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Outline

@ Overview of Statistical Inference
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Probability & Statistics

-@ _ @ (Pr ability theory

/

Data Models
—_—

Inference/Statistics
———
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Statistical Inference

@ The process of extracting information from available data
o Called “Learning” in CS

\_w’—’
o Called “Signal Processing” in EE>

~— ~——
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Important Concepts

@ Sample: random vector X = (Xi,..., X,) where n is the sample

, — e A AL a8 7
size
e Random Sample: {X;} are i.i.d random variables and X; @
r—’w ——TT
e Data: real vector x = (xq,...,X,), the value of sample X

F le to inf f Populati

° ronw Infer property of Population

oétatistic:) a function of sample X
-~
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Our Focus: Parameterized Statistical Inference

@ Given a parametr |str|but|on model (a family of PMFs or

PDFs ) F =

—
@ fis an unknown parameter in a parameter space R

@ Now given (random)sample from such model: X = (Xi,...,X,)
D

@ How to make parameterized statistical inference?
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Example: Parameterized Distribution Model
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Parameterized Statistical Inference: Bayesian
versus Frequentist

o Difference relates to the nature of the unknown p@

@ Treated as an random variable © with mnown
distribution: Bayesian approach
———

@ Treated as an unknown constant #: frequentist approach
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Core Tasks of Statistical Inference

int Estimatign: @

o Interval Estimation (Confidence Interval)
—~———————

@ Hypothesis Testing
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Outline

© Point Estimation: Frequentist Perspective

—
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Statistical Inference: Frequentist Perspective

Classical statistics: unk[_(own constant 6 j
0 - X S
——)| px (z;0) H Estimator |——>

Hypothesis testing: Hp: 60 = 1/2 versus Hy : 0 = 3/4

Composite hypotheses: Hgp: 60 =1/2 versus Hy : 0 #=1/2

Estimation: design an estimatgr @, tg “keep estimation error © — 0 small”
—_—

—_—

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024

12/92



Point Estimation: Frequentist Perspective

@ Given parameterized distribution model p(x; ¢) (PMF or PDF)

@ #: unknown parameter. -

@ Random sample: X = (Xi,...,X,)

o Point Estimation refers to providing a single “best guess” of
parameter 6 b n random sample X

e Estimator(® = g(X):)a funcmle X
N —
o Estimate 0 = g(x): when observed date is x, i.e., X = x
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Estimation Method: Maximum Likelihood
Estimation (MLE) |

PC X;9)

@ We observe a particular data x = (xq, ..., Xp),

ittt Sl A
@ likelihood: the probability (or probability density)wﬂg\d_at_a
& under different values of parameter 0, i.e., p(x;6)

—

e A maximum likelihood estimate (MLE) is a value of the
parameter ) that maximizes the likelihood p(x; 6) over all
possible values:

0 = arg max p(x;0)

S MG mex WY pOGE)
T e
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MLE under Independent Case

e Random Sample: {X;} are i.i.d., we have

log[p(x; )] = log | | p(xi;0) = > _ log[p(xi;0)]

c i=1

@ Thus a maximum likelihood estimate (MLE) under
independent case is shown as follows:

0 = arg max p(x;0) = arg max log[p(x; 0)]

= argmax ) _ log[p(x;; 0)]

i=1
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Example: Biased Coin Problem “™ feco/

o
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Outline
© Point Estimation: Bayesian Statistical Inference
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Statistical Inference: The Bayesian Perspective

. Unknoﬁn €] ) e Where does the prior come from?

— treated as a random variable — symmetry
— prior distribution pg or fo — known range
P e
Uléeb‘)!»l — earlier studies

o Observatio
i functo, — sSubjective or arbitrary
— observation model(@x|o or fx|o
—— -

e Use appropriate version of the Bayes rule
to find pg x ([ X =) or fox(-|X =)

o,
| Observation @ Posterior

Process Calculation,
— T ——
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The Output of Bayesian Statistical Inference

ELECTORAL VOTE DISTRIBUTION FOR OBAMA
ROMNEY 14.62 84.59%

The complete answer is a posterior distribution: %
PMF p@‘X( I x) or PDF f@]x( | .’E) o 5% .
= %
g 3%
p9|X(' | z) foix (=) ;_2 2%
| 1%
(I . R
NUMBER OF ELECTORAL VOTES
Prior pe Tttt [
—»| Observation | % Posterior | PoIx(* | X =) 1 Point Estimates |
> > o [
—»| Process Calculation ! Error é\tzalysns :
Conditional LI, N |
Px|e
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Recall: General LOTP

Y discrete Y continuous

X discrete P(X=1z)= ;P(X =z2lY =y)P(Y =y) PX=z)= jfic P(X =z|Y =y)fy(y)dy

X continuous Ix(@) =X Ix(@lY =y)P(Y =y) Ix(@) = J20 fxy (2ly) Sy (y)dy
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Recall: General Bayes' Rule

Y discrete Y continuous
X discrete P(Y =y|X = 2) = ZE=Lnl0=0 -y (y) X = ) = ZESZRouiv@)
X continuous PY =y|X =z)= % frix(ylz) = W
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Bayesian Posterior Calculation

The Four Versions of Bayes’ Rule
e O discrete, X discrete:

0 = — 2
PBIX( | z) pe(ﬁ”)l’x\@(z ‘ 9/’)

e O discrete, X continuous:

po(0)fxie(z|0)

(0]z) = .
Pe|x x 'a ’fx\e(ﬂ?\g' __— LOTF

I'a

e O continuous, X discrete: )

fe(e)PX|e§z|9) '
o(#)px|e(z|0)d

foix(@]z) =

e O continuous, X continuous:

foO)ixjo@]0)
( fo(8")fxje(z|6") A

foix(@]z) =
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Estimation Methods Ot
@ = ’Ef@( X

—_— R
@ Method 1 is RPosterior Mearr Given the observation data x, the

estimation of # is § = E[O|X = x|
o Method 2 is The Maximum A Posteriori Probability (MAP)

@ Given the observation value x, the MAP rule selects a value 0
that maximizes the posterior probability(probability density)

p@|x(9|X)Z R
0 = arg max Pojx (0]x)

L~

e Equivalently,
0 = arg max pe(f)pxje(x|0)

—_——
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Outline

@ Beta & Gamma Distribution
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Beta Distribution Q=b=1 - derc
(
M - u"’tj([oi yy jo fog by =
Definition =)

An r.v. X is said to have the Beta distribution with parameters a and
b,a>0and b> 0, if its PDF is

f(x)= 1 -x)"" 0<x <1,

5 (a, b)
where the constant (a, b) is chosen to make the PDF integrate to 1.
We write this as X ~ Beta(a, b). Beta distribution is a generalization

of uniform distribution.

_

v
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PDF of Beta Distribution
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S(a, b) = /1 X711 — x)Pdx.
— 0

Lecture 10: Statistical Inference



Gamma Function

Definition
The gamma function I is defined by

ra) = [ xer s,
0

for real numbers a > 0.
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Property of Gamma Function
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Gamma Distribution A= ; fiy= e ,

>0

Expo())

-
Definition
An r.v. Y is said to have the Gamma distribution with parameters a
and A\, a>0and A > 0, if its PDF is
1 1
f(y)==——=0y)Y e ™M=, y>0.
)= i WP e

r———w
We write Y ~ Gamma(a, ). Gamma distribution is a generalization
. . . . R R S
of the exponential distribution.
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PDF of Gamma Distribution
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Moments of Gamma Distribution

\{A ((amw\u(,ajﬂ)
a
E(\f/ = 5

YLD,
Verty)=

ELY/ “Vvary)
<a
a
A /7“,(/
F’—/\
POIIJN - G(“MMM.
X/Lyoiél;\)/ paaF
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Gamma: Convolution of Exponential

Theorem
Let Xy, ..., X, be i.i.d. Expo()\). Then

X1+ -+ X, ~ Gamma(n, \).

-~

MG T
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Beta-Gamma Connection

X'TY l\w'&y‘u.d«-i 72 ?f;

Q) the total X + Y has a Gamma distribution, the fraction as
a Beta distribution, and the total is independent of the fractior.

_—

When we add independent Gamma r.v.s X and Y with the(s:;rate
X
X+Y
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Story: Bank—post Office

L

While running errands, you need to go Mthen to the post
office. Let X ~ Gamma(a, \) be your waiting time in line at the

bank, and let YﬁMbe your waiting time in line at the
post office (with the same \ for both). Assume X and Y are
independent. What is the joint distribution of T = X + Y (your total

wait at the bank and post office) and W = 25 (the fraction of your
waiting time spent at the bank)?
 HiMe spent at the bank)
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Story: Bank—post Office T= %=y

W=y
10  toxty
<ty Yto) Fib) T ]
-z ~w
e (5 L L

G L
- (7‘ -AX a2 ] ) _ , X=tw
My P07 €750 e, ) ey ¢ /)

Y= €l

[ —_
- - — Mt}‘”b,e,f)f PR
pleys/ (Taty T
—— — =

T A G
w N [;(’{aLé/.b/ ~ “” (Cfb)/‘i)
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Story: Bank—post Office

Tl [1ts)
—:) ]g(a-,lb) =
Tiaty)
WA feteas) 070, bre Ecw/ 7
— o
oy v X G B S
L — -
S (b, )
Y~ oA Ey) . S |
T are inde 1 ~
(4 W arle peselait =) EQ T\«JJ =E(T)-Efwj
= Q
iy £ ed 3.
g © 6q IR
AR 2t7 (o
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Outline

© Conjugate Prior: A Weapon of Bayesian
_—_—nmn
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Conjugate Prior

@ Before Monte Carlo, posterior calculation is hard

@ Conjugate Prior: reduce the computing complexity of posterior
distribution —

@ Loosely speaking, a prior distribution is @ to the
likelihood model if both the prior and posterior distribution stay

in the same distribution family.

PN

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 41/92



Story: Beta-Binomial Conjugacy

|

We have a coin that lands Heads with probability/p), but we don't
know what p is. Our goal is to infer the value of/p after observing
the outcomes of n tosses of the coin. The largerthat n is, the more
accurately we should be able to estimate p.

R heads Wtﬁﬁ n tilec
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Story: Beta-Binomial Conjugacy pore @ﬁefﬂw
X #’fﬁJ ot
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Story: Beta-Binomial Conjugacy
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Story: Beta-Binomial Conjugacy

@ Furthermore, notice the very simple formula for updating the
distribution of p.

@ We just add the number of observed successes,;lg, to the first
parameter of the Beta distribution.
m

@ We also add the number of observed failures, n — k, to the
second parameter of the Beta distribution.

@ So a and b have a concrete interpretation in this context:

» a as the number of pqgﬂsgg@se_s in ea.rher exp_en,msnts

» b as the number of prior failures in earlier experiments
e —_—

» a, b: pseudo counts
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@vs. Bayesian Average A betu (asy

B = ao

@ Infer the value of p (probability of coin lands heads)

@ Observe @ out of n tosses of the coin /{m‘“*k
° MeLaEn' k Penk )

@ Bayesian Average: E(p|X = k) :

@ Suppose the prior distribution is Unif(0,1): a=1,b=1
NNSN————

@ Bayesian Average:

@ When k = n, we have:@mean) VS. @Bayesmn average)
Mg
nel
n 7' e |

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 47/92




Story: Beta-Binomial Conjugacy

If we have a Beta prior distribution on p and data that are

conditionally Binomial given p, then when going from prior to
posterior, we don't leave the family of Beta distributions. We say

that the Beta is the conjugate prior of the Binomial.
—_— e ————

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 48 /92



Example: Inference of A Biased Coin
{o. leﬁnj@wﬂ)) -ﬂfﬂu (1) #9fhua‘5 X{@g’%)ﬂm@)
By ﬂfU—Z?now»i'q.t. Ca»«:jugamy > Q/D(:k ~ peta (/_(.ﬁ/ /+nl/z)
_ [+ k ﬁJ«I A X+
/63 =ELO 0(«/1\] T Hitltnk T "H'J- =) 67% nt=2 -
We wish to estimate the probability of landing heads, denoted by 9,
of a biased coin. We model 6 as the value of a random variable ©

with a known prior PDF fg ~ Unif(0,1). We consider n independent
tosses and let X be th. Find the MAP

estimator of ©. Pt por e
@ 7 phk f
2% MAP Estmator. Ox=k ) oZ p* o)™
—_—

P
Ousp = “”72’” 709{7(:/2 6 = “’7’;“ 0" e/

=) /8\,(,1/&{? = ':; : =) 624(, (x) :@ @@
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Solution
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Example: Revisit Biased Coin Problem
Y mmse 2 T(OIx] =
'eST'\N\A‘('w U/hd&r Zhyes-z, AJ@"‘je
. Lise . LTelx) =El8] + ﬂl‘;% (X-E(x))
We wish to estimate the probability of landing heads, denoted by 6,
of a biased coin. We model ¢ as the value of a random variable ©
with a known prior PDF fg ~ Unif(0,1). We consider n independent

tosses and let X be the number of heads observed. Find the MMSE
E(©]|X) and LLSE L(©|X).

X[0=6 ~Blan,0)

—_ ——

=> E(x[0=0]=n0 =>cix(@]-00

Upr(x[©-6] =row-e) = Ver(x(@] -ngcrg )
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Solution EXIO]=n® 5  UarlxlO]= N6 cF@)

= Elx] = ELEO]] = E[nO]- nere]- 2 -

Ve 1<

W

EL l/ar‘(X/e)J tVar [ ETX}@]]

-

E( n9c@)]) +Vor( nB]
n(Ete]-cw4) ) + 0 horio)

4 ,
mfl‘jj-(‘ n)‘/lz

n
= z (/l+2.)

\)

—_
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Solution

= E[EZQx/QjJ - 4.2
- E[@E[xjajj o
= El®-ne] - -

= negt) - 7

_ L n
‘n‘J‘*Z = ﬁfl

=) LLSE LTO[x) = ero) + L2@.x)

—L UW()Q CX_E
- L =7
ST T(X‘I” — X%
L W) nt,
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Recall: Story of Multinomial Distribution

Each of n objects is independently placed into one of k categories.
An object is placed into category j with probability p;, where the p;
are nonnegative and Zj.;l p; — 1. Let X; be the number of objects
in category 1, X, the number of objects in category 2, etc., so that
X1+ ...+ Xe=n. Then X = (Xi,...,Xy) is said to have the
Multinomial distribution with parameters n and p = (p1, ..., px). We
write this as X ~ Mult,(n, p).
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Recall: Multinomial Joint PMF

— / n, n
oS P e
Theorem

If X ~ Multy (n, p), then the joint PMF of X is

P(Xy=ny,... Xk =ng) = prtp3t...pL¢

for ny, ..., n, satisfying ny + - -+ + ng = n.
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.. . : . S 4 b/
Dirichlet Distribution Petata)  Por oG P g,

The Dirichlet distribution is parameterized by a vector « of positive

real numbers. A
(= -
o The PDF is: > PO R e

f(pl,p2, vy Pry Q1,0 L ,OéK)

where py+ ...+ pr=1and 0 < p; < 1.
@ The marginal mean of P; is:

E(P) -
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Story: D|r|chlet—MM Conjugacy

/ZGU — E)‘no,,%(

6@"")\ VL? ac7

If we have a Dirichlet prior distribution on p and data that are
conditionally Multinomial given p, then when going from prior to
posterior, we don't leave the family of Dirichlet distributions. We say
that the Dirichlet is the conjugate prior of the Multinomial.
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Likelihood Model: Discrete

(ath, btn-fz )

(X, T, chtn,, e )

Sample Space | Sampling Dist.

Conjugate Prior

Posterior

X ={0,1} Bernoulli(9) Beta(a, ) Beta(a + nX, 8 +n(1 — X))
X=Z, Poisson()\) Gamma(a, 3) Gamma(a +nX, 8 +n)
X=2Z,, Geometric(d) | Gamma(a, ) Gamma(a +n, 8 + nX)

X =Hg Multinomial(6)

Dirichlet()

Dirichlet(a + nX)
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Likelihood Model: Continuous

Sampling Dist.

Conjugate Prior

Posterior
Uniform(6) Pareto(vy, k) Pareto (max{vo, X(n)},n + k)
Exponential(6) Gamma(a, ) Gamma(a + n, 8 + nX)

N(u,0?), known o?

N (po,03)

1 n\ ! o nX 1 n\ !
N[[=+2= Ul — 4=
((oa%ﬂ) (#;*«ﬂ ’(aaﬂﬂ)

N(p,0?), known

InvGamma(c, )

n e T—
i ZX )2
InvGamma(a+2,6+2(X u))

N(p,0?), known

ScaledInv-x(vo, o)

Voo . n(X — p)?
vy+n vo+n

ScaledInv-x? [ vy + n,

N(p,X), known

N (120, 20)

N (K (25% + nz—lf) K) , K= (S +n3) 7

N(u, %), known p

InvWishart(vy, So)

InvWishart(vy + n, So + nS), S sample covariance
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Outline

@ Application Case: Bayesian Ranking
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Rating System

@ Consumers rely on the collective intelligence of other consumers:
rating

@ A common metric: 5 star rating

o Requirement: many ratings are needed to make this system work

@ Quality of rating system depends on
» average number of stars

> average number of reviews

—_—
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Which One to Choose?

@ 1. Presto Coffee Pot - average rating of 51 review))

o 2. Cuisinart Brew Central - average rating of(4.1 [78 reviews).
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Example: Movie Ranking

e Data Set : http://grouplens.org/datasets/movielens/
@ Top Ten Movies
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Top 10 Movies chosen by Mean

title count | mean
Aiging wansui (1994) /1 5
They Made Me a Criminal (1939) /1 5
Great Day in Harlem, A (1994) 1 5
Saint of Fort Washington, The (1993) L2 5
Entertaining Angels: The Dorothy Day Story (1996) | 1 | 5
Someone Else’s America (1995) 1 | 5
Star Kid (1997) 3 | 5
Santa with Muscles (1996) 2] 5
Prefontaine (1997) | 3] 5
Marlene Dietrich: Shadow and Light (1996) \ 1/ 5
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Tool: Bayesian Estimation

@ Mean of star reviews with a limited number of observations

@ Useful for recommender services and other predictive algorithms
that use preference space measures like star reviews.
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Joint Distribution

@ To use Bayesian estimation to compute the posterior probability
for star ratings, we must use a joint distribution.

@ We are not estimating the distribution of some scalar value X
but, rather, the joint distributions of the probability estimate of
whether or not the reviewer will give the movie a 1, 2, 3, 4, or 5
star rating (not just a simple thumbs up or down). =~ ~ =~

@ In this case, the random variable is a categorical distribution
because it can take some value within 1,2,3,4,5 wit
probabilities as follows:

0
prtp2tpstpstps=1
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Multinomial Distribution

@ We can compute our posterior probability with\N observations

for five categories with corresponding numbers Ki, Ky, K3, Ky, Ks
as follows: -

ul(f,tihml Mode(
Pr(O|p1. p2, p3, Pa, Ps) o p1 P32 P pi pa®
W
where K1 + ...+ Ks = N.

@ This is a multinomial distribution.
—————— ———  —
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Dirichlet Distribution: Prior ol

_ o o
- (0/( 7 / OIKJ
PfW JoM 77 o0 - o
o o P p S pf/(’ /
@ If we include our prior as a distribution of the exact same form in
the proportlonallty equation (e.g. a Dirichlet distribution with

parameter a°), then oC Pr(o[p,.‘ Vs) < Pr(f, n)
Pfﬁf-/’g f’rkf
K+a

Pr(p1, p2, p3, Pa, ps| 0) o [ [ pi—

Jl"'

O/ ’(0(;’/ D‘fl)

@ This is another Dirichlet distribution with another parameter o

—

a—K—l—a , Y
—_—
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Expected Average
@ What is the expected value of the average rating given a
posterior in the shape of our Dirichlet distribution?

@ The expected value of the average rating based on the posterior
is then computed forxrggirxstarffa;ifnfgfs as follows:

@1 +2pa + 3ps + 4ps + 5ps O) Z/E pi|O)

S~_

@ Using our Dirichlet distribution we can compute the probability
of a star value given our observations as the ratio of the Dirichlet
parameter for that star to the sum of the Dirichlet parameters:

1
Qj;

E(pi|O) 25—1041
= J
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Intra-ltem: Bayesian Average Rating

é Ll Zio 2 (dP k) ﬁ
= ¥ .I.r'dj - %—/ - C e to® ff,u.k\
J= VY > / 2 -

5:_

- e
S a0+ Y2 ik
) 1 lQ; 1K
Bayes Average Rating = ==L 5 ’—01 '
N+>7af .
2l +®

5 L. .
@ > > . iK;: sum of all review scores Z‘dJ +N

@ N: the number of reviews

)

zi

e >0, a? prior(given) number of reviews
—_—— -

@ > > ,ia}: prior sum of all review scores
—— T — T —

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 72/92



Intra-ltem: Bayesian Average Rating

o N f(m*xns] ;
A
)_D, N: O — m (/)WW

C - m+ (_(ratings s/
C+N

Bayes Average Rating =

® N: the number of reviews.
@ m: a prior for the average of review scores
— e e

@ C: a prior for the number of reviews
T
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Example: Movie Ranking

e Data Set : http://grouplens.org/datasets/movielens/
@ Top Ten Movies
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Casel1: m=3.25& C =50

N N

title (bayes/ [ €ount)| (mean/

One Flew Over the Cuckoo's Nest (1975) | 4.125796 | 264 | 4.291667
Raiders of the Lost Ark (1981) 4.145745 | 420 | 4.252381
Rear Window (1954) 4.167954 | 209 | 4.387560
TheSilence of the Lambs (1991) 4.171591 | 390 | 4.289744
The Godfather (1972) 4.171706 | 413 | 4.283293

The Usual Suspects (1995) 4206625 | 267 | 4.385768
Casablanca (1042) 4250853 | 243 | 4.456790

The Shawshank Redemption (2994) 4.265766 | 283 | 4.445230
§ZEFVVQE§I1977) 4.270932 | 583 | 4.358491
Schindler’s Cist (1993) 4291667 | 208 | 4.466443
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Case2: m=2& C=6

title count bayes mean
One Flew Over the Cuckoo’s Nest (1975) | 264 | 4.244526 | 4.291667
The Godfather (1972) 413 | 4.252955 | 4.283293
The Silence of the Lambs (1991) 390 | 4.257500 | 4.289744
Star Wars (1977) 583 | 4.335582 | 4.358491
The Usual Suspects (1995) 267 | 4.335740 | 4.385768
_—The Wrong Trousers (1993) 118 | 4.351562 | 4.466102
\_ A Close Shave (1995) 112 | 4.368852 | 4.491071
The Shawshank Redemption (1994) 283 | 4.395904 | 4.445230
Casablanca (1942) 243 | 4.399209 | 4.456790
Schindler’s List (1993) 298 | 4.418831 | 4.466443
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Inter-ltems: Pseudo Bayesian Average Rating

- m; + X (rating3)

G+N

@ m;: bayesian average rating for item |

@ N: the number of revie
—

@ m;: average of review scores for item |

@ C;: the number of reviews for item i

—
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Example: Bayesian Changes Order

N = (045 +ng +iso tiel <327

ICmt‘»j,() = (0%FG20 t [SXY 66 £22Yxris HISOXYsie
T(3pxv58 = 2232.67
MacB(Qk No. Ratings A’& Rating Rank Bayesian Rating Bayesian Rank

o QN
BOOILL (D) 4.920 2
MB403LL 15 4.667 2 4.433 3
MB402LL| |2 4535 3 4450 1
MC204LL| 150 1.310 4 4.401 5
MBO6ILL) | 124 4.208 5 4.402 4
% -

— Ciom @ (0x%.520 + 2371.05

=

= = -
Cl*@ (o +5a>

= Tty
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Reverse Engineering Amazon

@ Bayesian adjustment

@ Reputation scor
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Key Factors

@ Bayesian ranking

@ Too few or too outdated reviews penalized

@ Very high quality reviews help a lot

—_———————
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Summary

@ Average ratings scalarize a vector and ranks

@ Number of ratings should matter, Bayesian ranking does that
%

@ Other statistical methods help too
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Outline

Ziyu Shao (ShanghaiTech)

@ Reading Option: History of Mathematical Statistics
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Classical Statistics

@ 1800s: Linear Statistical Model and the method of least squares
for estimation is often credited to Gauss (1777-1855) (1809),

Adrien-Marie Legendre (1752-1833) (1805), Robert Adrain
(1775-1843).

@ Gauss also showed the optimality of the least-square approach
(Gauss-Markov Theorem, 1823).

4

z

<

)

z

¥ 0,
. 4 ‘\ -
2 - “

B 5 y
B ‘,\

2 v a

40,

Ziyu Shao (ShanghaiTech) Lecture 10: Statistical Inference December 24, 2024 83/92



Classical Statistics

@ 1888: Sir Francis Galton proposed the concept of correlation
@ 1889: Sir Francis Galton proposed the concept of regressmn
@ 1889: Sir Francis Galton proposed the Galton Board
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Classical Statistics

° I%?IL Pearson (1857-1936) is credited for the establishment of
the discipline of statistics. He contributed to theory of linear
regression, correlation, Pearson curve, c@ﬁst, and the
method of moments for estimation.
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Modern Statistics: Frequency Perspective
t-distribution and t-test statistics

@ 1908: William Gosset (Student) (1876-1937) proposed Student

@ Precursor of small-sample statistics and hypothesis testing.
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Modern Statistics: Frequency Perspective
@ 1912-1922: Sir Ronald Aylmer Fisher (1890-1962) developed the
notion of maximum likelihood estimator.
@ He also worked on the analysis of variance (ANOVA),
F—di’str,ibu_ti(m, Fisher informatmae,sign of experiment.
o Co-founder of Modern Statistics (Mathematical Statistics or
Statistical Inference)
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Modern Statistics: Frequency Perspective
@ Egon Sharpe Pearson (1895-1980): co-founder of

Neyman-Pearson Theory for hypothesis testing.
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Modern Statistics: Frequency Perspective

o Jerzy/Neyman (1894-1981): Co-founder of Modern Statistics
(Mathematical Statistics or Statistical Inference)

@ 1928-1938: Theoretical foundations of testing hypothe5|s point
estimation, confidence interval and survey sampling.
—_—
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Modern Statistics: Frequency Perspective

@ 1940s: Pao-Lu Hsu (1910-1970) obtained several exact or
asymptotic distributions of important statistics in the theory of
multivariate analysis.
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Modern Statistics: Bayesian Perspective

@ 1937: Bruno de Finetti proposed a predictive inference approach
to statistics, emphasizing the prediction of future observations
based on past observations.

e 1939: Harold__%ys applied Bayesian analysis for geophysics
data.

@ 1941-1944: Alan Turing applied Bayesian analysis for breaking
the German code (Enigma)

@ 1954s:Jimmie Savage proposed Bayesian statistics systematically

@ 1950s: Bayesian econometrics originated from Harvard business
school prevailed in economics society

@ 1950s-1988: Efficient Monte carlo methods such as Metropolis
and Gibbs sampling appeared.

@ 1990-present: Bayesian statistics become the focus of
mathematical statistics
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