The Laplace Transform (ch.9)

- The Laplace transform
- □ The region of convergence for Laplace transforms
- □ The inverse Laplace transform
- Geometric evaluation of the Fourier transform from the pole-zero plot
- Properties of the Laplace transform
- Some Laplace transform pairs
- □ Analysis and characterization of LTI systems using the Laplace transform
- □ System function algebra and block diagram representations
- □ The unilateral Laplace transform

Recall the response of LTI systems to complex exponentials

$$e^{st} \longrightarrow h(t) \longrightarrow y(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$$
Define:
$$\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s) \quad \rightarrow \quad y(t) = H(s)e^{st}$$

Definition

$$X(s) \triangleq \int_{-\infty}^{+\infty} x(t) e^{-st} dt$$

$$x(t) \xrightarrow{\mathfrak{L}} X(s)$$

Laplace transform vs Fourier transform

$$x(t) \xleftarrow{\mathfrak{L}} X(s)$$

$$X(s) \triangleq \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

$$s = j\omega \swarrow s = \sigma + j\omega$$

$$\begin{split} X(j\omega) &= \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt & X(\sigma + j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-(\sigma + j\omega)t} dt \\ X(\sigma + j\omega) &= \int_{-\infty}^{+\infty} [x(t)e^{-\sigma t}]e^{-j\omega t} dt \\ X(s)\Big|_{s=j\omega} &= \mathcal{F}\{x(t)\} & X(s)\Big|_{s=\sigma + j\omega} = \mathcal{F}\{x(t)e^{-\sigma t}\} \end{split}$$

$$\mathfrak{L}\{x(t)\} \triangleq \mathcal{F}\{x(t)e^{-\sigma t}\}$$

$$x(t) = e^{-at}u(t) \qquad X(s) = ?$$

Solution

FT:
$$X(j\omega) = \int_{0}^{+\infty} e^{-at} e^{-j\omega t} dt = \int_{0}^{\infty} e^{-(j\omega+a)t} dt = \frac{1}{a+j\omega}, \quad a > 0$$

LT:
$$X(s) = \int_{0}^{\infty} e^{-at} e^{-st} dt = \int_{0}^{\infty} e^{-(\sigma+a)t} e^{-j\omega t} dt = \frac{1}{(\sigma+a)+j\omega}, \quad \sigma+a > 0$$
$$s = \sigma + j\omega$$

$$e^{-at}u(t) \xleftarrow{\mathfrak{L}} \frac{1}{s+a} \quad \mathcal{R}e\{s\} > -a$$

Examples

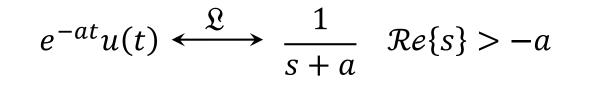
$$x(t) = -e^{-at}u(-t) \qquad X(s) = ?$$

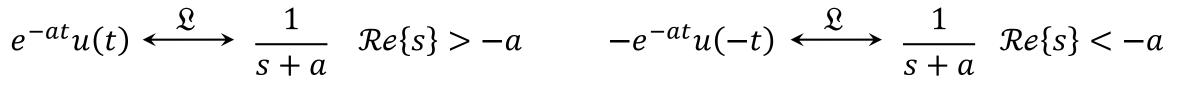
Solution

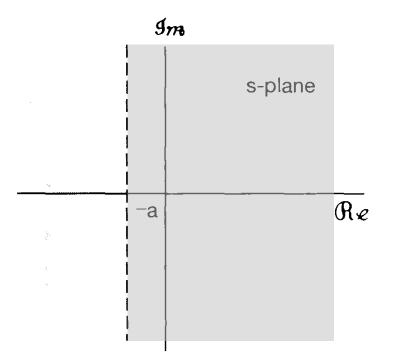
$$X(s) = -\int_{-\infty}^{+\infty} e^{-at} u(-t) e^{-st} dt = -\int_{-\infty}^{0} e^{-(s+a)t} dt = \frac{1}{s+a}, \qquad \mathcal{R}e\{s\} < -a$$

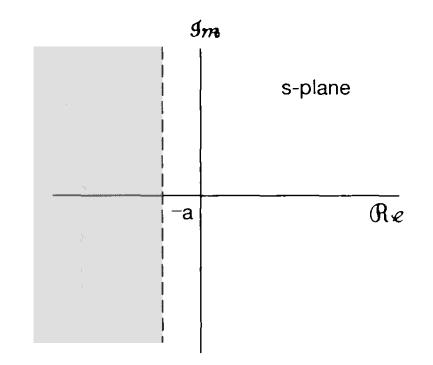
$$-e^{-at}u(-t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{s+a} \quad \mathcal{R}e\{s\} < -a$$

Region of convergence (ROC)









Examples

$$x(t) = 3e^{-2t}u(t) - 2e^{-t}u(t)$$
 $X(s) =?$

$$\begin{split} X(s) &= \int_{-\infty}^{+\infty} [3e^{-2t}u(t) - 2e^{-t}u(t)]e^{-st}dt \\ &= 3\int_{-\infty}^{+\infty} e^{-2t}e^{-st}u(t)dt - 2\int_{-\infty}^{+\infty} e^{-t}e^{-st}u(t)dt = \frac{3}{s+2} - \frac{2}{s+1} = \frac{s-1}{s^2+3s+2} \\ e^{-t}u(t) &\longleftrightarrow \frac{1}{s+1} \qquad \mathcal{R}e\{s\} > -1 \\ e^{-2t}u(t) &\longleftrightarrow \frac{1}{s+2} \qquad \mathcal{R}e\{s\} > -2 \\ 3e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \qquad \mathcal{R}e\{s\} > -1 \\ & e^{-2t}u(t) - 2e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \\ & e^{-2t}u(t) \\ & e^{-2t}u(t) &\longleftrightarrow \frac{s-1}{s^2+3s+2} \\ & e^{-2t}u(t) \\ & e^{-2t}u(t)$$

Examples
$$x(t) = e^{-2t}u(t) + e^{-t}(\cos 3t)u(t)$$
 $X(s) = ?$

Solution

$$\begin{aligned} x(t) &= \left[e^{-2t} + \frac{1}{2} e^{-(1-3j)t} + \frac{1}{2} e^{-(1+3j)t} \right] u(t) \\ X(s) &= \int_{-\infty}^{+\infty} e^{-2t} u(t) e^{-st} dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-(1-3j)t} u(t) e^{-st} dt + \frac{1}{2} \int_{-\infty}^{+\infty} e^{-(1+3j)t} u(t) e^{-st} dt \\ e^{-2t} u(t) &\longleftrightarrow \frac{1}{s+2} \qquad \mathcal{R}e\{s\} > -2 \\ e^{-(1-3j)t} u(t) &\longleftrightarrow \frac{1}{s+(1-3j)} \qquad \mathcal{R}e\{s\} > -1 \\ e^{-(1+3j)t} u(t) &\longleftrightarrow \frac{1}{s+(1+3j)} \qquad \mathcal{R}e\{s\} > -1 \\ e^{-(1+3j)t} u(t) &\longleftrightarrow \frac{1}{s+(1+3j)} \qquad \mathcal{R}e\{s\} > -1 \end{aligned}$$

$$X(s) = \frac{1}{s+2} + \frac{1}{2} \left(\frac{1}{s+(1-3j)} \right) + \frac{1}{2} \left(\frac{1}{s+(1+3j)} \right) = \frac{2s^2 + 5s + 12}{(s^2 + 2s + 10)(s+2)}, \mathcal{R}e\{s\} > -1$$

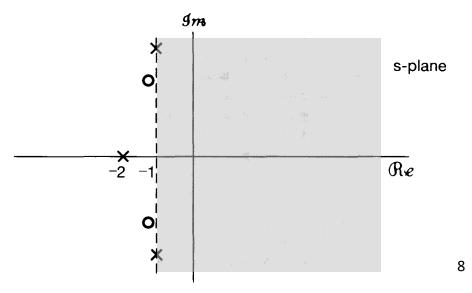
Pole-zero plot of rational X(s)

 $X(s) = \frac{N(s)}{D(S)}$ "x": the location of the root of the numerator polynomial "o": the location of the root of the denominator polynomial

Examples

$$X(s) = \frac{s-1}{s^2 + 3s + 2}, \mathcal{R}e\{s\} > -1$$

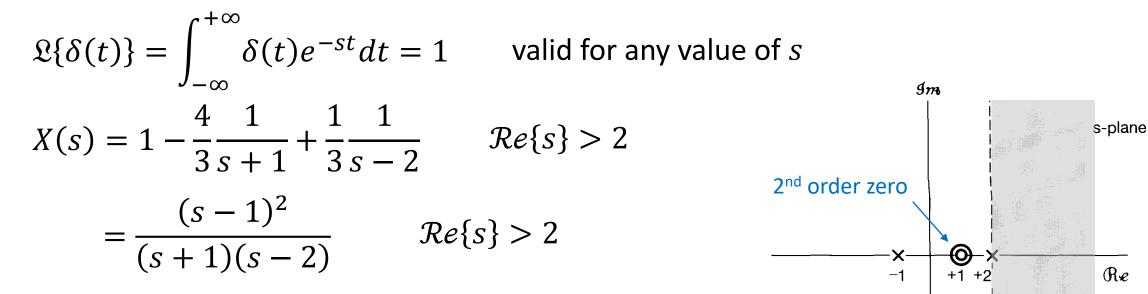
$$X(s) = \frac{2s^2 + 5s + 12}{(s^2 + 2s + 10)(s + 2)}, \mathcal{R}e\{s\} > -1$$



Examples

$$x(t) = \delta(t) - \frac{4}{3}e^{-t}u(t) + \frac{1}{3}e^{2t}u(t) \qquad X(s) = ?$$

Solution



The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot
- **Properties of the Laplace transform**
- **Given Some Laplace transform pairs**
- □ Analysis and characterization of LTI systems using the Laplace transform
- **G** System function algebra and block diagram representations
- **The unilateral Laplace transform**

Properties

- 1. The ROC of X(s) consists of strips parallel to the $j\omega$ -axis in the s-plane
 - ROC of X(s): Fourier transform of $x(t)e^{-\sigma t}$ converges (absolutely integrable)

 $\int_{-\infty}^{+\infty} |x(t)| e^{-\sigma t} dt < \infty \qquad \text{depends only on } \sigma, \text{ the real part of } s$

2. For rational Laplace transforms, the ROC does not contain any poles.X(s) is infinite at a pole

The region of convergence for Laplace transforms

Properties

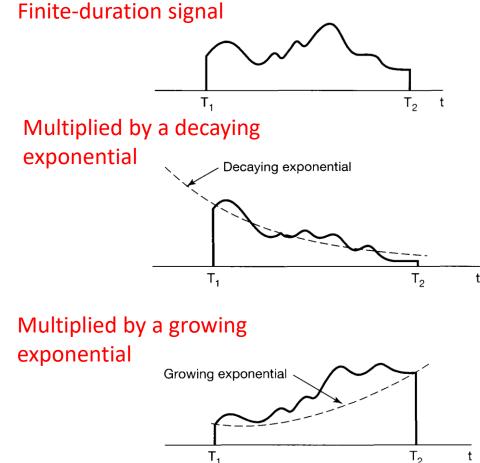
3. If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire *s*-plane.

For convergence, require

$$\begin{split} & \int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt < \infty \\ & \text{If } \sigma > 0, \\ & \int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt \le e^{-\sigma T_1} \int_{T_1}^{T_2} |x(t)| dt \end{split}$$

If $\sigma < 0$,

$$\int_{T_1}^{T_2} |x(t)| e^{-\sigma t} dt \le e^{-\sigma T_2} \int_{T_1}^{T_2} |x(t)| dt$$



Examples

$$x(t) = \begin{cases} e^{-at} & 0 < t < T \\ 0 & \text{otherwise} \end{cases} \quad X(s) = ?$$

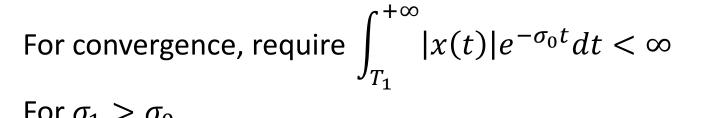
Solution

$$X(s) = \int_{0}^{T} e^{-at} e^{-st} dt = \frac{1}{s+a} \left[1 - e^{-(s+a)T} \right]$$
$$\lim_{s \to -a} X(s) = \lim_{s \to -a} \left[\frac{\frac{d}{ds} \left(1 - e^{-(s+a)T} \right)}{\frac{d}{ds} \left(s+a \right)} \right] = \lim_{s \to -a} T e^{-aT} e^{-sT}$$
$$X(-a) = T$$

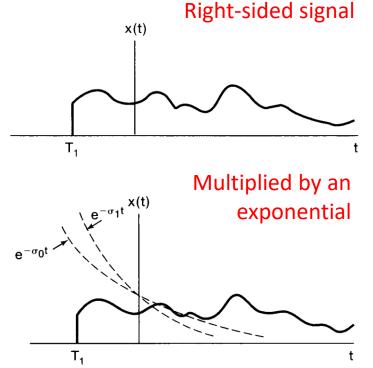
ROC = the entire s-plane

Properties

4. If x(t) is right-sided, and if the line $\mathcal{R}e\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\mathcal{R}e\{s\} > \sigma_0$ will also be in the ROC.



$$\int_{T_1}^{+\infty} |x(t)| e^{-\sigma_1 t} dt = \int_{T_1}^{+\infty} |x(t)| e^{-\sigma_0 t} e^{-(\sigma_1 - \sigma_0) t} dt$$
$$\leq e^{-(\sigma_1 - \sigma_0) T_1} \int_{T_1}^{+\infty} |x(t)| e^{-\sigma_0 t} dt$$

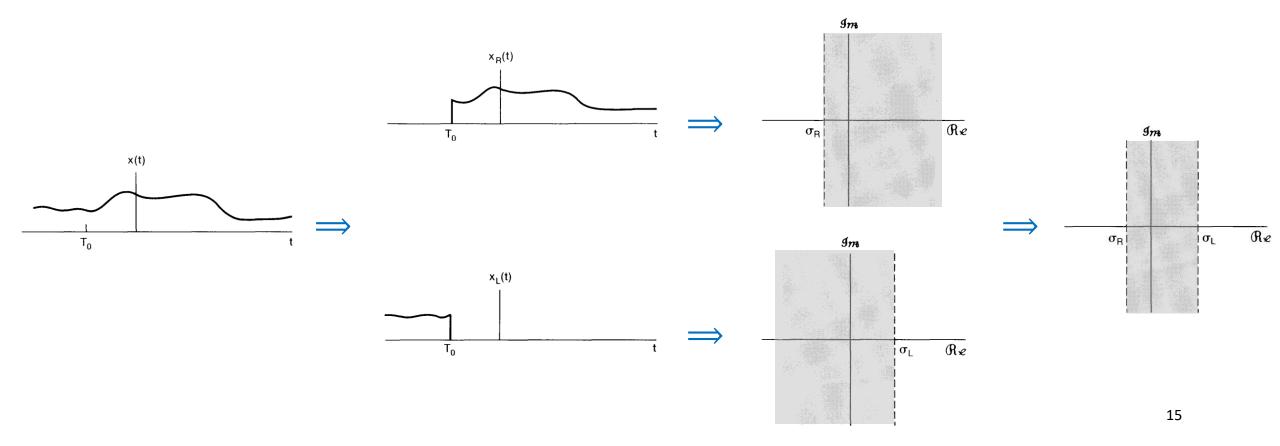


5. If x(t) is left-sided, and if the line $\Re e\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\Re e\{s\} < \sigma_0$ will also be in the ROC.

The region of convergence for Laplace transforms

Properties

6. If x(t) is two-sided, and if the line $\mathcal{R}e\{s\} = \sigma_0$ is in the ROC, then the ROC will consist of a strip in the *s*-plane that includes the line $\mathcal{R}e\{s\} = \sigma_0$.



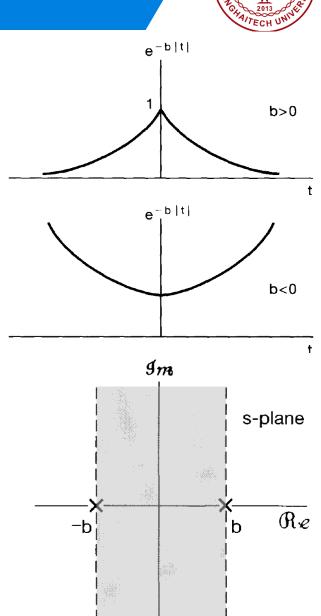
The region of convergence for Laplace transforms

Examples

 $x(t) = e^{-b|t|}$ X(s) =?

Solution

 $\begin{aligned} x(t) &= e^{-bt}u(t) + e^{bt}u(-t) \\ e^{-bt}u(t) & \longleftrightarrow \frac{1}{s+b} \qquad \mathcal{R}e\{s\} > -b \\ e^{bt}u(-t) & \longleftrightarrow \frac{-1}{s-b} \qquad \mathcal{R}e\{s\} < b \\ e^{-b|t|} & \longleftrightarrow \frac{1}{s+b} - \frac{1}{s-b} = -\frac{2b}{s^2 - b^2} \qquad -b < \mathcal{R}e\{s\} < b \\ & \text{for } b > 0 \end{aligned}$



Properties

7. If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. No poles are contained in the ROC.

□ If x(t) is left-sided, and if the line $\Re e\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\Re e\{s\} < \sigma_0$ will also be in the ROC.

□ If x(t) is right-sided, and if the line $\Re e\{s\} = \sigma_0$ is in the ROC, then all values of s for which $\Re e\{s\} > \sigma_0$ will also be in the ROC.

8. If the Laplace transform X(s) of x(t) is rational, then if x(t) is right-sided, the ROC is the region in the s-plane to the right of the right-most pole. The same applies to the left.

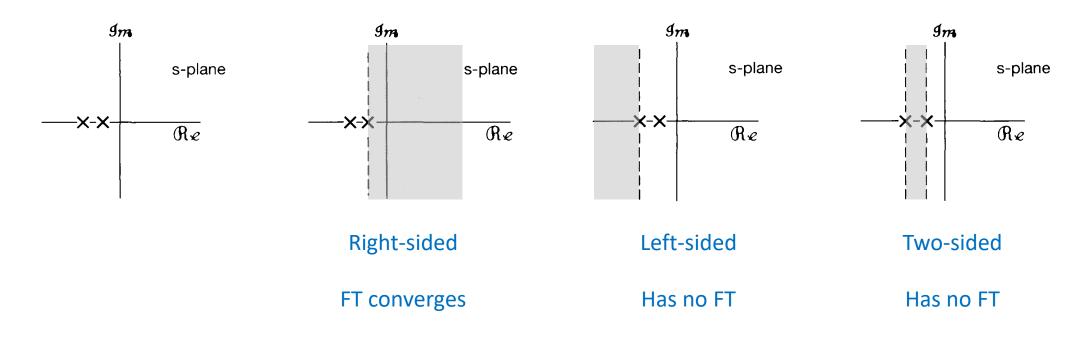
The region of convergence for Laplace transforms

Examples

$$X(s) = \frac{1}{(s+1)(s+2)}$$

ROCs and convergence of FT?

Solution



The Laplace Transform (ch.9)

- □ The Laplace transform
- **The region of convergence for Laplace transforms**

□ The inverse Laplace transform

- Geometric evaluation of the Fourier transform from the pole-zero plot
- Properties of the Laplace transform
- **G** Some Laplace transform pairs
- □ Analysis and characterization of LTI systems using the Laplace transform
- **G** System function algebra and block diagram representations
- **The unilateral Laplace transform**

$$X(\sigma + j\omega) = \mathcal{F}\{x(t)e^{-\sigma t}\} = \int_{-\infty}^{+\infty} [x(t)e^{-\sigma t}]e^{-j\omega t}dt$$

$$x(t)e^{-\sigma t} = \mathcal{F}^{-1}\{X(\sigma + j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega)e^{j\omega t} d\omega$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega$$

$$s = \sigma + j\omega$$
$$ds = jd\omega$$

1	c ^{σ+j∞}
$x(t) = \frac{1}{2}$	$X(s)e^{st}ds$
$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\infty} x(s) e^{-s} ds$	
$2\pi j$	σ−j∞

Examples

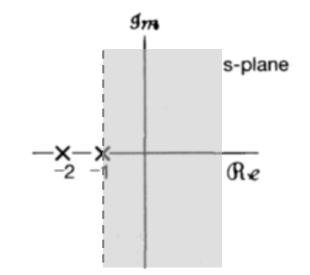
$$X(s) = \frac{1}{(s+1)(s+2)},$$

 $x(t) = (e^{-t} - e^{-2t})u(t)$

$$\mathcal{R}e\{s\} > -1$$
 $x(t) = ?$

Solution

$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$
$$e^{-t}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{s+1} \qquad \mathcal{R}e\{s\} > -1$$
$$e^{-2t}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{s+2} \qquad \mathcal{R}e\{s\} > -2$$



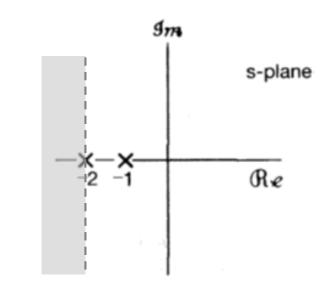
Examples

$$X(s) = \frac{1}{(s+1)(s+2)},$$

$$\mathcal{R}e\{s\} < -2 \qquad x(t) = ?$$

Solution

$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$
$$-e^{-t}u(-t) \xleftarrow{\mathfrak{L}} \frac{1}{s+1} \qquad \mathcal{R}e\{s\} < -1$$
$$-e^{-2t}u(-t) \xleftarrow{\mathfrak{L}} \frac{1}{s+2} \qquad \mathcal{R}e\{s\} < -2$$



 $x(t) = (-e^{-t} + e^{-2t})u(-t)$

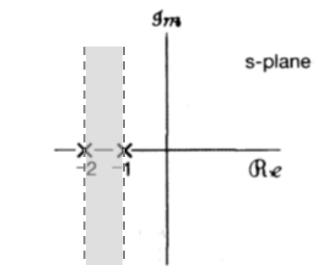
Examples

$$X(s) = \frac{1}{(s+1)(s+2)},$$

$$-2 < \mathcal{R}e\{s\} < -1 \quad x(t) = ?$$

Solution

$$X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$
$$-e^{-t}u(-t) \xleftarrow{\mathfrak{L}} \frac{1}{s+1} \qquad \mathcal{R}e\{s\} < -1$$
$$e^{-2t}u(t) \xleftarrow{\mathfrak{L}} \frac{1}{s+2} \qquad \mathcal{R}e\{s\} > -2$$
$$x(t) = -e^{-t}u(-t) - e^{-2t}u(t)$$

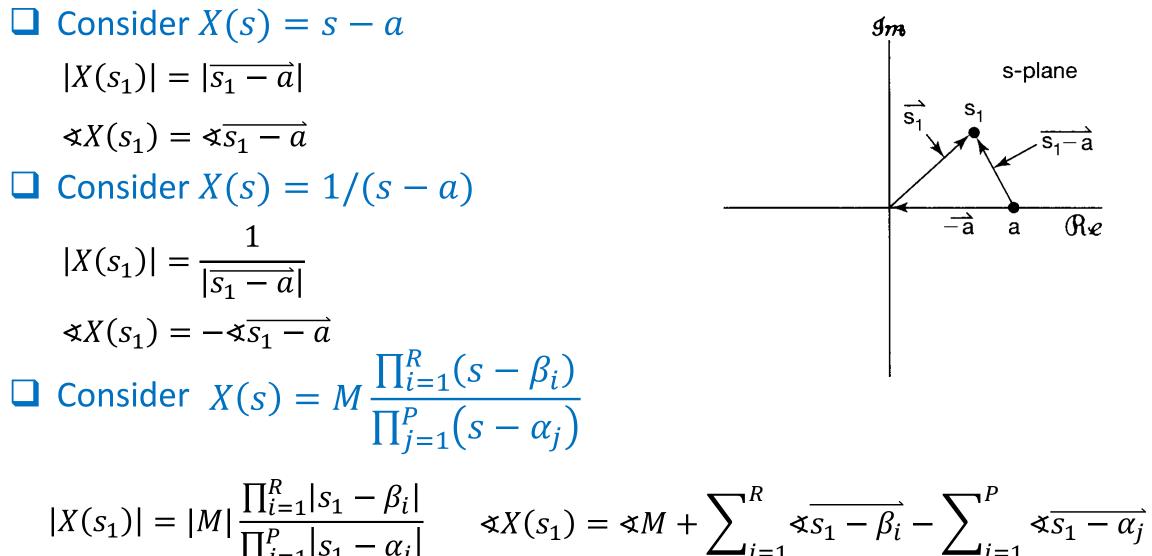


The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**

Geometric evaluation of the Fourier transform from the pole-zero plot

- □ Properties of the Laplace transform
- **Given Some Laplace transform pairs**
- □ Analysis and characterization of LTI systems using the Laplace transform
- □ System function algebra and block diagram representations
- **The unilateral Laplace transform**



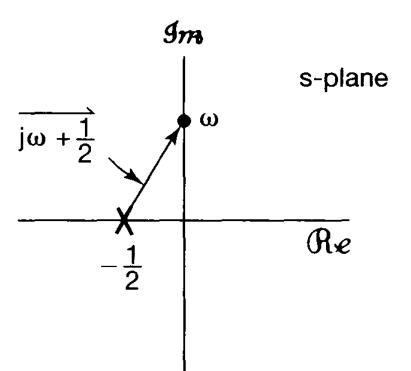
Examples

$$X(s) = \frac{1}{s+1/2}, \qquad \mathcal{R}e\{s\} > -\frac{1}{2}$$

Solution

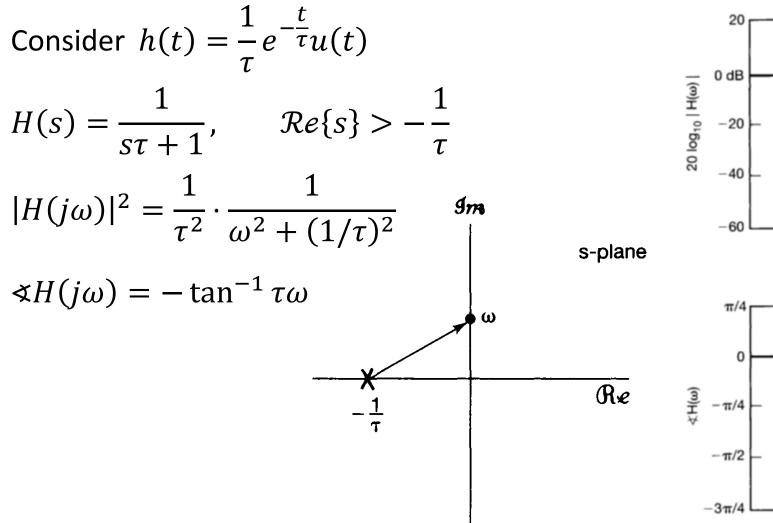
$$X(j\omega) = \frac{1}{j\omega + 1/2}$$
$$|X(j\omega)|^2 = \frac{1}{\omega^2 + (1/2)^2}$$
$$\sphericalangle X(j\omega) = -\tan^{-1} 2\omega$$

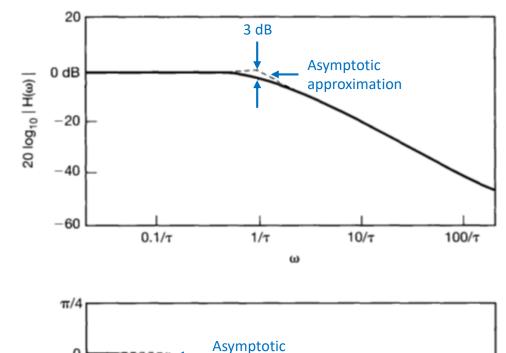
Magnitude and angle at $s = j\omega$?



Behavior of the Fourier transform can obtained from the pole-zero plot

First-order systems





approximation

 $1/\tau$

 $10/\tau$

 $100/\tau$

 $0.1/\tau$

Second-order systems

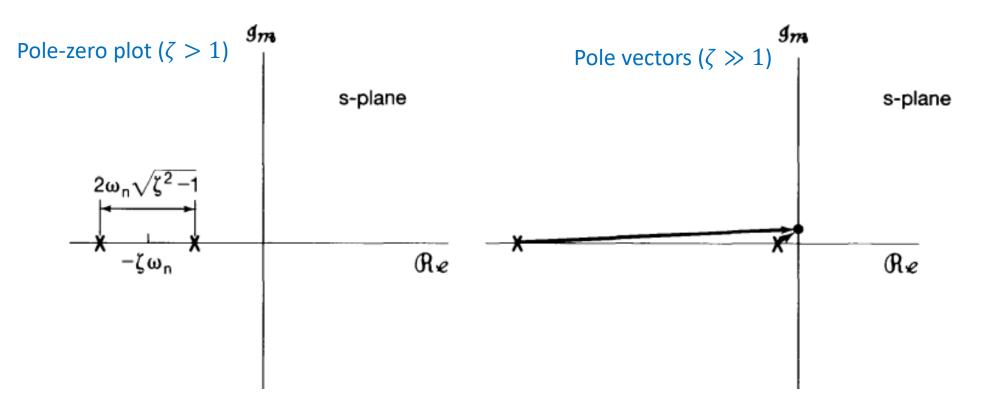
$$h(t) = M[e^{c_1 t} - e^{c_2 t}]u(t)$$

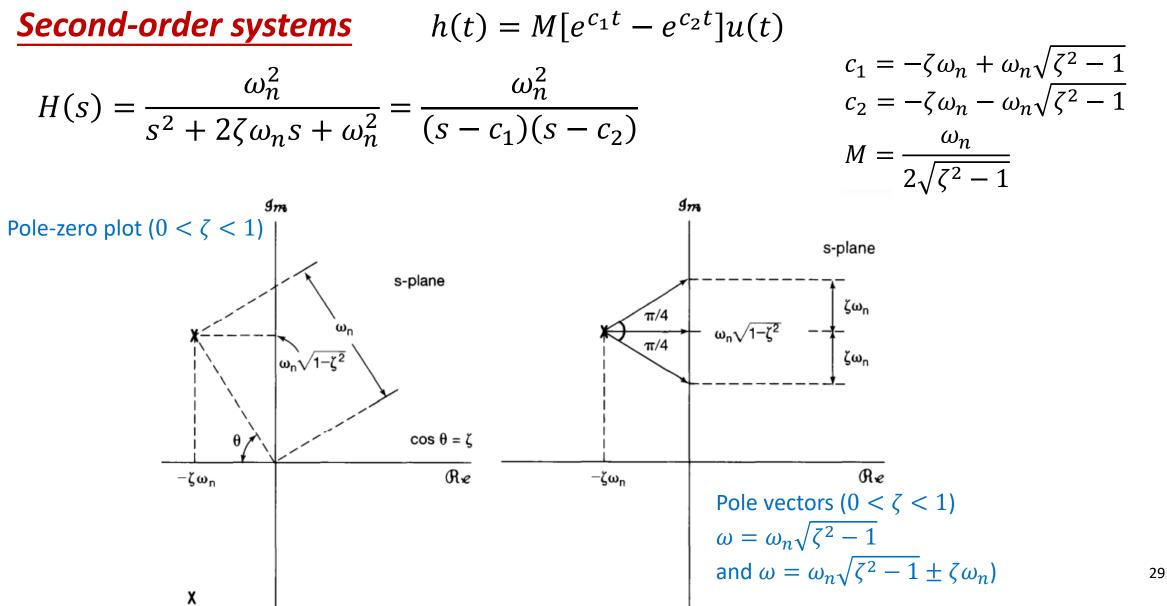
$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s - c_1)(s - c_2)}$$

$$c_1 = -\zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1}$$

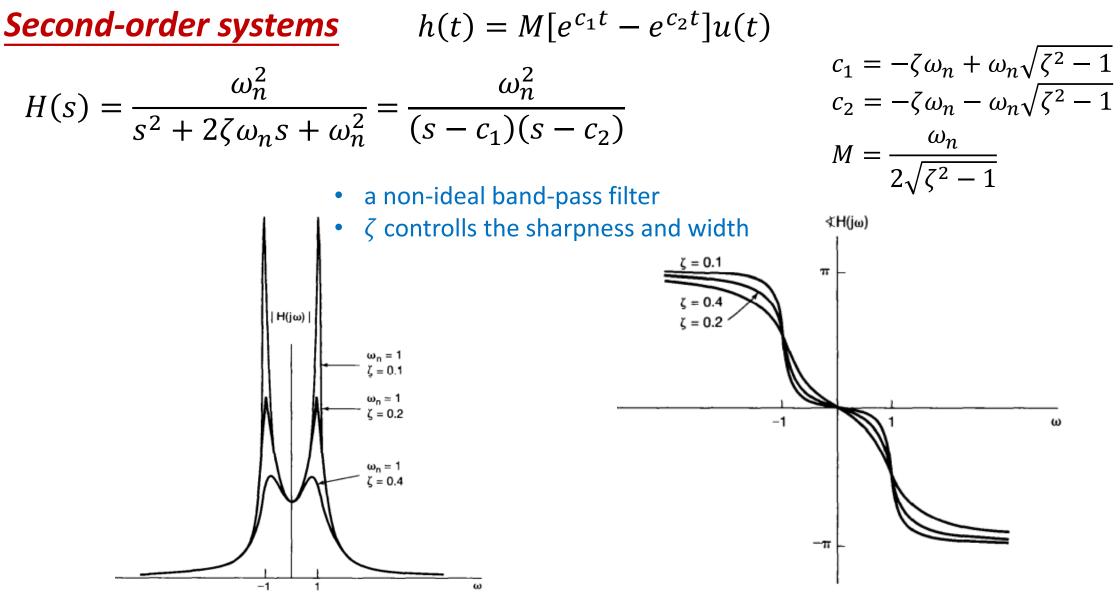
$$c_2 = -\zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1}$$

$$M = \frac{\omega_n}{2\sqrt{\zeta^2 - 1}}$$



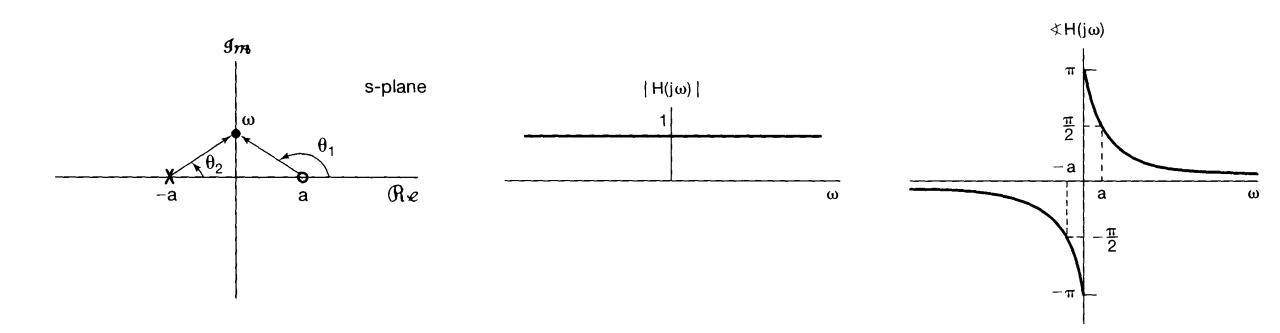


30



All-pass systems

$$\sphericalangle H(j\omega) = \theta_1 - \theta_2 = \pi - 2\theta_2 = \pi - 2\tan^{-1}\left(\frac{\omega}{a}\right)$$



The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot

Properties of the Laplace transform

- **Given Some Laplace transform pairs**
- □ Analysis and characterization of LTI systems using the Laplace transform
- **G** System function algebra and block diagram representations
- **The unilateral Laplace transform**

Properties of the Laplace transform

Linearity

$$x_{1}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_{1}(s) \quad \text{ROC} = R1$$

$$\implies x(t) = ax_{1}(t) + bx_{2}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} aX_{1}(s) + bX_{2}(s)$$

$$x_{2}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_{2}(s) \quad \text{ROC} = R2 \qquad \qquad \text{ROC contains } R1 \cap R2$$

 $R1 \cap R2$ is can be empty: x(t) has no Laplace transform

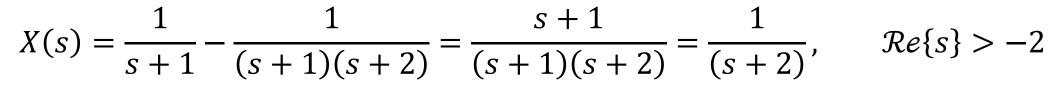
ROC of X(s) can also be larger than $R1 \cap R2$

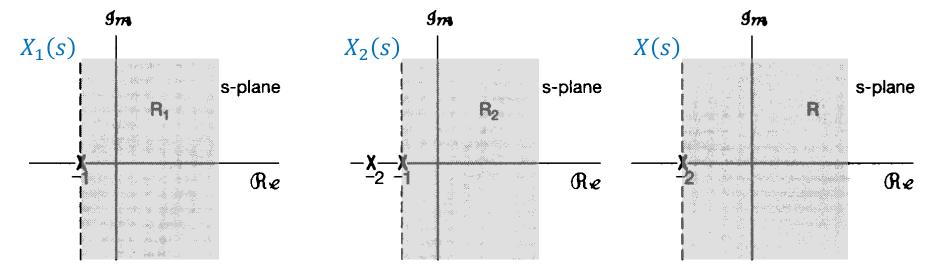
Properties of the Laplace transform

Consider
$$x(t) = x_1(t) - x_2(t)$$

 $X_1(s) = \frac{1}{s+1}, \mathcal{R}e\{s\} > -1$ $X_2(s) = \frac{1}{(s+1)(s+2)}, \mathcal{R}e\{s\} > -1$
 $X(s) = ?$

Solution





34

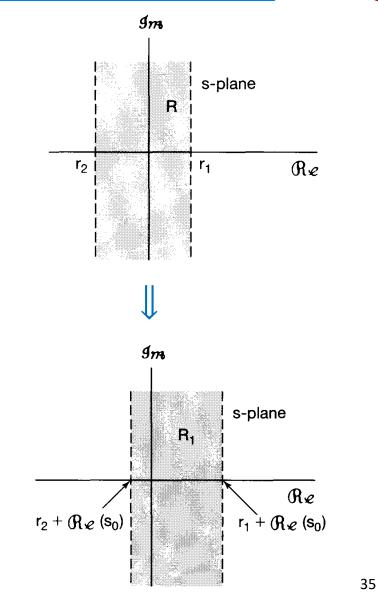
Properties of the Laplace transform

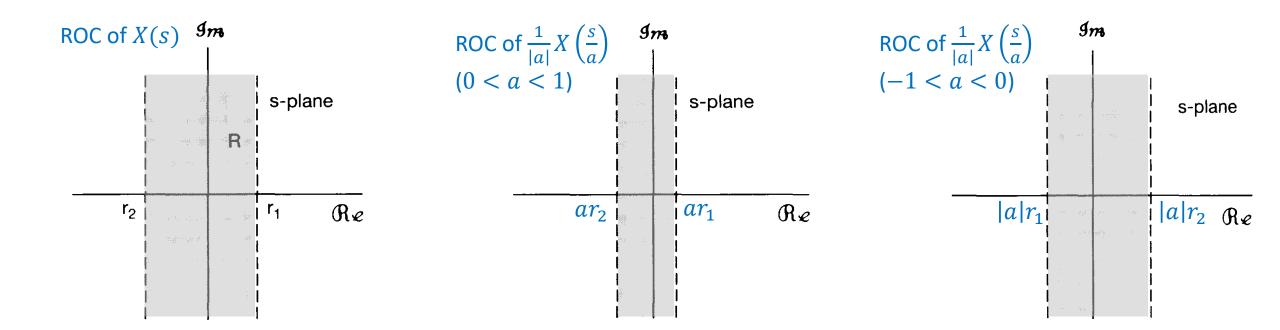
Time shifting

Shifting in the s-domain

$$\psi^{s_0 - j\omega_0}$$

$$e^{j\omega_0 t} x(t) \xleftarrow{\mathfrak{L}} X(s - j\omega_0) \quad \text{ROC} = R$$





Conjugation

Convolution property

$$x_{1}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_{2}(s) \quad \text{ROC} = R_{1}$$

$$\implies x_{1}(t) * x_{2}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_{1}(s)X_{2}(s)$$

$$x_{2}(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} X_{2}(s) \quad \text{ROC} = R_{2}$$

$$\qquad \text{ROC contains } R_{1} \cap R_{2}$$

R

Differentiation in the time domain

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

$$\frac{dx(t)}{dt} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} sX(s)e^{st}ds$$

Differentiation in the s-domain

$$X(s) = \int_{-\infty}^{+\infty} x(t) e^{-st} dt$$

$$\frac{dX(s)}{ds} = \int_{-\infty}^{+\infty} (-t)x(t)e^{-st}dt$$

Examples

$$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} ?$$

Solution

(n-1)!

Consider
$$x(t) = te^{-at}u(t)$$

 $e^{-at}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{s+a} \qquad \mathcal{R}e\{s\} > -a$
 $te^{-at}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} -\frac{d}{ds} \left[\frac{1}{s+a}\right] = \frac{1}{(s+a)^2} \quad \mathcal{R}e\{s\} > -a$
 $\frac{t^2}{2}e^{-at}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{(s+a)^3} \qquad \mathcal{R}e\{s\} > -a$
 $\frac{t^{n-1}}{(s-1)!}e^{-at}u(t) \stackrel{\mathfrak{L}}{\longleftrightarrow} \frac{1}{(s+a)!} \qquad \mathcal{R}e\{s\} > -a$

 $(s+a)^n$

Examples

$$X(s) = \frac{2s^2 + 5s + 5}{(s+1)^2(s+2)}, \qquad \mathcal{R}e\{s\} > -1 \qquad x(t) = ?$$

Solution

$$X(s) = \frac{2}{(s+1)^2} - \frac{1}{s+1} + \frac{3}{s+2}, \qquad \mathcal{R}e\{s\} > -1$$
$$x(t) = [2te^{-t} - e^{-t} + 3e^{-2t}]u(t)$$

Integration in the time domain

$$\int_{-\infty}^{t} x(\tau) d\tau = u(t) * x(t)$$

$$u(t) \xleftarrow{\mathfrak{L}} \frac{1}{s} \qquad \mathcal{R}e\{s\} > 0$$

$$u(t) * x(t) \xleftarrow{\mathfrak{L}} \frac{1}{s} X(s) \quad \text{ROC contains } R \cap \{\mathcal{R}e\{s\} > 0\}$$

The initial- and final-theorems

Initial-value theorem If

x(t) = 0 for t < 0,

x(t) contains no impulses or higher order singularities at the origin,

Then,

$$x(0^+) = \lim_{s \to \infty} sX(s)$$

Final-value theorem

lf

x(t) = 0 for t < 0, x(t) has a finite limit as $t \to \infty$,

Then,

$$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$$

Summary

PROPERTIES OF THE LAPLACE TRANSFORM TABLE 9.1

Section	Property	Signal	Laplace Transform	ROC		
		$ \begin{array}{c} x(t) \\ x_1(t) \\ x_2(t) \end{array} $	$X(s) \\ X_1(s) \\ X_2(s)$	R R ₁ R ₂		
9.5.1 9.5.2 9.5.3	Linearity Time shifting Shifting in the s-Domain	$ax_1(t) + bx_2(t)$ $x(t - t_0)$ $e^{s_0 t}x(t)$	$aX_1(s) + bX_2(s)$ $e^{-st_0}X(s)$ $X(s - s_0)$	At least $R_1 \cap R_2$ R Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)		
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)		
9.5.5	Conjugation	x*(t)	X*(s*)	R		
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$		
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R		
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R		
9.5.9	Integration in the Time Domain	$\int_{-\infty}' x(\tau) d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{ \Re e\{s\} > 0 \}$		
Initial and Einel Volvo Theorems						
9.5.10	Initial- and Final-Value Theorems 5.10 If $x(t) = 0$ for $t < 0$ and $x(t)$ contains no impulses or higher-order singularities at $t = 0$, then					
$x(0^+) = \lim sX(s)$						
If $x(t) = 0$ for $t < 0$ and $x(t)$ has a finite limit as $t \longrightarrow \infty$, then						
$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sX(s)$						

$$\lim_{t \to \infty} x(t) = \lim_{s \to \infty} sx(t)$$

The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot
- **Properties of the Laplace transform**
- Some Laplace transform pairs
- □ Analysis and characterization of LTI systems using the Laplace transform
- □ System function algebra and block diagram representations
- **The unilateral Laplace transform**

Some Laplace transform pairs

	立成 水 日 日 日 日 日 日 日 日 日 日 日 日 日
--	--

TABLE 9.2	LAPLACE TRANSFORMS	OF ELEMENTAR	Y FUNCTIONS
Transform pair	Signal	Transform	ROC
1	$\delta(t)$	1	All s
2	u(t)	$\frac{1}{s}$	$\Re e\{s\} > 0$
3	-u(-t)	$\frac{1}{s}$	$\Re e\{s\} < 0$
4	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
5	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	$\Re e\{s\} < 0$
6	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\Re e\{s\} > -\alpha$
7	$-e^{-\alpha t}u(-t)$	$\frac{1}{s + \alpha}$	$\Re \in \{s\} < -\alpha$
8	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} > -\alpha$
9	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$\Re e\{s\} < -\alpha$
10	$\delta(t - T)$	e^{-sT}	All s
11	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
12	$[\sin\omega_0 t] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re e\{s\} > 0$
13	$[e^{-\alpha t}\cos\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
14	$[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{\omega_0}{(s+\alpha)^2+\omega_0^2}$	$\Re e\{s\} > -\alpha$
15	$u_n(t) = \frac{d^n \delta(t)}{dt^n}$	<i>s</i> *	All s
16	$u_{-n}(t) = \underbrace{u(t) \ast \cdots \ast u(t)}_{\cdots \ast u(t)}$	$\frac{1}{s^n}$	$\Re e\{s\} > 0$
	n times		

TABLE 9.2	I API ACE	TRANSFORMS	0F	FI EMENTARY	FUNCTIONS
171DLL 7.2		I HANGI O HIMO		LENENIANI	100010000

The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot
- **Properties of the Laplace transform**
- **G** Some Laplace transform pairs

□ Analysis and characterization of LTI systems using the Laplace transform

- □ System function algebra and block diagram representations
- **The unilateral Laplace transform**

$$e^{st} \longrightarrow LTI \longrightarrow y(t) = H(s)e^{st}$$

 $H(s) = \int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau$

$$x(t) \longrightarrow LTI \longrightarrow y(t) = x(t) * h(t)$$
$$Y(s) = X(s) H(s)$$

H(s): system function or transfer function

Causality

Causal \implies ROC of H(s) is a right-half plane Converse is not necessaryily true A system with rational \Leftrightarrow ROC of H(s) is the right-half plane to the right of the H(s) is causal right-most pole **Examples** $h(t) = e^{-t}u(t)$ Causal? Solution 2 $H(s) = \frac{1}{s+1} \qquad \mathcal{R}e\{s\} > -1$ Solution 1 h(t) = 0 for t < 0 \Rightarrow Causal \Rightarrow Causal **Examples** $h(t) = e^{-|t|}$ Causal? Solution 1 Solution 2 $H(s) = \frac{-2}{s^2 - 1} \quad -1 < \mathcal{R}e\{s\} < 1$ $h(t) \neq 0$ for t < 0Noncausal Noncausal 48

Examples

$$H(s) = \frac{e^s}{s+1}, \quad \mathcal{R}e\{s\} > -1 \qquad \text{Causal?}$$

Solution

$$e^{-t}u(t) \xleftarrow{\mathfrak{L}} \frac{1}{s+1} \quad \mathcal{R}e\{s\} > -1$$

$$e^{-(t+1)}u(t+1) \xleftarrow{\mathfrak{L}} \frac{e^s}{s+1} \quad \mathcal{R}e\{s\} > -1$$

$$u(t+1) \xleftarrow{\mathfrak{L}} \frac{e^s}{s+1} \quad \mathcal{R}e\{s\} > -1$$

$$u(t) \xleftarrow{\mathfrak{L}} X(s) \quad \text{ROC} = R$$

$$\downarrow x(t-t_0) \xleftarrow{\mathfrak{L}} e^{-st_0}X(s) \quad \text{ROC} = R$$

 \implies Noncausal

 \Leftrightarrow

Anti-causality

Anti-causal \implies ROC of H(s) is a left-half plane Converse is not necessaryily true

A system with rational H(s) is anti-causal

ROC of H(s) is the left-half plane to the left of the leftmost pole

<u>Stability</u>

Stable \Leftrightarrow The impulse response of H(s) is absolutely integrable

↓

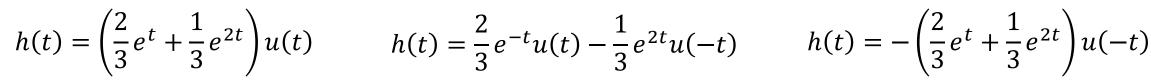
Stable \Leftrightarrow The ROC of H(s) includes the entire $j\omega$ -axis

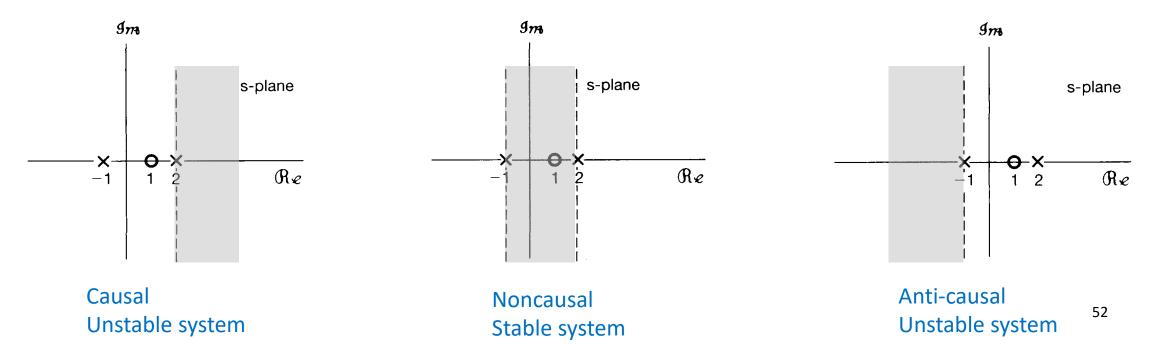
Examples

$$H(s) = \frac{s - 1}{(s + 1)(s - 2)}$$

Causal? Stable?

Solution





Stability

For a causal system, with rational system function H(s),

Stable \Leftrightarrow All the poles of H(s) lie in the left-half of the *s*-plane

OR

Stable \iff All the poles have negative real parts

Examples

$$H(s) = \frac{1}{(s+1)}$$

$$H(s) = \frac{1}{(s-2)}$$
Pole: $s = -1$
Pole: $s = 2$

Causal \Rightarrow Stable Causal \Rightarrow Unstable

Examples

Consider the class of causal second-order systems

$$h(t) = M[e^{c_1 t} - e^{c_2 t}]u(t)$$

$$H(s) = \frac{\omega_n}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n}{(s - c_1)(s - c_2)}$$

$$c_1 = -\zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1}$$

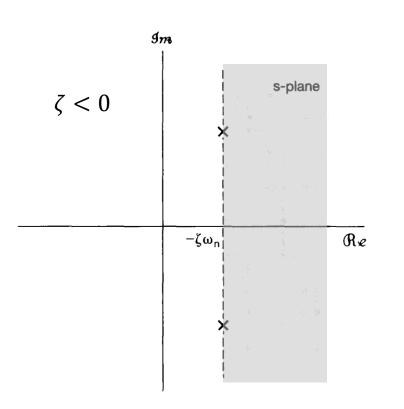
$$c_2 = -\zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1}$$

$$M = \frac{\omega_n}{2\sqrt{\zeta^2 - 1}}$$

Is the system stable when $\zeta < 0$?

Solution

Unstable



LTI systems characterized by linear constant-coefficient differential equations

Examples

$$\frac{dy(t)}{dt} + 3y(t) = x(t)$$

$$sY(s) + 3Y(s) = X(s)$$
$$H(s) = \frac{1}{s+3}$$

Differential equation: not a complete specification of the LTI system!

Pre-knowledge: if causal $h(t) = e^{-3t}u(t)$ Anti-causal $h(t) = -e^{-3t}u(-t)$

LTI systems characterized by linear constant-coefficient differential equations

Generally

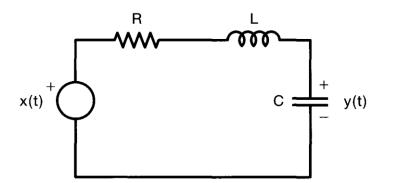
$$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{dt^{k}} = \sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{dt^{k}}$$

$$\left(\sum_{k=0}^{N} a_{k} s^{k}\right) Y(s) = \left(\sum_{k=0}^{M} b_{k} s^{k}\right) X(s)$$

$$H(s) = \frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}} \implies \begin{cases} \text{Poles at the solution of} \quad \sum_{k=0}^{N} a_{k} s^{k} = 0 \\ \text{Zeros at the solution of} \quad \sum_{k=0}^{M} b_{k} s^{k} = 0 \end{cases}$$

Examples

$$RC\frac{dy(t)}{dt} + LC\frac{d^2y(t)}{dt^2} + y(t) = x(t)$$



Solution

$$H(s) = \frac{1/LC}{s^2 + (R/L)s + (1/LC)}$$

Poles have negative real parts when R > 0, L > 0, and C > 0

 \Rightarrow Stable

Examples relating system behavior to the system function

If the input to an LTI system is $x(t) = e^{-3t}u(t)$

Then the output is $y(t) = [e^{-t} - e^{-2t}]u(t)$

System function?

Solution

$$X(s) = \frac{1}{s+3}, \quad \mathcal{R}e\{s\} > -3$$

$$Y(s) = \frac{1}{(s+1)(s+2)}, \quad \mathcal{R}e\{s\} > -1$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+3}{(s+1)(s+2)} = \frac{s+3}{s^2+3s+2}$$

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + 3x(t)$$

Causal and stable

59

Examples relating system behavior to the system function

Given the following information about an LTI system, determine H(s).

- 1. The system is causal;
- 2. H(s) is rational and has only two poles at s = -2 and s = 4;
- 3. If x(t) = 1, then y(t) = 0;
- 4. $h(0^+) = 4$

Solution

$$H(s) = \frac{p(s)}{(s+2)(s-4)} = \frac{p(s)}{s^2 - 2s - 8} \qquad p(s) \text{ is an polynomial in s}$$
$$p(0) = 0 \implies p(s) = sq(s) \qquad q(s) \text{ is an polynomial in s}$$
$$\lim_{s \to \infty} sH(s) = \lim_{s \to \infty} \frac{s^2 q(s)}{s^2 - 2s - 8} = \lim_{s \to \infty} \frac{Ks^2}{s^2 - 2s - 8} = 4 \qquad q(s) = K \text{ is a constant}$$

$$K = 4 \implies H(s) = \frac{4s}{(s+2)(s-4)}, \qquad \mathcal{R}e\{s\} > 4$$

Examples relating system behavior to the system function

- A stable and causal system with impulse response h(t) and system function H(s), which is rational and contains a pole at s=-2, and does not have a zero at the origin.
- $\Box \mathcal{F}{h(t)e^{3t}}$ converges. False
- $\Box \int_{-\infty}^{+\infty} h(t) dt = 0 \quad \text{False}$
- \Box th(t) is the impulse response of a causal and stable system. True
- $\Box dh(t)/dt$ contains at least one pole in its Laplace transform. True
- \Box h(t) has finite duration. False
- $\Box H(s) = H(-s).$ False
- $\Box \lim_{s \to \infty} H(s) = 2.$ Insufficient information

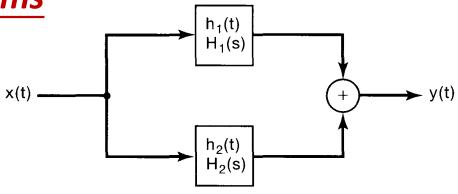
The Laplace Transform (ch.9)

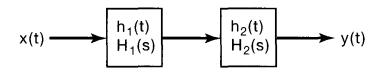
- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot
- **Properties of the Laplace transform**
- **G** Some Laplace transform pairs
- □ Analysis and characterization of LTI systems using the Laplace transform
- □ System function algebra and block diagram representations
- **The unilateral Laplace transform**

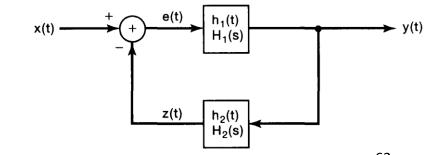
System functions for interconnections of LTI systems

- Parallel interconnection
 - $h(t) = h_1(t) + h_2(t)$
 - $H(s) = H_1(s) + H_2(s)$
- Series interconnection
 - $h(t) = h_1(t) * h_2(t)$
 - $H(s) = H_1(s)H_2(s)$
- Feedback interconnection

 $Y(s) = H_1(s)E(s)$ $E(s) = X(s) - Z(s) \qquad H(s) = \frac{H_1(s)}{1 + H_1(s)H_2(s)}$ $Z(s) = H_2(s)Y(s)$

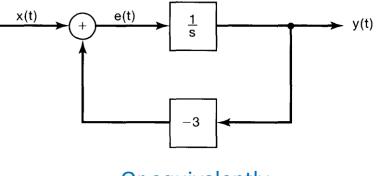






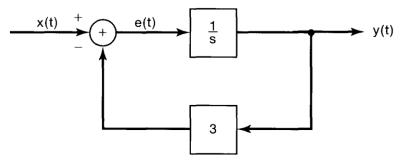
Block diagram representations for causal LTI systems

$$H(s) = \frac{1}{s+3}$$
$$\frac{dy(t)}{dt} + 3y(t) = x(t)$$
$$H(s) = \frac{1/s}{1+3/s}$$



Or equivalently

Using basic operations: addition, multiplication, and integration

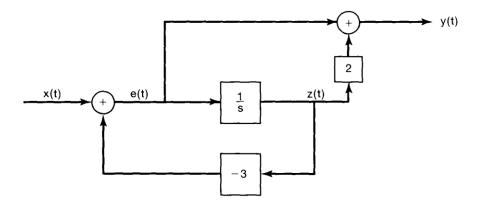


Examples: block diagram representations for causal LTI systems

$$H(s) = \frac{s+2}{s+3} = \left(\frac{1}{s+3}\right)(s+2)$$

$$y(t) = \frac{dz(t)}{dt} + 2z(t)$$

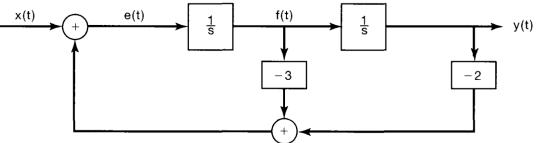
$$y(t) = e(t) + 2z(t)$$
Or equivalently



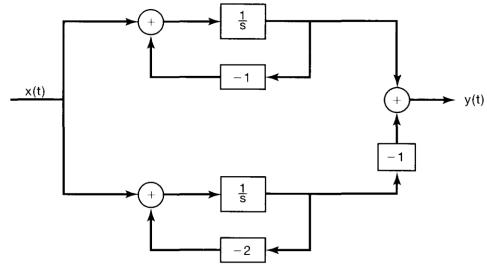
Examples: block diagram representations for causal LTI systems

$$H(s) = \frac{1}{s^2 + 3s + 2} = \frac{1}{(s+1)} \cdot \frac{1}{(s+2)} = \frac{1}{(s+1)} - \frac{1}{(s+2)}$$

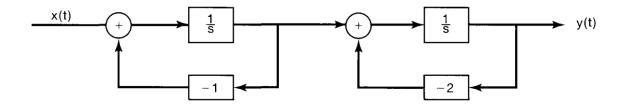
$$\frac{d^2 y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$$



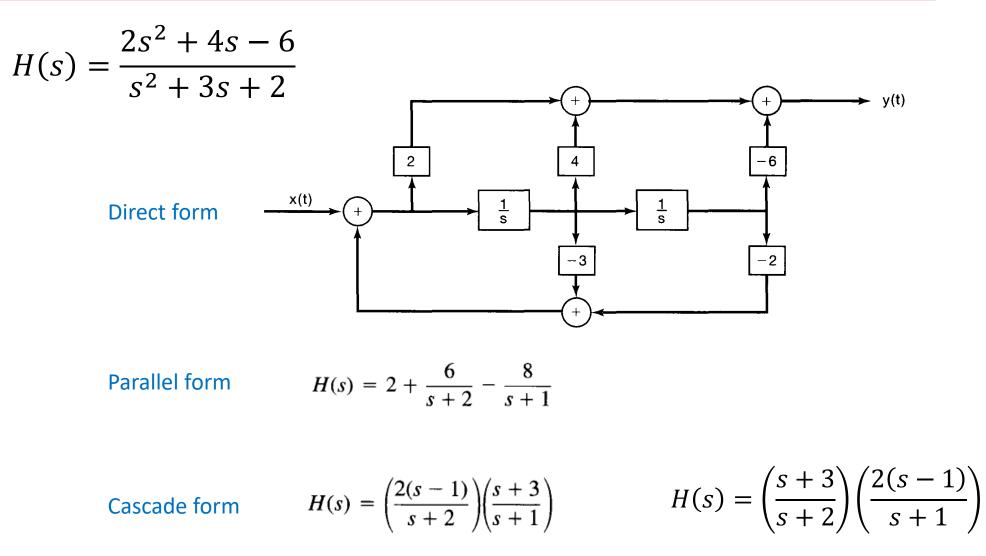
Parallel form



Cascade form



Examples: block diagram representations for causal LTI systems



The Laplace Transform (ch.9)

- **The Laplace transform**
- □ The region of convergence for Laplace transforms
- **The inverse Laplace transform**
- Geometric evaluation of the Fourier transform from the pole-zero plot
- Properties of the Laplace transform
- **Given Some Laplace transform pairs**
- □ Analysis and characterization of LTI systems using the Laplace transform
- **G** System function algebra and block diagram representations
- □ The unilateral Laplace transform

$$x(t) \xleftarrow{\mathcal{U}\mathfrak{L}} \mathcal{X}(s) = \mathcal{U}\mathfrak{L}\{x(t)\}$$
$$\mathcal{X}(s) \triangleq \int_{0^{-}}^{\infty} x(t)e^{-st}dt$$

Examples

$$x(t) = \frac{t^{n-1}}{(n-1)!} e^{-at} u(t)$$

$$\chi(s) \triangleq \frac{1}{(s+a)^n}, \quad \mathcal{R}e\{s\} > -a$$

$$x(t) = 0, \text{ for } t < 0$$

• x(t) = 0, for t < 0, the unilateral and bilateral transforms are identical

Examples

$$x(t) = e^{-a(t+1)}u(t+1)$$

$$X(s) = \frac{e^s}{s+a}, \qquad \mathcal{R}e\{s\} > -a$$

$$\mathcal{X}(s) = \int_{0^{-}}^{\infty} e^{-a(t+1)} u(t+1) e^{-st} dt$$

$$=\int_{0^{-}}^{\infty}e^{-a}e^{-t(s+a)}dt$$

$$=\frac{e^{-a}}{s+a}, \qquad \mathcal{R}e\{s\} > -a$$

• $x(t) \neq 0$, for -1 < t < 0, the unilateral and bilateral transforms are different

Examples

$$x(t) = \delta(t) + 2u_1(t) + e^t u(t)$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t < 0$$

$$x(t) = 0, \text{ for } t$$

Examples

$$\mathcal{X}(s) = \frac{1}{(s+1)(s+2)}, \qquad \mathcal{R}e\{s\} > -1$$

 $x(t) = [e^{-t} - e^{-2t}]u(t)$ for $t > 0^{-2t}$

Examples

$$\mathcal{X}(s) = \frac{s^2 - 3}{s + 2}$$

= $-2 + s + \frac{1}{s + 2}$, $\mathcal{R}e\{s\} > -2$

$$x(t) = -2\delta(t) + u_1(t) + e^{-2t}u(t)$$
 for $t > 0^{-2t}$

Note:
$$u_n(t) = \frac{d^n \delta(t)}{dt^n}$$

Properties of the unilateral Laplace transform

Property	Signal	Unilateral Laplace Transform	
	$ \begin{array}{c} x(t) \\ x_1(t) \\ x_2(t) \end{array} $	$\begin{array}{c} \mathfrak{X}(s)\\ \mathfrak{X}_1(s)\\ \mathfrak{X}_2(s) \end{array}$	
Linearity	$ax_1(t) + bx_2(t)$	$a \mathfrak{X}_1(s) + b \mathfrak{X}_2(s)$	
Shifting in the s-domain	$e^{s_0t}x(t)$	$\mathfrak{X}(s-s_0)$	
Time scaling	x(at), a > 0	$\frac{1}{a} \operatorname{sc}\left(\frac{s}{a}\right)$	
Conjugation	x * (t)	x * (s)	
Convolution (assuming that $x_1(t)$ and $x_2(t)$ are identically zero for t < 0)	$x_1(t) * x_2(t)$	$\mathfrak{X}_1(s)\mathfrak{X}_2(s)$	

Property	Signal	Unilateral Laplace Transform		
Differentiation in the time domain	$\frac{d}{dt}x(t)$	$s\mathfrak{X}(s) - x(0^{-})$		
Differentiation in the s-domain	-tx(t)	$\frac{d}{ds}\mathfrak{X}(s)$		
Integration in the time domain	$\int_{0^-}^t x(\tau)d\tau$	$\frac{1}{s} \mathfrak{X}(s)$		
Initial- and Final-Value Theorems				
If $x(t)$ contains no impulses or higher-order singularities at $t = 0$, then				
$x(0^+) = \lim_{s \to \infty} s \mathfrak{X}(s)$				
$\lim_{t\to\infty} x(t) = \lim_{s\to 0} s \mathfrak{X}(s)$				

Note: no ROC is specified cause it is always the right-half plane

Differentiation property

$$x(t) \xleftarrow{\mathcal{U}\mathfrak{L}} \mathcal{X}(s) \qquad \frac{dx(t)}{dt} \xleftarrow{\mathcal{U}\mathfrak{L}} s\mathcal{X}(s) - x(0^{-})$$

$$\int_{0^{-}}^{\infty} \frac{dx(t)}{dt} e^{-st} dt = x(t)e^{-st} \Big|_{0^{-}}^{\infty} + s \int_{0^{-}}^{\infty} x(t)e^{-st} dt = s\mathcal{X}(s) - x(0^{-})$$

$$\frac{d^2 x(t)}{dt^2} \quad \longleftrightarrow \quad s^2 \mathcal{X}(s) - s x(0^-) - x'(0^-)$$

0

Similarly

Convolution property $x_1(t) \xleftarrow{\mathcal{U}\mathfrak{L}} \mathcal{X}_1(s)$ $x_1(t) * x_2(t) \xleftarrow{\mathcal{U}\mathfrak{L}} \mathcal{X}_1(s)\mathcal{X}_2(s)$ Example A causal LTI system: $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$ If: $x(t) = \alpha u(t), y(t) = ?$ **Solution** Causal $\implies \mathcal{H}(s) = H(s) = \frac{1}{s^2 + 3s + 2}$ $\mathcal{Y}(s) = \mathcal{H}(s)\mathcal{X}(s) = \frac{\alpha}{s(s+1)(s+2)} = \frac{\alpha/2}{s} - \frac{\alpha}{s+1} + \frac{\alpha/2}{s+2}$ convolution property for unilateral Laplace transforms

$$\therefore y(t) = \alpha \left[\frac{1}{2} - e^{-t} + \frac{1}{2} e^{-2t} \right] u(t)$$

Note: this can also be done by bilateral Laplace transforms

Solving differential equations using the unilateral Laplace transform

Why unilateral Laplace transform?
Non-zero initial condition **Example:** A LTI system: $\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t)$ $y(0^-) = \beta$ $y'(0^-) = \gamma$ If $x(t) = \alpha u(t)$, y(t) = ?Solution $s^{2}\mathcal{Y}(s) - \beta s - \gamma + 3s\mathcal{Y}(s) - 3\beta + 2\mathcal{Y}(s) = \frac{\alpha}{s}$ $\mathcal{Y}(s) = \frac{\beta(s+3)}{(s+1)(s+2)} + \frac{\gamma}{(s+1)(s+2)} + \frac{\alpha}{s(s+1)(s+2)}$

Solving differential equations using the unilateral Laplace transform

Example: A LTI system: $\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t)$ $y(0^-) = \beta$ $y'(0^-) = \gamma$ If $x(t) = \alpha u(t)$, y(t) = ? $\mathcal{Y}(s) = \frac{\beta(s+3)}{(s+1)(s+2)} + \frac{\gamma}{(s+1)(s+2)} + \frac{\alpha}{s(s+1)(s+2)}$ v(t) =

Zero-input response

Zero-state response