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Apsidal precession:

From Newton to General relativity
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x (m) For a displacement along the x-axis, an object’s average x-velocity

Dragster track 400
(not to scale)

300

P, & ——Xx;

200

g 100

o - x-

U,y €quals the slope of a line connecting the corresponding points
on a graph of position (x)
versus time (7).

“.. Slope = rise over run = A
DIOpE = I At

I e S L ~— 1) Slope: R
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At=20s 160 m
. ; L U1
300 Ax = 150 m 300 300 Uy =

X 405 o
i =40 m/w T
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!
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0 s
L t(s) — t(s) 1 t(s)
0O, 0 1 2 3 4 5
As the average x-velocity v,, , 1s calculated ... 1ts value v, , = Ax/Ar approaches the The instantaneous x-velocity v, at any
over shorter and shorter time intervals ... instantaneous x-velocity. given point equals the slope of the tangent

to the x-7 curve at that point.
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vy = lim — = — (instantaneous x-velocity, straight-line motion)
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7 A H R Uy = Uy Avy (average x-acceleration,

FRmiEEE “avx = ?2[ — rll At straight-line motion)

_ Av dv (instantaneous x-acceleration
ZANNIIBENES a, = lim — > e . U
EﬁFﬁj‘j‘m@E Y A0 At dt straight-line motion)
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For a displacement along the x-axis, an object’s average x-acceleration

x equals the slope of a line connecting the corresponding points on a
graph of x-velocity (v,) versus time (7).

- [

Aux — Upy — Uyy

= instantaneous x- du:elmatmn at that point.
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- Slope of tangent to v -f curve at a given point
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Slope zero: v, = ()
Curvature downward: a, < 0
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X .Slope negative:

._u C ‘,"' I »:Il- ___._-.-_-.'_ [:}

Curvature upward:

** Slope negative: v, < 0
Curvature zero: a, = 0
Slope positive: v, = 0

MLl

At . — The greater the curvature (upward or downward) of
Curvature zero: a, = ( &1dn Pl e
an object’s x-f graph, the greater is the object’s
'S e > 0 acceleration in the positive or negative x-direction.
»lope positive: v, =
Curvature upward: a, > 0 Top

¥



SINN3EE 25355 Motion with constant acceleration

x-velocity at time 7 of -+--..., x-velocity of the particle at time O

a particle with Tu I

constant x-acceleration Ux = Uox fot ¥.. (2.8)
Constant x-acceleration of the particle Time

Ugvx = %(Uﬂx + v,) (constant x-acceleration only)

Position of the particle at time O Ti
. - 1" “-'l"""i'::l. 1ime
Position at time 7 of a +-...,, o

‘e, "t‘ L““ . l";""
particle with constant *x = xg + vo,t + %ﬁxl‘z (2.12)
x-acceleration oY 4

x-velocity of the particle at time 0 Constant x-acceleration of the particle
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acceleration

v,-f graphis a

U : .
X straight line.

x-velocity ch
by Uy — Vg

The graph with cc&lnxtnnt x-acceleration:
X =X T Upyl + Eu_‘.rj

X

»The effect of
* x-acceleration:

| ~
Efi’_rf‘"

The graph we would get
“+ with zero x-acceleration:

X = Xg™T L‘m.f

[

2
X = Xxg + gyl + %axr“
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The ms.tantaneous.......j ......... X ‘ Ax dx
x-velocity of a particle in v. = lim — = —
straight-line motion ... o uAt_>0 At dt .
... equals the limit of the particle’s ':':werage ... and equals the instantaneous rate of
x-velocity as the time interval approaches zero ... change of the particle’s x-coordinate.
The mstant-aneous e, Av dvx
x-acceleration of a particle a, = lim — = —%
in straight-line motion ... JAr=0 At dt..

... equals the limit of the particle’s ';wcrage ...and equals the instantaneous rate
x-acceleration as the time interval approaches zero ...  of change of the particle’s x-velocity.
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Constant x-acceleration: a,-t graph
is a horizontal line (slope = 0).
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Area under a,-f graph = v, — v,

= change in x-velocity from time O to time 7.

a, = a, N

NNZEE-BIE ih2k

v . :
* straight line.

2% 35 1))

x-acceleration: interval 7. the
Uy-f graphis a x-velocity changes

by vy — vy = ayl.

B
Total area under v,-f graph = x — x
= change in x-coordinate from time O to time .

Uy = Upx + .{le‘

IEE-RIE fhZk

X0

The graph with colnstnnt x-acceleration:
X =Xg T Ugyl + Eu_‘ﬂ

»The effect of
. x-acceleration:

1
7(!_1-.’2

The graph we would get
"+ with zero x-acceleration:

X =Xp™T L-‘O_‘.f

1

2
X = Xg + gyl + %axr“
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Derivatives: (%)
d —1

H —
= nx"
dt

d

—SINdxX = dacosdax
dx

d 1 d

—1 L = ,0X — ,ax
i nax P d,xfj ae
d :
—Cosax = —asinax
dx
d dv du T AN S o
a(zw) u| —|+v| = (o FRIERE)
d -1 -1
— (ax™ £ bx") =amx™" ' + bnx"
dx
ESLES
dy d}, dz

(MoESE) kN
dx d z
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(1) '.'U=kX
.'.a:d—U—k%—ku—k Y
dt dt
(2) %_kx:%—kdt
dt X
1. X

LAt==In=2
kK X
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Electron transport through molecular

Molecular Layer

layer by tunneling effect

Inelastic tunneling channel open when

eV =haw,,,

V: bias of the junction

o: frequency of the vibrational mode

| >
ho/e 4
d A
dVv - "
S
-
hw/e 4
dIA
dv?

’\ i Gadiins s

| .,
hw/e 4

Current change by inelastic process is presented by its second derivative
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Area of this strip = Av,
. = Change in x-velocity
a, g )

x , ' during time interval Az
Constant x-acceleration: a,-f graph R

1s a horizontal line (slope = 0).

a

—

-
—
_ v ayx [T7 7777 '__ e
”I | . —
|
|
|
A | 1
5 |
: t ol t — r.
O t : At 2

. >y
v

Total area under the x-7 graph from 7, to 7,
= Net change in x-velocity from #; to t,

SIInE B 2IE 3 AR INE H LIz 3

U, = Ugy T+ 0yl (constant x-acceleration only) v, — Dy z a.(t)At = Alil;noz a.(t)At
' i

Area under a,-t graph = v, — v,
= change 1n x-velocity from time 0 to time 7.

l

tZ
1efE: v, — vy, = f a,(t)dt
t

1



Integrals:
' n+1 . .
X dx | |
x"dx = (n# —1) — = Inx edx = —e™
n+ 1 X a
o 1 ' 1 ' dx X
sinaxdx = ——cosax cosaxdx = —sinax — arcsin—
a a a’ — x?2 a

/' dx | ( N 7 2) / dx I o / dx I ;
_ 5 — Iy X a — 5 — —arctan— = —
Vx? + a® > +a* a a (x? + (52)3/2 a’ \/y2 + 42

/ xdx o 1
(x2 —~ a2)3/2 \Vx2 + g2
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'f’t;é/%y‘j: a = 3x° —I—% ’ %X=0Ll\, :"E}g Yo =5m/s ’

7] : x=3mALHIER R />?

‘ v a = — P
I o ‘azal)-al)  HAEH
. 1. dovo dodx \
T ok dt i w3l
do , 1
=0— =3X"+—

dx 3
k////////////

o = [ udo - jo”(sxz +%de

= %(02 —u§)= X+ x

LY =9m/s

Xx=3m
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v(t) = [ gdt Te

s(t) = [iv(®dt = [ (f, gdt) dt
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Cartesian coordinates
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NRBILADRESIX, Y, zZ= 1 ARBDRE:
Position vector of a

particle at a given mstant-=+» — xl + V] + k
: : , ) a < A particle’s position
Unit vectors in x-, y-, and z-directions == .....cnn FRPPPPELELLY

g |)\7J' ﬁ- E/J*EEILJ\ {S‘Z%

--------------------------
----
.....
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Position vector (fIEXE)

y
Position P of a particle

at a given time has

Yg. _coordinates x, y, z. ‘JV“‘T H:"E__l 4 H:” (Vi P = .

: I /

-~ I /

Z 17
Position \fector of point P
has components x, y, z:

F=xi+ y] + zk.
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(NEXS:
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A
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F(t)=x(t) +y(t)j+z(t)k

o(t)= XWi, HO) 7 2

dt dt dt
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y Position at time 7,
Y o
g & _AF
Pav = A7
. \
r

Displacement
v.!....vector A¥ points
y .
from P, to Ps.
’ Pl B

” E,

wﬁn at time f,

X
Particle’s path

]

— — —
rr — rj Ar

ty — 1, At

% —
vav -

(B#HT) REXRE

The instantaneous \

. =t = ‘
velocity vector v is : /
tangent to the path
at each point. ™,

.
e

”
//
/ \
X
Particle’s path
R . AF dF
v = lim —

A0 At dt



EEMENSRIE (MIZERIE)

—ANBF) A E R LA AL AT B B BN .

op

—== BB =

i

P

|

o] BRIz B) HIRB3)

BEEHIPIR [

B - on
Y= — —_— nga
BT T2 e

The images
of the balls
are recorded

at equal
time intervals.

&F
e At any time the two balls have different
x-coordinates and x-velocities but the same
y-coordinate, y-velocity, and y-acceleration.
* The horizontal motion of the yellow ball has
no effect on its vertical motion.
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Each component of a particle’s instantaneous velocity vector ...
" dx dy dz
v, = — UV, =— U,=—
oLt Yo Ldt ¢ adt
... equals the instantaneous rate of change of its corresponding coordinate.
—>
., dr d LD dy .
vV = —
dr dt dt dr

EEXE: Zf = '01+v j+vk

M F& Pythagorean relationship (‘ZJIg EFE) :

JEEHIA/N:

= v = \/vx2 + vy2 + 022

2 R B
at +bf= C :> 2 1p24+d2 =e2
c2+d2=¢2 ° :
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(a) (b) (c)
U,

7 This car accelerates by slowing

’ . .

’ while rounding a curve. (Its
instantaneous velocity changes in

both magnitude and direction.)

To find the car’s average acceleration between
P, and P,, we first find the change in velocity
Au by subtracting ¥, from v,. (Notice that

U, + Av =v,)

The average acceleration has the same direction
as the change in velocity, Av.

Change in the particle’s velocity

Average acceleration --.., “ » » L. .
: AD o Final velocity
vector of a particle 4, v U, —0 .
S a. = — minus initial
during time interval av At fy — 1 .
_,, 2 1 velocity
fromt tot, K A

+
L

Time interval Final time minus initial time



(@) Acceleration: straight-line trajectory

(b) Acceleration: curved trajectory

Only if the trajectory is _-7 To find the instantaneous e
a straight line ... U, acceleration .
datP, ..
P2 H l 5 . —
- > .. we take the limit of a
- -7 Av AT P hes Py ...
v, - 4 = lim AY as P, approaches P ...
/ Ar—0 At 1
> P1 . ) “
-7 . 1s the acceleration

tangent to the trajectory. ; ->

-

-~
”
The instantaneous ---- — — s meaning that Av and At
. "‘ AU dv approach 0
acceleration vector = lim 5
of a particle ... At—)O At Czt '
.. equals the limit of its average acceleration .. and equals the instantaneous rate Py a —Altln}) Al;
vector as the time interval approaches zero ... of change of its velocity vector. /

" Acceleration points to
concave side of path.
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IMEEREWRILISHEA X, y, z =N ARENTDE:

Each component of a particle’s instantaneous acceleration vector ...

dv. dvy " dv

‘Zl = —= a, — — a, — o
YL dt Yoo dt ¢ Ldt
.. equals the instantaneous rate of change of its corresponding velocity component. dy

. dv dv,, dvy_  dvu, .
a=—v=—xz+—y]+—zk
dt dt dt dt

Q)
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CAUTION Any particle following a curved path is accelerating When a particle is moving
in a curved path, it always has nonzero acceleration, even when it moves with constant speed.

Nl

. "ASEE"
Hos A !

HHa?  EB(velocity KR, HHFAESE /N o componen

/ N

ABHIR?  EFR(speed)RIrE, AU HNM / »

To center of circle

Eh=5 (uniform circular motion)

REWIE: RN Y, 133

average. mean. even. uniform. homogenous. constant. ...
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(@) When speed is constant along a curved
path ...

... acceleration is
y, normal to the path.

/ x“‘.
5
a
/ \
/
/

Normal at P

2832 Bl R g B2 ] BLoy g0y iRRATR P A L

g CGR) HiZiss

(b) When speed is increasing along a curved
path ...

/‘ ----- Tangent to path at P

Component of
a parallel to

.
‘e
‘e
.

— —==> Particle’s path
the path € L

al . Normal to
; path at P
Component of a
perpendicular to the path

iR () Hhzizz

(c) When speed is decreasing along a curved
path ...

... acceleration points
behind the normal.

Normal at P

/

- A B AR BRSO
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Projectile motion

Fil 2hy

A projectile moves in a vertical plane that
contains the initial velocity vector v,

« Its trajectory depends only on v, and

- on the downward acceleration due to gravity.

of the balls ) y

are recorded

at equal

time intervals. il

AR AL



At the top of the trajectory, the projectile has zero vertical

v _velocity (v, = 0), but its vertical acceleration is still —g.

<
2
Q
[~
3

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

Voy = U sin ay

Upx = UpCOS

Uy = Upgy T aylt

BT ERRE
—YESIInEIE B TR

X = xg T Upyet + %axrz

RZETE. 1EEL:

. . .‘-‘x - (EO cos ?0)&.
Coordinates at time ¢ of 2 - : .

a projectile (positive .." Speéd Direction . T
y-direction is upward, -.., atr =0 atr=0 .- :1me
andx =y = 0att = 0) ™, &
- d v . v [N 1 -72
y = (vg sin ap)t — 78t
»
T Ypeig “Acceleration
Velocity components at due to gravity:
time 7 of a projectile ..~ Speed Direction .. Note g > 0.
(positive y-direction .. atr =0 atr=20 d
R e . ¢ L4 w':* ..... Time
vy, = Vg sinay — gt
g
|::> y = (tanag)x — —5—— x?
205 cos” oy

C

b
y = bx? +cx — JETTIE

Parabola equation




A 45° launch angle gives the greatest range;

other angles fall shorter. .........

Launch
angle:
ay = 30°
ay = 45°
ay = 60°

it

URH 77 A Bl T AR AL )

BAEOL N, ASFEMIMS Ik oz .

TANY

H
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7

/.

SEHAIE, Aa i e

y(m)  Baseball’s initial velocity:
e®eo ® ‘e, o
°. 100 |k vy = 50 m/s, oy = 53.1
° Py o0 .. . ‘.“
..OO..: ® 50—/
« °:
e g | | | | | |
° o° 0 o0\ 200 \ 300 * ™
¢ —50
—100 +
With air No air
resistance resistance
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Acceleration has
constant magni-
tude but varying
direction.

Velocity and
“+. acceleration
are always
perpendicular.

rad‘lé‘ %TE I_@ ‘l:i\ ’

IR IR . [ag O

ZInn)] 2:

R ERNRFFANA L 7 A Bl [R] A2 AL

i S S

E
R A:lglo At

. U As v
lim —— = —

a —
At—0 R At

the limit of As/At is the speed v; at point P

Magnitude of acceleration -..,, p2....~ Speed of object

of an object in

5 x ) &+ Radius of object’s
uniform circular motion

circular path
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EXABRERE, BHRKDMA

o =lim 22!
At—0 At

I A TR . XA
& FRNF R E R E

‘0)

BT I B Y R R AL BRI AR AL

o _27R
- AW H— A AsEE T = 27K

 ARE (KI)
A0 2w v

w= lim — = = —

At—0 At ? R

=0 = W3R

Magnitude of acceleration-..,
of an object in a. =
uniform circular motion

A2R < Radius of object’s circular path

T2< -------- Period of motion
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Speed slowest, a4y minimum, a,,, Zero

(nonuniform circular motion)

Speeding up; a;,, in Slowing down;
same direction as © a,, Opposite to U
-
- \\
oo
Wrad
—> | ‘
v l a ’a‘ — Urad 1
[
\

Speed fastest, a,,y maximum, a,,, Zero

N 9% 5 ] Lo il A 1R AT el A 07

v? d|v|
Urad — E and Utan — At
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YA yg . Velocity of train
Cyclist's v B/:,l relative to cyclist
fra.me #

e Train’s Position of passenger
frame in both fr:ames
OV..> 9.2P XB,
Oy Op XA
XB/A >t Xp/p—>
Xp/A

—YEIE L, FREP R HIMX TN ZE RAL BRIALE

Xp/A = Xp/p T Xp/a

Hp XB/A N5 ZBHIX T 2% KA AL E .

Worz, 133

de/A dJCP/B n de/A

dt dt dt

tHYIERE : l J l

Relative velocity Up/a-x = Up/Bx + UBjax
along a line: - -" o

x-veloCity of x-velocity of x-velocity of
P relative to A P relative to B B relative to A

NETEU -
‘/EEIE[\: vA/B—x - UB/A-X



—YETE AL, FEREPRA)

\ N B (train)\\

(a)

o

A (cyclist)

P (passenger)

tE%J1E

{nFUEEEE

wm/s

i .
=2 .

Relative velocity
in space:

Velocity of

PAIX TP RAL BRI E

(b) (c) Relative velocities
(seen from above)

- Velocity of train

_ ¥ relative to cyclist

‘ UB/A
YA Train’s

P -
"+ Position of passenger
Cyclist’s 7 in both frames

frame

<A

?P/A = ?P/B + ?B/A [F3, oy 2 53

vP/A = UP/B T vB/A

Veloc:lty of Velocity of

P relative to A P relative to B B relative to A

THE  Galilean velocity transformation — RROLRTHR: v <<c Oti#)
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(4.1) #iRzz]

(4.2) EEz5]

(5) #B3Izz]

. NE

(6) hfE: EftARR

Position, velocity, and acceleration vectors: The position vec- F=xi+yj+ck (3.1)
tor 7 of a point P in space is the vector from the origin to P. Its B
components are the coordinates x, y, and z. b, = Lon_Ar (3.2)
The average velocity vector Uy, during the time interval As is h-n A
the displacement AF (the change in position vector F) divided by . . AF dr
At. The instantaneous velocity vector U is the time derivative of v= :.],'Lnu At di es)
¥, and its components are the time derivatives of x, y, and z. The
instantaneous speed is the magnitude of ¥. The velocity ¥ of a v, = dx v, = & o = az (3.4) 7
particle is always tangent to the particle’s path. (See Example da - a7 dt !
31) - U, - U, AD
The average acceleration vector d,, during the time interval v T M (3.8)
At equals AU (the change in velocity vector ¥) divided by At. . . .
The instantaneous acceleration vector @ is the time derivative of = lim Ao = dv (3.9) L)
v, and its components are the time derivatives of v,, v,, and v.. a0 Ar i ¥
(See Example 3.2.) ' _dv, 1D s Av
The component of acceleration parallel to the direction of the W= : Gy =y
instantaneous velocity affects the speed, while the component of @ o
perpendicular to U affects the direction of motion. (See Examples a, = s (3.10) S
3.3 and 34) dt G .
dv, U,
%= dt 0 *
Projectile motion: In projectile motion with no air resistance, x = (vpeosap)t (3.19)
a, = Oand @, = —g. The coordinates and velocity components vy = (vpsineq)t — bg (3.20)
are simple functions of time, and the shape of the path is always :
a parabola. We usually choose the origin to be at the initial posi- Ux = pcosap (3.21)
tion of the projectile. (See Examples 3.5 -3.10.) v, = yysinay — gt (3.22) *
Uniform and nonuniform circular motion: When a particle moves v? B
o . . ) ) : g = — (3.27) g — s
in a circular path of radius R with constant speed v (uniform R P S\
circular motion), its acceleration & is directed toward the center N5 g7 g
of the circle and perpendicular to . The magnitude ay, of this g = p (3.29) i A AN
radial acceleration can be expressed in terms of v and R or in b . Y.
terms of R and the period T (the time for one revolution), where \ “m/
v = 27R/T. (See Examples 3.11 and 3.12.) d.g 7 )
If the speed is not constant in circular motion [nolmnil'orm B N~ | ’“";:'l
circular motion), there is still a radial component of @ given by v
Eq. (3.27) or (3.29), but there is also a component of @ parallel
(tangential) to the path. This tangential component is equal to
the rate of change of speed, dv/dt.
Relative velocity: When an object P moves relative to an object Up/ax = Upfgx + Upfax (3.32) Ugsa
(or reference frame) B, and B moves relative to an object (or refer- (relative velocity along a line) Upjy = Upjg + Uga
ence frame) A, we denote the velocity of P relative to B by Up/p
. the velocity of P relative to A by Tp/4, and the velocity of B rela- Upjs = Up/p + Upj (3.35)

tive to A by Ug/y. If these velocities are all along the same line,
their components along that line are related by Eq. (3.32). More
generally, these velocities are related by Eq. (3.35). (See Examples
3.13-3.15)

(relative velocity in space)

P (plane)

B (moving air)

. . &—A (ground

observer)

ES P

FR = 4K



1.91 e+ Navigating in the Big Dipper. All of the stars of the Big
Dipper (part of the constellation Ursa Major) may appear to be the
same distance from the earth, but in fact they are very far from each
other. Figure P1.91 shows the distances from the earth to each of
these stars. The distances are given in light-years (ly), the distance
that light travels in one year. One light-year equals 9.461 x 10" m.
(a) Alkaid and Merak are 25.6° apart in the earth’s sky. In a diagram,
show the relative positions of Alkaid, Merak, and our sun. Find the
distance in light-years from Alkaid to Merak. (b) To an inhabitant of

a planet orbiting Merak, how many degrees apart in the sky would
Alkaid and our sun be?

Figure P1.91
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Example #2

MCAT-STYLE PASSAGE PROBLEMS

BIO Calculating Lung Volume in Humans. In humans, oxygen and
carbon dioxide are exchanged in the blood within many small sacs
called alveoli in the lungs. Alveoli provide a large surface area for gas
exchange. Recent careful measurements show that the total number of
alveoli in a typical pair of lungs is about 480 < 10° and that the average
volume of a single alveolus is 4.2 % 10° um’. (The volume of a sphere
15V = %ﬂ'rfs, and the area of a sphere is A = 47r?)

1.92 What is total volume of the gas-exchanging region of the lungs?
(a) 2000 pm™; (b) 2 m’; (c) 2.0 L; (d) 120 L.

1.93 If we assume that alveoli are spherical, what is the diameter of a
typical alveolus? (a) 0.20 mm; (b) 2 mm; (c) 20 mm; (d) 200 mm.

1.94 Individuals vary considerably in total lung volume. Figure P1.94
shows the results of measuring the total lung volume and average al-
veolar volume of six individuals. From these data, what can you infer
about the relationship among alveolar size, total lung volume, and num-
ber of alveoli per individual? As the total volume of the lungs increases,

Answers 33

(a) the number and volume of individual alveoli increase; (b) the num-
ber of alveoli increases and the volume of individual alveoli decreases:
(c) the volume of the individual alveoli remains constant and the num-
ber of alveoli increases; (d) both the number of alveoli and the volume
of individual alveoli remain constant.

Figure P1.94
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Example #3

2.88 eee (Catching the Bus. A student i1s running at her top speed of
5.0 m/s to catch a bus, which is stopped at the bus stop. When the stu-
dent is still 40.0 m from the bus, it starts to pull away, moving with a
constant acceleration of 0.170 m/sz. (a) For how much time and what
distance does the student have to run at 5.0 m/s before she overtakes
the bus? (b) When she reaches the bus, how fast 1s the bus traveling?
(c) Sketch an x-f graph for both the student and the bus. Take x = 0 at
the 1nitial position of the student. (d) The equations you used in part
(a) to find the time have a second solution, corresponding to a later time
for which the student and bus are again at the same place if they con-
tinue their specified motions. Explain the significance of this second
solution. How fast 1s the bus traveling at this point? (e) If the student’s
top speed is 3.5 m/s, will she catch the bus? (f) What is the minimum
speed the student must have to just catch up with the bus? For what time
and what distance does she have to run in that case?



Example #4

3.81 eee CP A rocket designed to place small payloads into orbit is car-
ried to an altitude of 12.0 km above sea level by a converted airliner. When
the airliner is flying in a straight line at a constant speed of 850 km/h, the
rocket 1s dropped. After the drop, the airliner maintains the same altitude
and speed and continues to fly in a straight line. The rocket falls for a brief
time, after which its rocket motor turns on. Once that motor 1s on, the com-
bined effects of thrust and gravity give the rocket a constant acceleration
of magnitude 3.00g directed at an angle of 30.0° above the horizontal. For
safety, the rocket should be at least 1.00 km 1n front of the airliner when
it climbs through the airliner’s altitude. Your job is to determine the mini-
mum time that the rocket must fall before its engine starts. Ignore air resis-
tance. Your answer should include (1) a diagram showing the flight paths
of both the rocket and the airliner, labeled at several points with vectors for
their velocities and accelerations; (11) an x-¢ graph showing the motions of
both the rocket and the airliner; and (111) a y-¢ graph showing the motions
of both the rocket and the airliner. In the diagram and the graphs, indicate
when the rocket is dropped, when the rocket motor turns on, and when the
rocket climbs through the altitude of the airliner.



Example #5
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Example #5
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Example #6
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The images
of the balls
are recorded

at equal
time intervals.

At any time the two balls have different
x-coordinates and x-velocities but the same
y-coordinate, y-velocity, and y-acceleration.

* The horizontal motion of the yellow ball has
no effect on its vertical motion.



Homework #1

2.87 eee In the vertical jump, an athlete starts from a crouch and
jumps upward as high as possible. Even the best athletes spend little
more than 1.00 s in the air (their “hang time”). Treat the athlete as a
particle and let y,,,x be his maximum height above the floor. To explain
why he seems to hang in the air, calculate the ratio of the time he is
above ynax/2 to the time it takes him to go from the floor to that height.
Ignore air resistance.



3.54 eee Apn important piece of landing equipment must be thrown to

Homework #2 a ship, which is moving at 45.0 cm/s, before the ship can dock. This
equipment is thrown at 15.0 m/s at 60.0° above the horizontal from the
top of a tower at the edge of the water, 8.75 m above the ship’s deck
(Fig. P3.54). For this equipment to land at the front of the ship, at what
distance D from the dock should the ship be when the equipment is
thrown? Ignore air resistance.

Figure P3.54 15.0 m/s

60.0°

~——45.0 cm/s




Homework #3

3.79 eee CALC A projectile thrown from a point P moves in such a way
that its distance from P is always increasing. Find the maximum angle
above the horizontal with which the projectile could have been thrown.
Ignore air resistance.



Homework #4
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