), $P(X_{C \cup C}) = P(X_{C \cup C})$

\n
$$
2^{\circ} \qquad X_2 = X_2 \qquad Y_2 = o \text{ for } 1, \quad P(X_{C \cup C}) = P(X_{C \cup C}) = \frac{n}{\sum_{i=1}^{n} \theta} X_{C \cup D} + X_{C}
$$
\n
$$
P(X_{C \cup C}) = P(X; 0) = \frac{n}{\sum_{i=1}^{n} \theta} X_{C \cup D} + X_{C}
$$
\n
$$
= \theta \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} \theta} \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1
$$

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 16/92

 QQ

Example: Biased Coin Problem

Outline

Overview of Statistical Inference

² Point Estimation: Frequentist Perspective

³ Point Estimation: Bayesian Statistical Inference

Beta & Gamma Distribution

⁵ Conjugate Prior: A Weapon of Bayesian

⁶ Application Case: Bayesian Ranking

Reading Option: History of Mathematical Statistics

Statistical Inference: The Bayesian Perspective

- Unknown treated as a random variable prior distribution p_{Θ} or f_{Θ} *Likelihood* • Observation **tun**tor - observation model $\oint_{X|\Theta}$ or $f_{X|\Theta}$
- Where does the prior come from?
	- symmetry
	- known range
	- earlier studies

4 **E** F \leftarrow \leftarrow \leftarrow \rightarrow

- subjective or arbitrary
- Use appropriate version of the Bayes rule to find $p_{\Theta|X}(\cdot | X = x)$ or $f_{\Theta|X}(\cdot | X = x)$

 QQ

The Output of Bayesian Statistical Inference

イロト イ押ト イヨト イヨト

э

Recall: General LOTP

イロト イ部 トイヨ トイヨト

重

Recall: General Bayes' Rule

イロト イ部 トイヨ トイヨト

重

Bayesian Posterior Calculation

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 23 / 92

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Estimation Methods *<u>Estinistan</u>* $\hat{\Theta} = EIG[X]$ • Method 1 is Rosterior Mean? Given the observation data x, the estimation of θ is $\hat{\theta} = E[\Theta|X = x]$ Method 2 is The Maximum A Posteriori Probability (MAP) Given the observation value *x*, the MAP rule selects a value $\hat{\theta}$ that maximizes the posterior probability(probability density) $p_{\Theta|\mathbf{X}}(\theta|\mathbf{x})$: $\hat{\theta} = \arg \max \rho_{\Theta|\boldsymbol{X}}(\theta|\boldsymbol{x})$

Equivalently,
\n
$$
\hat{\theta} = \arg \max_{\theta} p_{\Theta}(\theta) p_{\mathbf{X}|\Theta}(\mathbf{x}|\theta)
$$

Outline

- **Overview of Statistical Inference**
- Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Beta Distribution

 $a=b=1$ function

$$
\frac{\betaeta(t)}{t} = u_{n}f(0,t) \qquad \int_{0}^{t} f(x)dx = t
$$

Definition

 $326-1$

An r.v. *X* is said to have the *Beta distribution* with parameters *a* and *b*, $a > 0$ and $b > 0$, if its PDF is

$$
f(x)=\frac{1}{\beta(a,b)}x^{a-1}(1-x)^{b-1}, \ 0
$$

where the constant $\beta(a, b)$ is chosen to make the PDF integrate to 1. We write this as $X \sim \text{Beta}(a, b)$. Beta distribution is a generalization of uniform distribution.

PDF of Beta Distribution

Ziyu Shao (ShanghaiTech) | Lecture 10: Statistical Inference | December 24, 2024 27/92

÷

 \sim

4 D

 \rightarrow ∢●● É

 \rightarrow \equiv \rightarrow

Expectation of Beta Distribution

$$
\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx.
$$

Lecture 10: Statistical Inference December 24, 2024 28 / 92

Þ \mathcal{A} .

 \sim

◆ ロ ▶ → 何

 \mathbf{A} and \mathbf{B} and \mathbf{B}

重

Gamma Function

Definition

The gamma function Γ is defined by

$$
\Gamma(a) = \int_0^\infty x^a e^{-x} \frac{dx}{x},
$$

for real numbers $a > 0$.

イ何 ト イヨ ト イヨ トー

4 0 F

D.

 QQ

Property of Gamma Function

€⊡

э

Gamma Distribution

$a=1$ if $f(y)=\lambda e^{-\lambda y}$, $y_{>0}$ $E_{X}P$ \circ (λ)

Definition

An r.v. *Y* is said to have the *Gamma distribution* with parameters *a* and λ , $a > 0$ and $\lambda > 0$, if its PDF is

$$
f(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0.
$$

We write $Y \sim \text{Gamma}(a, \lambda)$. Gamma distribution is a generalization of the exponential distribution.

PDF of Gamma Distribution

×. Э×

 \leftarrow

B

÷,

Moments of Gamma Distribution

 $\int \frac{d^2y}{dx^2}$
Ei $y = \frac{1}{2}$
= a Y a Gamma (a, 2) $E(Y) = \frac{a}{\lambda}$ $Var(Y) = \frac{a}{\lambda^2}$

$$
P01150x - Gamma Duality
$$
\n
$$
X \wedge Pois (a)
$$
\n
$$
P^{m}F = P(X=k) = \frac{a^{k}e^{-\lambda}}{k!}
$$
\n
$$
X \wedge (Gamma_{m}e(k+1), 1) = PoF - f(k) = \frac{x^{k}e^{-x}}{k!}
$$

 \leftarrow \Box

э

 QQ

Gamma: Convolution of Exponential

Theorem *Let* $X_1, ..., X_n$ *be i.i.d.* Expo(λ). Then $X_1 + \cdots + X_n \sim \text{Gamma}(n, \lambda).$

 MGF

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

4 0 F

 299

G.

Beta-Gamma Connection

 $X + Y$ independent of $X + Y$

When we add independent Gamma r.v.s *X* and *Y* with the same rate \bigcirc the total $X + Y$ has a Gamma distribution, the fraction $\big(\frac{X}{X+Y}\big)$ nas a Beta distribution, and the total is independent of the fraction.

While running errands, you need to go to the bank, then to the post office. Let $X \sim \text{Gamma}(a, \lambda)$ be your waiting time in line at the bank, and let $Y \sim \text{Gamma}(b, \lambda)$ be your waiting time in line at the post office (with the same λ for both). Assume \overline{X} and \overline{Y} are independent. What is the joint distribution of $T = X + Y$ (your total wait at <u>the bank and post office</u>) and $W = \frac{X}{X+Y}$ (the fraction of your waiting time spent at the bank)?
Story: Bank–post Office $T = x+y$, $w = x+y$ 0 $t > 0$ $t \times t \times t$
 0 $w > 0$ $w = \frac{1}{k}y$ $w > 0$ $y \times t(u \omega)$ $\Rightarrow \frac{\partial f(x,y)}{\partial f(x,y)} = \left[\begin{array}{ccc} 1 & \epsilon \\ 1 & \epsilon \end{array} \right]$ => det C = - t < 0

d
$$
f_{T,w}(t,w) = f_{x,y}(x,y) \cdot |-t| = f_x(x) \cdot f_y(y) \cdot t
$$

\n
$$
= \frac{1}{(l(a) l(x))} a e^{-\lambda x} \cdot \frac{1}{x} \cdot \frac{1}{(l(b) l(x))} a \cdot a \cdot y \cdot e^{-\lambda y} \cdot \frac{1}{y} \cdot t \cdot \frac{x \cdot t^{2}}{y \cdot t^{2}} = \frac{1}{(l(a+1))} \cdot \frac{1}{(
$$

医尿囊下列

目

 Ω

← ロ → → ← 何 →

Story: Bank-post Office \Rightarrow $\beta(a,b) = \frac{\pi a \cdot \pi(b)}{\pi(a+b)}$ $E(w)$? $W \wedge \beta$ etaca,b) 0.206 ,b)o. $T = X + Y$, $W = X + Y$ $X \wedge$ Gamm (G, A) $E(X) = \frac{Q}{A}$ $Y \wedge \cdots \wedge \lambda)$ Ecy = $\frac{6}{3}$ T_{t} w are independent = > $607w$] = $60T$. $60w$] $\Rightarrow E[\omega] = \frac{E[\omega.7]}{E[\tau]} = \frac{E[\times]}{E[\zeta] + E[\gamma]} = \frac{\frac{q}{\eta}}{\frac{q}{\eta} + \frac{1}{\eta}} = ($

÷.

 Ω

イロト イ押ト イヨト イヨトー

Story: Bank-post Office

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → K 9 Q @

Outline

- Overview of Statistical Inference
- Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Conjugate Prior

- **•** Before Monte Carlo, posterior calculation is hard
- Conjugate Prior: reduce the computing complexity of posterior distribution gate Prior
fore Monte Carlo, posterior calculation is ha
njugate Prior: reduce the computing comple
tribution
osely speaking, a prior distribution is conjuga ore Mo
jugate
ributio
selv sr ore Monte
Sugate Prior
Hibution
Selv speakin
- \bullet Loosely speaking, a prior distribution is conjugated to the Before Monte Carlo, posterior calculation is hard
Conjugate Prior: reduce the computing complexity of posterior
distr<u>ibution</u>
Loosely speaking, a prior distribution is conjugate to the
likelihood model if both the prior a in the same distribution family. calculation is hard
computing complexity of position
ibution is conjugate to the
rior and posterior distribution Fore Monte
Aligate Prioritibution
Sely speaking
Sely speaking
Selihood mode
The same distribution Carlo, posterior

or: reduce the compared in the compared in the property

del if both the property in the compared in the property

del if both the property in the set of the property

del if both the property in the set

つへへ

We have a coin that lands Heads with probability *(p)*, but we don't know what p is. Our goal is to infer the value of \widehat{p} after observing the outcomes of *n* tosses of the coin. The larger that *n* is, the more accurately we should be able to estimate p.

k heads outof n tosses

Story: Beta-Binomial Conjugacy
$$
P = r_{u}
$$
 (Pr_{ion}) *Beta* ($\frac{r_{u}}{m}$)
\n $\frac{P(r(x=k|p))}{P(r(x=k))}$ (k(kk)) $\times |p=p \sim B_{in(n,k})|$
\n $= \frac{(p_{1}p_{k+1}p_{n}+p_{k}+p_{k+2}p_{k}+p_{k})}{P(r_{k+1}p_{k}+p_{k})}$
\n $= \frac{(p_{1}p_{k+1}p_{n}+p_{k}+p_{k+2}p_{k}+p_{k})}{P(r_{k+1}p_{k}+p_{k})}$
\n $= \frac{p_{1}(p_{k+1}p_{k})}{P(r_{k+1}p_{k}+p_{k})}$
\n $= \frac{p_{1}(p_{k+2}p_{k})}{P(r_{k+1}p_{k}+p_{k})}$
\n $\frac{p_{1}(p_{1}p_{k})}{P(r_{k+2}p_{k}+p_{k})}$
\n $\frac{p_{k+1}(p_{1}p_{k})}{P(r_{k+1}p_{k}+p_{k})}$
\n $\frac{p_{k+1}(p_{1}p_{k})}{P(r_{k+1}p_{k}+p_{k})}$

Story: Beta-Binomial Conjugacy

 \sim

← ロ ▶ → 何 \sim 重

 299

Story: Beta-Binomial Conjugacy

- **•** Furthermore, notice the very simple formula for updating the distribution of *p*.
- We just add the number of observed successes, *k*, to the first parameter of the Beta distribution.
- We also add the number of observed failures, $n k$, to the second parameter of the Beta distribution.
- So *a* and *b* have a concrete interpretation in this context:
	- **a** as the number of prior successes in earlier experiments
	- \rightarrow *b* as the number of prior failures in earlier experiments
	- \blacktriangleright *a*, *b*: pseudo counts

 \bigvee Λ betalaib) $E(Y) = \frac{a}{a+b}$

Story: Beta-Binomial Conjugacy

If we have a Beta prior distribution on *p* and data that are conditionally Binomial given *p*, then when going from prior to posterior, we don't leave the family of Beta distributions. We say that the Beta is the conjugate prior of the Binomial.

 200

Example: Inference of A Biased Coin

\n\n
$$
\begin{array}{r}\n 0 & \text{Out } f(a,1) = \beta \text{ (with } 1 \\
 0 & \text{Out } f(a,1)\n \end{array}
$$
\n

\n\n $\begin{array}{r}\n 0 & \text{Out } f(a,1) = \beta \text{ (with } 1 \\
 0 & \text{Out } g(a,1) = 0\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } 1 \text{ (orjugacy)} = 0 \text{ (with } a \text{ (with } b \text{) } + a + k)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (orquadratic) } (a, a) = a \text{ (with } b \text{ (with } b \text{) } \text{ (the probability of landing heads, denoted by } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } a \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } a \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } a \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } b \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } b \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{At } a = \beta \text{ (with } a \text{ (with } b \text{ is the value of a random variable } \theta)\n \end{array}$ \n

\n\n $\begin{array}{r}\n 0 & \text{$

Solution

店

Solution

店

 2990

イロメ イ部メ イヨメ イヨメー

Example: Revisit Biased Coin Problem
 ι° AMSE : $\mathbb{E}[\Theta(\chi) = \frac{\chi + \iota}{n + \chi}]$ estimator under Bayesian Average $\frac{2^{\circ}}{16}$ LLSE \therefore LTO $|\times\rangle = E \overline{10}$ + $\frac{Cov(0, x)}{Var(x)} (x-E(x))$
We wish to estimate the probability of landing heads, denoted by θ , of a biased coin. We model θ as the value of a random variable Θ with a known prior PDF $f_{\Theta} \sim Unif(0,1)$. We consider *n* independent tosses and let *X* be the number of heads observed. Find the MMSE *E*(⇥*|X*) and LLSE *L*(⇥*|X*). $X/\theta = \theta \sim \beta \ln(n, \theta)$ $Var(\theta) = \frac{1}{\sqrt{2}}$ \Rightarrow $E[X|\theta=\theta]=n\theta$ $\Rightarrow E[X|\theta]=n\theta$ $E(\theta^1) = \frac{1}{3}$ $Var[x|\theta=\theta] = root0$ = $Var[x|\theta] = n\theta(P)\theta$

 Ω

 $E[X|\theta] = n\theta$; $Var[X|\theta] = n\theta(F\theta)$; Solution \Rightarrow $E[x] = E[E[X|\theta]] = E[n\theta] = nE[\theta] = \frac{n}{2}$ $Var[x] = ETVar(x|\theta)] + Var[TEN|\theta]$ $E[10000] + Var[100]$ $= \Lambda \left[E[\theta] - E[\theta^2] \right) + \Lambda^2 \text{Var}(\theta)$ = $n \int \frac{1}{2} - \frac{1}{3} \int + n^2 \frac{1}{2}$ $=\frac{h}{2}(n+2)$

Solution
\n
$$
Cov(x, \theta) = E[EGx|\theta] - E[0] \cdot E[x]
$$
\n
$$
= E[EGx|\theta]
$$
\n
$$
= E[0 \cdot n\theta]
$$
\n
$$
= n E[0^2] - \frac{n}{4}
$$
\n
$$
= n \cdot \frac{1}{3} - \frac{n}{4} = \frac{1}{12}n
$$
\n
$$
= \frac{n \cdot \frac{1}{3} - \frac{n}{4}}{2 \cdot \frac{n}{4}} = \frac{1}{12}n
$$
\n
$$
= \frac{1}{2} + \frac{\frac{1}{12}n}{\frac{n}{12}n + \frac{n}{2}}(x - \frac{n}{2}) = \frac{x + 1}{n + 2} = \frac{a[0] \times 1}{n + 2}
$$

Solution

店

 2990

イロメ イ部メ イヨメ イヨメー

Each of *n* objects is independently placed into one of *k* categories. An object is placed into category *j* with probability p_i , where the p_i are nonnegative and $\sum_{j=1}^k \rho_j = 1$. Let X_1 be the number of objects in category 1, X_2 the number of objects in category 2, etc., so that $X_1 + \ldots + X_k = n$. Then $X = (X_1, \ldots, X_k)$ is said to have the Multinomial distribution with parameters *n* and $\mathbf{p} = (p_1, \ldots, p_k)$. We write this as $\mathbf{X} \sim \textit{Mult}_k(n, \mathbf{p})$.

Recall: Multinomial Joint PMF

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 57 / 92

Story: Dirichlet-Multinomial Conjugacy Beta - Binomial Conjugacy

If we have a Dirichlet prior distribution on p and data that are conditionally Multinomial given p, then when going from prior to posterior, we don't leave the family of Dirichlet distributions. We say that the Dirichlet is the conjugate prior of the Multinomial.

Likelihood Model: Discrete

 $(\mathsf{a}+\mathsf{k}, \mathsf{b}+\mathsf{n}-\mathsf{k})$ $(a+k, b+n-k)$
 $(M_1+n_1, d_2+n_2, d_{k+1})$ $\frac{d}{dt}$

イロト イ押 トイヨ トイヨ トー

G.

Likelihood Model: Continuous

 \triangleright \rightarrow \exists \rightarrow

◆ ロ ▶ → 何

 \sim \mathcal{A} . 重

Outline

- **Overview of Statistical Inference**
- Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking

Reading Option: History of Mathematical Statistics

 Ω

Rating System

- Consumers rely on the collective intelligence of other consumers: rating ystem

mers rely on the collect

mon metric: 5 star rati

ement: m<u>any ratings ar</u>

y of rating system depe

verage number of stars

verage number of reviews rely on the coll
metric: 5 star int: many ratings
rating system de
a number of stars
a number of review on the collective intelligence of other consurie:

ic: 5 star rating

any ratings are needed to make this system

system depends on

where of stars

where of reviews
- A common metric: 5 star rating
- Requirement: many ratings are needed to make this system work \bullet
- Quality of rating system depends on
	- \blacktriangleright average number of stars
	- \triangleright average number of reviews

Which One to Choose?

• 1. Presto Coffee Pot - average rating of $5/1$ review). \bullet 2. Cuisinart Brew Central - average rating of (4.1) $\overline{78}$ reviews).

 200

Example: Movie Ranking

- Data Set : http://grouplens.org/datasets/movielens/
- **Top Ten Movies**

4 0 F → 母 目

 QQ

Top 10 Movies chosen by Mean

14.1

医前头骨的

← ロ → → ← 何 →

重

Tool: Bayesian Estimation

- Mean of star reviews with a limited number of observations
- Useful for recommender services and other predictive algorithms that use preference space measures like star reviews.

Joint Distribution

- To use Bayesian estimation to compute the posterior probability for star ratings, we must use a joint distribution.
- We are not estimating the distribution of some scalar value X but, rather, the joint distributions of the probability estimate of but, rather, the joint distributions of the probability estimate of
whether or not the reviewer will give the movie $a \ne 1$, 2, 3, 4, or 5
star rating (not just a simple thumbs up or down) star rating (not just a simple thumbs up or down). the posterior prob-
tribution.
of some scalar value
e probability estima
e movie a 1, 2, 3, 4
o or down).
tegorical distribution.
1,2,3,4,5 with
- In this case, the random variable is a categorical distribution because it can take some value within 1,2,3,4,5 with probabilities as follows:

$$
\underline{p_1 + p_2 + p_3 + p_4 + p_5} = 1
$$

Multinomial Distribution

 \bullet We can compute our posterior probability with N observations) for five categories with corresponding numbers K_1, K_2, K_3, K_4, K_5 as follows: Distribution
pute our posterior probability with \widehat{N} observed
cories with corresponding numbers K_1, K_2, K
 $\widehat{N} \left(O | p_1, p_2, p_3, p_4, p_5 \right) \propto p_1^{K_1} p_2^{K_2} p_3^{K_3} p_4^{K_4} p_5^{K_5}$
 $\cdots + K_5 = N.$
Itinomial distri ition

osterior probability with M observations

corresponding numbers K_1, K_2, K_3, K_4, K_5
 $(i k \epsilon l i h w d \text{ (} \mu s d \epsilon l \text{)}$
 $(p_3, p_4, p_5) \propto p_1^{K_1} p_2^{K_2} p_3^{K_3} p_4^{K_4} p_5^{K_5}$
 $= N.$ *N* observations
 K_1, K_2, K_3, K_4, K_5
 $p_4^{K_4}p_5^{K_5}$ pute our posterior proposition
gories with correspond
 Gk_{ϵ}
 $P_{\epsilon}(O|p_1, p_2, p_3, p_4, p_5)$
 $\ldots + K_5 = N$.
Itinomial distribution.

 $Pr(O | p_1, p_2, p_3, p_4, p_5) \propto p_1^{K_1} p_2^{K_2} p_3^{K_3} p_4^{K_4} p_5^{K_5}$ Likelihood Model

where $K_1 + ... + K_5 = N$.

• This is a multinomial distribution.

$$
\alpha_j^1 = K_j + \alpha_j^0, \forall j
$$

Expected Average

- What is the expected value of the average rating given a posterior in the shape of our Dirichlet distribution?
- The expected value of the average rating based on the posterior is then computed for our star ratings as follows:

ed Average
it is the expected value of the average rating given a
erior in the shape of our Dirichlet distribution?
expected value of the average rating based on the po
en computed for our star ratings as follows:

$$
E(p_1 + 2p_2 + 3p_3 + 4p_4 + 5p_5 | 0) = \sum_{i=1}^{5} iE(p_i | 0)
$$

by our Dirichlet distribution we can compute the proba
star value given our observations as the ratio of the D
meter for that star to the sum of the Dirichlet param

Using our Dirichlet distribution we can compute the probability of a star value given our observations as the ratio of the Dirichlet parameter for that star to the sum of the Dirichlet parameters:

Intra-Item: Bayesian Average Rating
\n
$$
C = 0
$$
\n
$$
N
$$
\n
$$
2^e
$$
\n
$$
N = 0
$$
\n
$$
S = 0
$$
\n
$$
2^e
$$
\n
$$
N = 0
$$
\n
$$
S = 0
$$
\n
$$
P_{\text{min}}
$$
\n
$$
P_{\text{min}}
$$
\n
$$
S = 0
$$

- *N*: the number of reviews
- *m*: a prior for the average of review scores
- *C*: a prior for the number of reviews

Example: Movie Ranking

- Data Set : http://grouplens.org/datasets/movielens/
- **Top Ten Movies**

4 0 F → 母 化重 经一 э QQ

Case 1: $m = 3.25$ & $C = 50$

重

Case 2: $m = 2$ & $C = 6$

イロメ イ部 メイミメ イミメー

Ε

Inter-Items: Pseudo Bayesian Average Rating

- \bullet \bar{m}_i : bayesian average rating for item *i*
- *N*: the number of reviews for all items $\frac{\overline{m}_i:1}{N:1}$
- *mi*: average of review scores for item *i*
- *Ci*: the number of reviews for item *i*

Example: Bayesian Changes Order $N = |0+15+128+150+129|32\rangle$

$$
\Sigma
$$
 (rating) = 0×9.420 t 15×9.60 + 228×9.85 + 150×9.16
 $t_{129 \times 9.458} = 2332.67$

Reverse Engineering Amazon

• Bayesian adjustment Recency of view \bullet • Reputation score

4 D F

Э× э

• Too few or too outdated reviews penalized

• Very high quality reviews help a lot

 \leftarrow \Box

 \equiv \rightarrow э

Summary

- Average ratings scalarize a vector and ranks
- Number of ratings should matter, Bayesian ranking does that
- Other statistical methods help too

 Ω

Outline

- **Overview of Statistical Inference**
- Point Estimation: Frequentist Perspective
- Point Estimation: Bayesian Statistical Inference
- Beta & Gamma Distribution
- ⁵ Conjugate Prior: A Weapon of Bayesian
- ⁶ Application Case: Bayesian Ranking
- Reading Option: History of Mathematical Statistics

Classical Statistics

- 1800s: Linear Statistical Model and the method of least squares for estimation is often credited to Gauss (1777-1855) (1809), Adrien-Marie Legendre (1752-1833) (1805), Robert Adrain (1775-1843).
- Gauss also showed the optimality of the least-square approach (Gauss-Markov Theorem, 1823).

 \leftarrow \Box

 Ω

Classical Statistics

- 1888: Sir Francis Galton proposed the concept of correlation
- 1889: Sir Francis Galton proposed the concept of regression correlation
regressio f <u>correlation</u>
f regression
ard
- 1889: Sir Francis Galton proposed the Galton Board

Classical Statistics

 $\begin{array}{l} (c+l) \\$ Narl Pearson (1857-1936) is credited for the establishment of the discipline of statistics. He contributed to theory of linear regression, correlation, Pearson curve, chi-square test, and the method of moments for estimation.

 Ω

- 1908: William Gosset (Student) (1876-1937) proposed Student t-distribution and t-test statistics
- **•** Precursor of small-sample statistics and hypothesis testing.

€⊡

つひひ

- 1912-1922: Sir Ronald Aylmer Fisher (1890-1962) developed the notion of maximum likelihood estimator.
- He also worked on the analysis of variance (ANOVA), F-distribution, Fisher information and design of experiment.
- Co-founder of Modern Statistics (Mathematical Statistics or Statistical Inference)

つひひ

Egon Sharpe Pearson (1895-1980): co-founder of Neyman-Pearson Theory for hypothesis testing.

 200

- \bullet (Jerzy) Neyman (1894-1981): Co-founder of Modern Statistics (Mathematical Statistics or Statistical Inference)
- 1928-1938: Theoretical foundations of testing hypothesis, point estimation, confidence interval and survey sampling.

. . .

つひひ

• 1940s: Pao-Lu Hsu (1910-1970) obtained several exact or asymptotic distributions of important statistics in the theory of multivariate analysis.

Modern Statistics: Bayesian Perspective

- 1937: Bruno de Finetti proposed a predictive inference approach to statistics, emphasizing the prediction of future observations based on past observations.
- 1939: Harold Jeffreys applied Bayesian analysis for geophysics data.
- 1941-1944: Alan Turing applied Bayesian analysis for breaking the German code (Enigma)
- 1954s:Jimmie Savage proposed Bayesian statistics systematically
- 1950s: Bayesian econometrics originated from Harvard business school prevailed in economics society
- 1950s-1988: Efficient Monte carlo methods such as Metropolis and Gibbs sampling appeared.
- 1990-present: Bayesian statistics become the focus of mathematical statistics

G.

References

- Chapters 9 of BH
- Chapters 4 & 6 & 8of BT

4 D F ∢●● ⋍ **IN** 重

 299