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The Laplace transform

1

Recall the response of LTI systems to complex exponentials 

Definition

𝑋 𝑠 ≜ න
−∞

+∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

𝑥 𝑡
𝔏

𝑋 𝑠

ℎ 𝑡𝑒𝑠𝑡 𝑦 𝑡 = න
−∞

∞

ℎ 𝜏 𝑒𝑠(𝑡−𝜏)𝑑𝜏 = 𝑒𝑠𝑡න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏

න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏 = 𝐻(𝑠) → 𝑦 𝑡 = 𝐻(𝑠)𝑒𝑠𝑡Define:
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Laplace transform vs Fourier transform

𝑋 𝑠 ≜ න
−∞

+∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

𝑥 𝑡
𝔏

𝑋 𝑠

𝑋 𝑗𝜔 = න
−∞

+∞

𝑥 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑠 = 𝑗𝜔

𝑋 𝜎 + 𝑗𝜔 = න
−∞

+∞

𝑥 𝑡 𝑒− 𝜎+𝑗𝜔 𝑡𝑑𝑡

𝑋 𝜎 + 𝑗𝜔 = න
−∞

+∞

[𝑥 𝑡 𝑒−𝜎𝑡]𝑒−𝑗𝜔𝑡𝑑𝑡

𝑋 𝑠 ቚ
𝑠=𝜎+𝑗𝜔

= ℱ 𝑥 𝑡 𝑒−𝜎𝑡

𝑠 = 𝜎 + 𝑗𝜔

The Laplace transform

𝑋 𝑠 ቚ
𝑠=𝑗𝜔

= ℱ 𝑥 𝑡

𝔏 𝑥 𝑡 ≜ ℱ 𝑥 𝑡 𝑒−𝜎𝑡
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Examples

The Laplace transform

𝑋 𝑠 = න
0

∞

𝑒−𝑎𝑡𝑒−𝑠𝑡𝑑𝑡 = න
0

∞

𝑒− 𝜎+𝑎 𝑡𝑒−𝑗𝜔𝑡𝑑𝑡 =
1

𝜎 + 𝑎 + 𝑗𝜔
, 𝜎 + 𝑎 > 0

𝑥 𝑡 = 𝑒−𝑎𝑡𝑢 𝑡 𝑋 𝑠 =?

Solution

𝑒−𝑎𝑡𝑢 𝑡
𝔏 1

𝑠 + 𝑎
ℛℯ 𝑠 > −𝑎

𝑋 𝑗𝜔 = න
0

+∞

𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡 = න
0

∞

𝑒− 𝑗𝜔+𝑎 𝑡𝑑𝑡 =
1

𝑎 + 𝑗𝜔
, 𝑎 > 0FT:

LT:

𝑠 = 𝜎 + 𝑗𝜔
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Examples

The Laplace transform

𝑋 𝑠 = −න
−∞

+∞

𝑒−𝑎𝑡𝑢 −𝑡 𝑒−𝑠𝑡𝑑𝑡 = −න
−∞

0

𝑒− 𝑠+𝑎 𝑡𝑑𝑡 =
1

𝑠 + 𝑎
, ℛℯ 𝑠 < −𝑎

𝑥 𝑡 = −𝑒−𝑎𝑡𝑢 −𝑡 𝑋 𝑠 =?

Solution

−𝑒−𝑎𝑡𝑢 −𝑡
𝔏 1

𝑠 + 𝑎
ℛℯ 𝑠 < −𝑎
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Region of convergence (ROC)

The Laplace transform

𝑒−𝑎𝑡𝑢 𝑡
𝔏 1

𝑠 + 𝑎
ℛℯ 𝑠 > −𝑎 −𝑒−𝑎𝑡𝑢 −𝑡

𝔏 1

𝑠 + 𝑎
ℛℯ 𝑠 < −𝑎
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Examples

The Laplace transform

𝑋 𝑠 = න
−∞

+∞

3𝑒−2𝑡𝑢 𝑡 − 2𝑒−𝑡𝑢 𝑡 𝑒−𝑠𝑡𝑑𝑡

= 3න
−∞

+∞

𝑒−2𝑡𝑒−𝑠𝑡𝑢 𝑡 𝑑𝑡 − 2න
−∞

+∞

𝑒−𝑡𝑒−𝑠𝑡𝑢 𝑡 𝑑𝑡 =
3

𝑠 + 2
−

2

𝑠 + 1
=

𝑠 − 1

𝑠2 + 3𝑠 + 2

𝑥 𝑡 = 3𝑒−2𝑡𝑢 𝑡 − 2𝑒−𝑡𝑢 𝑡 𝑋 𝑠 =?

Solution

𝑒−𝑡𝑢 𝑡
𝔏 1

𝑠 + 1
ℛℯ 𝑠 > −1

𝑒−2𝑡𝑢 𝑡
𝔏 1

𝑠 + 2
ℛℯ 𝑠 > −2

3𝑒−2𝑡𝑢 𝑡 − 2𝑒−2𝑡𝑢 𝑡
𝔏 𝑠 − 1

𝑠2 + 3𝑠 + 2
ℛℯ 𝑠 > −1
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Examples

The Laplace transform

𝑋 𝑠 = න
−∞

+∞

𝑒−2𝑡𝑢 𝑡 𝑒−𝑠𝑡𝑑𝑡 +
1

2
න
−∞

+∞

𝑒− 1−3𝑗 𝑡𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡 +
1

2
න
−∞

+∞

𝑒− 1+3𝑗 𝑡𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡

𝑥 𝑡 = 𝑒−2𝑡𝑢 𝑡 + 𝑒−𝑡 cos 3𝑡 𝑢 𝑡 𝑋 𝑠 =?

Solution

𝑒−(1−3𝑗)𝑡𝑢 𝑡
𝔏 1

𝑠 + (1 − 3𝑗)
ℛℯ 𝑠 > −1

𝑒−2𝑡𝑢 𝑡
𝔏 1

𝑠 + 2
ℛℯ 𝑠 > −2

𝑥 𝑡 = 𝑒−2𝑡 +
1

2
𝑒−(1−3𝑗)𝑡 +

1

2
𝑒−(1+3𝑗)𝑡 𝑢 𝑡

𝑒−(1+3𝑗)𝑡𝑢 𝑡
𝔏 1

𝑠 + (1 + 3𝑗)
ℛℯ 𝑠 > −1

𝑋 𝑠 =
1

𝑠 + 2
+
1

2

1

𝑠 + (1 − 3𝑗)
+
1

2

1

𝑠 + (1 + 3𝑗)
=

2𝑠2 + 5𝑠 + 12

(𝑠2+2𝑠 + 10)(𝑠 + 2)
, ℛℯ 𝑠 > −1
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Pole-zero plot of rational  𝑋 𝑠

The Laplace transform

𝑋 𝑠 =
2𝑠2 + 5𝑠 + 12

(𝑠2+2𝑠 + 10)(𝑠 + 2)
, ℛℯ 𝑠 > −1𝑋 𝑠 =

𝑠 − 1

𝑠2 + 3𝑠 + 2
, ℛℯ 𝑠 > −1

“x”: the location of the root of the numerator polynomial

“o”: the location of the root of the denominator polynomial
𝑋 𝑠 =

𝑁 𝑠

𝐷 𝑆

Examples
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Examples

The Laplace transform

𝔏 𝛿 𝑡 = න
−∞

+∞

𝛿 𝑡 𝑒−𝑠𝑡𝑑𝑡 = 1

𝑥 𝑡 = 𝛿 𝑡 −
4

3
𝑒−𝑡𝑢 𝑡 +

1

3
𝑒2𝑡𝑢 𝑡 𝑋 𝑠 =?

Solution

ℛℯ 𝑠 > 2

valid for any value of 𝑠

𝑋 𝑠 = 1 −
4

3

1

𝑠 + 1
+
1

3

1

𝑠 − 2

=
𝑠 − 1 2

𝑠 + 1 𝑠 − 2
ℛℯ 𝑠 > 2

2nd order zero
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Properties

The region of convergence for Laplace transforms

1. The ROC of 𝑋 𝑠 consists of strips parallel to the 𝑗𝜔-axis in the 𝑠-plane

2. For rational Laplace transforms, the ROC does not contain any poles.

ROC of 𝑋 𝑠 : Fourier transform of 𝑥 𝑡 𝑒−𝜎𝑡 converges (absolutely integrable)

න
−∞

+∞

𝑥 𝑡 𝑒−𝜎𝑡𝑑𝑡 < ∞

𝑋(𝑠) is infinite at a pole

depends only on 𝜎, the real part of s
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Properties

The region of convergence for Laplace transforms

3. If 𝑥 𝑡 is of finite duration and is absolutely integrable, then the ROC is the 
entire 𝑠-plane.

Multiplied by a decaying 
exponential

Finite-duration signal

Multiplied by a growing 
exponential

If 𝜎 > 0,

න
𝑇1

𝑇2

𝑥 𝑡 𝑒−𝜎𝑡𝑑𝑡 ≤ 𝑒−𝜎𝑇1 න
𝑇1

𝑇2

𝑥 𝑡 𝑑𝑡

න
𝑇1

𝑇2

𝑥 𝑡 𝑒−𝜎𝑡𝑑𝑡 ≤ 𝑒−𝜎𝑇2 න
𝑇1

𝑇2

𝑥 𝑡 𝑑𝑡

න
𝑇1

𝑇2

𝑥 𝑡 𝑒−𝜎𝑡𝑑𝑡 < ∞

If 𝜎 < 0,

For convergence, require
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Examples

The Laplace transform

𝑥 𝑡 = ቊ𝑒
−𝑎𝑡 0 < 𝑡 < 𝑇
0 otherwise

𝑋 𝑠 =?

Solution

𝑋 𝑠 = න
0

𝑇

𝑒−𝑎𝑡𝑒−𝑠𝑡𝑑𝑡 =
1

𝑠 + 𝑎
1 − 𝑒− 𝑠+𝑎 𝑇

lim
𝑠→−𝑎

𝑋 𝑠 = lim
𝑠→−𝑎

𝑑
𝑑𝑠

1 − 𝑒− 𝑠+𝑎 𝑇

𝑑
𝑑𝑠

𝑠 + 𝑎
= lim

𝑠→−𝑎
𝑇𝑒−𝑎𝑇𝑒−𝑠𝑇

𝑋 −𝑎 = 𝑇

ROC = the entire s-plane
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Properties

The region of convergence for Laplace transforms

4. If 𝑥(𝑡) is right-sided, and if the line ℛℯ 𝑠 = 𝜎0 is in the ROC, then all values 
of 𝑠 for which ℛℯ 𝑠 > 𝜎0 will also be in the ROC.

න
𝑇1

+∞

𝑥 𝑡 𝑒−𝜎0𝑡𝑑𝑡 < ∞

Right-sided signal

For 𝜎1 > 𝜎0,

න
𝑇1

+∞

𝑥 𝑡 𝑒−𝜎1𝑡𝑑𝑡 = න
𝑇1

+∞

𝑥 𝑡 𝑒−𝜎0𝑡𝑒−(𝜎1−𝜎0)𝑡𝑑𝑡

≤ 𝑒− 𝜎1−𝜎0 𝑇1 න
𝑇1

+∞

𝑥 𝑡 𝑒−𝜎0𝑡𝑑𝑡

5. If 𝑥(𝑡) is left-sided, and if the line ℛℯ 𝑠 = 𝜎0 is in the ROC, then all values of 
s for which ℛℯ 𝑠 < 𝜎0 will also be in the ROC.

Multiplied by an 
exponential

For convergence, require



15

Properties

The region of convergence for Laplace transforms

6. If 𝑥(𝑡) is two-sided, and if the line ℛℯ 𝑠 = 𝜎0 is in the ROC, then the ROC will 
consist of a strip in the 𝑠-plane that includes the line ℛℯ 𝑠 = 𝜎0.

⟹⟹

⟹

⟹



16

Examples

The region of convergence for Laplace transforms

𝑥 𝑡 = 𝑒−𝑏 𝑡 𝑋 𝑠 =?

Solution

𝑥 𝑡 = 𝑒−𝑏𝑡𝑢 𝑡 + 𝑒𝑏𝑡𝑢 −𝑡

𝑒−𝑏𝑡𝑢 𝑡
𝔏 1

𝑠 + 𝑏
ℛℯ 𝑠 > −𝑏

𝑒𝑏𝑡𝑢 −𝑡
𝔏 −1

𝑠 − 𝑏
ℛℯ 𝑠 < 𝑏

𝑒−𝑏 𝑡 𝔏 1

𝑠 + 𝑏
−

1

𝑠 − 𝑏
= −

2𝑏

𝑠2 − 𝑏2
−𝑏 < ℛℯ 𝑠 < 𝑏

for 𝑏 > 0
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Properties

The region of convergence for Laplace transforms

7. If the Laplace transform 𝑋(𝑠) of 𝑥(𝑡) is rational, then its ROC is bounded by 
poles or extends to infinity. No poles are contained in the ROC.

8. If the Laplace transform 𝑋 𝑠 of 𝑥 𝑡 is rational, then if 𝑥 𝑡 is right-sided, the 
ROC is the region in the s-plane to the right of the right-most pole. The same 
applies to the left.

 If 𝑥(𝑡) is right-sided, and if the line ℛℯ 𝑠 = 𝜎0 is in the ROC, then all values
of s for which ℛℯ 𝑠 > 𝜎0 will also be in the ROC.

 If 𝑥(𝑡) is left-sided, and if the line ℛℯ 𝑠 = 𝜎0 is in the ROC, then all values of
s for which ℛℯ 𝑠 < 𝜎0 will also be in the ROC.
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Examples

The region of convergence for Laplace transforms

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
ROCs and convergence of FT? 

Solution

Right-sided Left-sided Two-sided

FT converges Has no FT Has no FT
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The inverse Laplace transform

𝑋 𝜎 + 𝑗𝜔 = ℱ 𝑥 𝑡 𝑒−𝜎𝑡 = න
−∞

+∞

𝑥 𝑡 𝑒−𝜎𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

𝑥 𝑡 𝑒−𝜎𝑡 = ℱ−1 𝑋 𝜎 + 𝑗𝜔 =
1

2𝜋
න
−∞

+∞

𝑋 𝜎 + 𝑗𝜔 𝑒𝑗𝜔𝑡𝑑𝜔

𝑥 𝑡 =
1

2𝜋
න
−∞

+∞

𝑋 𝜎 + 𝑗𝜔 𝑒 𝜎+𝑗𝜔 𝑡𝑑𝜔

𝑥 𝑡 =
1

2𝜋𝑗
න
𝜎−𝑗∞

𝜎+𝑗∞

𝑋 𝑠 𝑒𝑠𝑡𝑑𝑠

𝑠 = 𝜎 + 𝑗𝜔
𝑑𝑠 = 𝑗𝑑𝜔
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Examples

The inverse Laplace transform

Solution

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
, ℛℯ 𝑠 > −1 𝑥 𝑡 =?

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
=

1

𝑠 + 1
−

1

𝑠 + 2

𝑒−𝑡𝑢 𝑡
𝔏 1

𝑠 + 1
ℛℯ 𝑠 > −1

𝑒−2𝑡𝑢 𝑡
𝔏 1

𝑠 + 2
ℛℯ 𝑠 > −2

𝑥 𝑡 = 𝑒−𝑡 − 𝑒−2𝑡 𝑢 𝑡
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Examples

The inverse Laplace transform

Solution

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
, ℛℯ 𝑠 < −2

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
=

1

𝑠 + 1
−

1

𝑠 + 2

−𝑒−𝑡𝑢 −𝑡
𝔏 1

𝑠 + 1
ℛℯ 𝑠 < −1

−𝑒−2𝑡𝑢 −𝑡
𝔏 1

𝑠 + 2
ℛℯ 𝑠 < −2

𝑥 𝑡 = −𝑒−𝑡 + 𝑒−2𝑡 𝑢 −𝑡

𝑥 𝑡 =?
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Examples

The inverse Laplace transform

Solution

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
, −2 < ℛℯ 𝑠 < −1

𝑋 𝑠 =
1

𝑠 + 1 (𝑠 + 2)
=

1

𝑠 + 1
−

1

𝑠 + 2

−𝑒−𝑡𝑢 −𝑡
𝔏 1

𝑠 + 1
ℛℯ 𝑠 < −1

𝑥 𝑡 = −𝑒−𝑡𝑢 −𝑡 − 𝑒−2𝑡𝑢 𝑡

𝑒−2𝑡𝑢 𝑡
𝔏 1

𝑠 + 2
ℛℯ 𝑠 > −2

𝑥 𝑡 =?
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Geometry evaluation of the Fourier transform from the pole-zero plot

 Consider 𝑋(𝑠) = 𝑠 − 𝑎

𝑋 𝑠1 = 𝑠1 − 𝑎

∢𝑋 𝑠1 = ∢𝑠1 − 𝑎

 Consider 𝑋(𝑠) = 1/(𝑠 − 𝑎)

𝑋 𝑠1 =
1

𝑠1 − 𝑎

∢𝑋 𝑠1 = −∢𝑠1 − 𝑎

 Consider 𝑋 𝑠 = 𝑀
ς𝑖=1
𝑅 𝑠 − 𝛽𝑖

ς𝑗=1
𝑃 𝑠 − 𝛼𝑗

𝑋 𝑠1 = |𝑀|
ς𝑖=1
𝑅 𝑠1 − 𝛽𝑖

ς𝑗=1
𝑃 𝑠1 − 𝛼𝑗

∢𝑋 𝑠1 = ∢𝑀 +෍
𝑖=1

𝑅

∢𝑠1 − 𝛽𝑖 −෍
𝑖=1

𝑃

∢𝑠1 − 𝛼𝑗



26

Examples

Geometry evaluation of the Fourier transform from the pole-zero plot

Solution

𝑋 𝑠 =
1

𝑠 + 1/2
, ℛℯ 𝑠 > −

1

2
Magnitude and angle at 𝑠 = 𝑗𝜔?

𝑋 𝑗𝜔 =
1

𝑗𝜔 + 1/2

𝑋 𝑗𝜔 2 =
1

𝜔2 + 1/2 2

∢𝑋 𝑗𝜔 = − tan−1 2𝜔

Behavior of the Fourier transform can obtained from the pole-zero plot
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First-order systems

Geometry evaluation of the Fourier transform from the pole-zero plot

Consider

𝐻 𝑠 =
1

𝑠𝜏 + 1
, ℛℯ 𝑠 > −

1

𝜏

ℎ 𝑡 =
1

𝜏
𝑒−

𝑡
𝜏𝑢 𝑡

𝐻 𝑗𝜔 2 =
1

𝜏2
⋅

1

𝜔2 + 1/𝜏 2

∢𝐻 𝑗𝜔 = − tan−1 𝜏𝜔

3 dB

Asymptotic 
approximation

Asymptotic 
approximation



28

Second-order systems

Geometry evaluation of the Fourier transform from the pole-zero plot

ℎ 𝑡 = 𝑀 𝑒𝑐1𝑡 − 𝑒𝑐2𝑡 𝑢 𝑡

𝐻 𝑠 =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

𝜔𝑛
2

𝑠 − 𝑐1 𝑠 − 𝑐2

𝑐1 = −𝜁𝜔𝑛 + 𝜔𝑛 𝜁2 − 1

𝑐2 = −𝜁𝜔𝑛 − 𝜔𝑛 𝜁2 − 1

𝑀 =
𝜔𝑛

2 𝜁2 − 1

Pole-zero plot (𝜁 > 1) Pole vectors (𝜁 ≫ 1)
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Second-order systems

Geometry evaluation of the Fourier transform from the pole-zero plot

Pole-zero plot (0 < 𝜁 < 1)

Pole vectors (0 < 𝜁 < 1) 

𝜔 = 𝜔𝑛 𝜁2 − 1

and 𝜔 = 𝜔𝑛 𝜁2 − 1 ± 𝜁𝜔𝑛)

ℎ 𝑡 = 𝑀 𝑒𝑐1𝑡 − 𝑒𝑐2𝑡 𝑢 𝑡

𝐻 𝑠 =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

𝜔𝑛
2

𝑠 − 𝑐1 𝑠 − 𝑐2

𝑐1 = −𝜁𝜔𝑛 + 𝜔𝑛 𝜁2 − 1

𝑐2 = −𝜁𝜔𝑛 − 𝜔𝑛 𝜁2 − 1

𝑀 =
𝜔𝑛

2 𝜁2 − 1
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Second-order systems

Geometry evaluation of the Fourier transform from the pole-zero plot

ℎ 𝑡 = 𝑀 𝑒𝑐1𝑡 − 𝑒𝑐2𝑡 𝑢 𝑡

𝐻 𝑠 =
𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

𝜔𝑛
2

𝑠 − 𝑐1 𝑠 − 𝑐2

𝑐1 = −𝜁𝜔𝑛 + 𝜔𝑛 𝜁2 − 1

𝑐2 = −𝜁𝜔𝑛 − 𝜔𝑛 𝜁2 − 1

𝑀 =
𝜔𝑛

2 𝜁2 − 1
• a non-ideal band-pass filter
• 𝜁 controlls the sharpness and width
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All-pass systems

Geometry evaluation of the Fourier transform from the pole-zero plot

∢𝐻 𝑗𝜔 = 𝜃1 − 𝜃2 = 𝜋 − 2𝜃2 = 𝜋 − 2 tan−1
𝜔

𝑎
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(ch.9)
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 The region of convergence for Laplace transforms

 The inverse Laplace transform

 Geometric evaluation of the Fourier transform from the pole-zero plot

 Properties of the Laplace transform

 Some Laplace transform pairs

 Analysis and characterization of LTI systems using the Laplace transform

 System function algebra and block diagram representations

 The unilateral Laplace transform
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Linearity

Properties of the Laplace transform

⟹

𝑥1 𝑡 𝑋1 𝑠
𝔏

ROC = 𝑅1

𝑥2 𝑡 𝑋2 𝑠
𝔏

ROC = 𝑅2

𝑥 𝑡 = 𝑎𝑥1 𝑡 +𝑏𝑥2 𝑡 𝑎𝑋1 𝑠 + 𝑏𝑋2 𝑠
𝔏

ROC contains 𝑅1⋂𝑅2

𝑅1⋂𝑅2 is can be empty: 𝑥 𝑡 has no Laplace transform 

ROC of 𝑋 𝑠 can also be larger than 𝑅1⋂𝑅2
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Example

Properties of the Laplace transform

Consider 𝑥 𝑡 = 𝑥1 𝑡 − 𝑥2 𝑡

𝑋1 𝑠 =
1

𝑠 + 1
, ℛℯ 𝑠 > −1 𝑋2 𝑠 =

1

(𝑠 + 1)(𝑠 + 2)
, ℛℯ 𝑠 > −1

𝑋 𝑠 =
1

𝑠 + 1
−

1

𝑠 + 1 𝑠 + 2
=

𝑠 + 1

𝑠 + 1 𝑠 + 2
=

1

𝑠 + 2
, ℛℯ 𝑠 > −2

𝑋1 𝑠 𝑋2 𝑠 𝑋 𝑠

𝑋 𝑠 =?

Solution
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Time shifting

Properties of the Laplace transform

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

𝑥 𝑡 − 𝑡0 𝑒−𝑠𝑡0𝑋 𝑠
𝔏

ROC = 𝑅

Shifting in the s-domain

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

𝔏
𝑒𝑠0𝑡𝑥 𝑡 𝑋 𝑠 − 𝑠0 ROC = 𝑅 + ℛℯ 𝑠0

⟹

𝑒𝑗𝜔0𝑡𝑥 𝑡 𝑋 𝑠 − 𝑗𝜔0
𝔏

ROC = 𝑅

𝑠0 = 𝑗𝜔0

⟹
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Time scaling

Properties of the Laplace transform

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

𝑥 𝑎𝑡
1

𝑎
𝑋

𝑠

𝑎

𝔏
ROC = 𝑎𝑅 𝑥 −𝑡 𝑋 −𝑠

𝔏
ROC = −𝑅⟹

𝑎 = −1

ROC of 𝑋(𝑠) ROC of 
1

𝑎
𝑋

𝑠

𝑎

(0 < 𝑎 < 1)

ROC of 
1

𝑎
𝑋

𝑠

𝑎

(−1 < 𝑎 < 0)

𝑎𝑟1𝑎𝑟2 𝑎 𝑟2𝑎 𝑟1
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Conjugation

Properties of the Laplace transform

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

𝑥∗ 𝑡 𝑋∗ 𝑠∗
𝔏

ROC = 𝑅

𝑋 𝑠 = 𝑋∗ 𝑠∗ if 𝑥 𝑡 is real 

Convolution property

𝑥1 𝑡 𝑋2 𝑠
𝔏

ROC = 𝑅1

𝑥2 𝑡 𝑋2 𝑠
𝔏

ROC = 𝑅2

⟹ 𝑥1 𝑡 ∗ 𝑥2 𝑡 𝑋1 𝑠 𝑋2 𝑠
𝔏

ROC contains 𝑅1⋂𝑅2
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Properties of the Laplace transform

Differentiation in the time domain

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

𝑑𝑥 𝑡

𝑑𝑡
𝑠𝑋 𝑠

𝔏
ROC contains 𝑅

𝑥 𝑡 =
1

2𝜋𝑗
න
𝜎−𝑗∞

𝜎+𝑗∞

𝑋 𝑠 𝑒𝑠𝑡𝑑𝑠

𝑑𝑥 𝑡

𝑑𝑡
=

1

2𝜋𝑗
න
𝜎−𝑗∞

𝜎+𝑗∞

𝑠𝑋 𝑠 𝑒𝑠𝑡𝑑𝑠

Differentiation in the s-domain

𝑋 𝑠 = න
−∞

+∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

𝑑𝑋 𝑠

𝑑𝑠
= න

−∞

+∞

−𝑡 𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

⟹

𝑥 𝑡 𝑋 𝑠
𝔏

ROC = 𝑅

−𝑡𝑥 𝑡
𝑑𝑋 𝑠

𝑑𝑠

𝔏
ROC = 𝑅
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Properties of the Laplace transform

Examples

Solution

𝑡𝑛−1

𝑛 − 1 !
𝑒−𝑎𝑡𝑢(𝑡)

Consider 𝑥 𝑡 = 𝑡𝑒−𝑎𝑡𝑢 𝑡

?
𝔏

𝑒−𝑎𝑡𝑢 𝑡
1

𝑠 + 𝑎

𝔏
ℛℯ 𝑠 > −𝑎

𝑡𝑒−𝑎𝑡𝑢 𝑡 −
𝑑

𝑑𝑠

1

𝑠 + 𝑎
=

1

𝑠 + 𝑎 2
𝔏

ℛℯ 𝑠 > −𝑎

𝑡2

2
𝑒−𝑎𝑡𝑢 𝑡

1

𝑠 + 𝑎 3

𝔏
ℛℯ 𝑠 > −𝑎

𝑡𝑛−1

𝑛 − 1 !
𝑒−𝑎𝑡𝑢 𝑡

1

𝑠 + 𝑎 𝑛

𝔏
ℛℯ 𝑠 > −𝑎

1

𝑠 + 𝑎 𝑛
ℛℯ 𝑠 > −𝑎
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Properties of the Laplace transform

Examples

Solution

𝑋 𝑠 =
2𝑠2 + 5𝑠 + 5

𝑠 + 1 2 𝑠 + 2
, ℛℯ 𝑠 > −1

𝑋 𝑠 =
2

𝑠 + 1 2
−

1

𝑠 + 1
+

3

𝑠 + 2
, ℛℯ 𝑠 > −1

𝑥 𝑡 = 2𝑡𝑒−𝑡 − 𝑒−𝑡 + 3𝑒−2𝑡 𝑢 𝑡

𝑥 𝑡 =?
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Properties of the Laplace transform

Integration in the time domain

𝑥 𝑡

⟹

𝑋 𝑠
𝔏

ROC = 𝑅

න
−∞

𝑡

𝑥 𝜏 𝑑𝜏
1

𝑠
𝑋 𝑠

𝔏
ROC contains 𝑅 ∩ ℛℯ 𝑠 > 0

න
−∞

𝑡

𝑥 𝜏 𝑑𝜏 = 𝑢 𝑡 ∗ 𝑥 𝑡

𝑢 𝑡
1

𝑠

𝔏
ℛℯ 𝑠 > 0

𝑢 𝑡 ∗ 𝑥 𝑡
1

𝑠
𝑋 𝑠

𝔏

Proof

ROC contains 𝑅 ∩ ℛℯ 𝑠 > 0
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Properties of the Laplace transform

The initial- and final-theorems

𝑥 0+ = lim
𝑠→∞

𝑠𝑋 𝑠

If 
𝑥 𝑡 = 0 for 𝑡 < 0, 
𝑥(𝑡) contains no impulses or higher order singularities at the origin,

Then,

lim
𝑡→∞

𝑥 𝑡 = lim
𝑠→0

𝑠𝑋 𝑠

If 
𝑥 𝑡 = 0 for 𝑡 < 0, 
𝑥(𝑡) has a finite limit as 𝑡 → ∞,

Then,

 Initial-value theorem

 Final-value theorem
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Properties of the Laplace transform

Summary
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Some Laplace transform pairs
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Analysis and characterization of LTI systems using the Laplace transform

LTI𝑒𝑠𝑡 𝑦 𝑡 = 𝐻(𝑠)𝑒𝑠𝑡

𝐻(𝑠) = න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏

LTI𝑥(𝑡) 𝑦 𝑡 = 𝑥(𝑡) ∗ ℎ(𝑡)

𝑌(𝑠) = 𝑋(𝑠) 𝐻(𝑠)

𝐻(𝑠): system function or transfer function
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Analysis and characterization of LTI systems using the Laplace transform

Causality
Causal ROC of 𝐻 𝑠 is a right-half plane⟹ Converse is not necssaryily true

A system with rational 
𝐻 𝑠 is causal

ROC of 𝐻 𝑠 is the right-half plane to the right of the 
right-most pole

⟺

Examples
Solution 1

ℎ 𝑡 = 𝑒−𝑡𝑢 𝑡 Causal?

ℎ 𝑡 = 0 for 𝑡 < 0

⟹ Causal

Solution 2

𝐻(𝑠) =
1

𝑠 + 1
ℛℯ 𝑠 > −1

Examples
Solution 1

ℎ 𝑡 = 𝑒− 𝑡 Causal?

ℎ 𝑡 ≠ 0 for 𝑡 < 0

⟹ Noncausal

Solution 2

𝐻(𝑠) =
−2

𝑠2 − 1
−1 < ℛℯ 𝑠 < 1

⟹ Causal

⟹ Noncausal
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Analysis and characterization of LTI systems using the Laplace transform

Examples

Solution

𝐻 𝑠 =
𝑒𝑠

𝑠+1
, ℛℯ 𝑠 > −1 Causal?

⟹ Noncausal

𝑒−𝑡𝑢 𝑡
1

𝑠 + 1

𝔏
ℛℯ 𝑠 > −1

𝑒− 𝑡+1 𝑢 𝑡 + 1
𝑒𝑠

𝑠 + 1

𝔏
ℛℯ 𝑠 > −1

ℎ 𝑡 = 𝑒− 𝑡+1 𝑢 𝑡 + 1

Time-shifting

𝑥 𝑡
⟹

𝑋 𝑠

𝑥 𝑡 − 𝑡0 𝑒−𝑠𝑡0𝑋 𝑠

𝔏

𝔏

ROC = 𝑅

ROC = 𝑅
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Analysis and characterization of LTI systems using the Laplace transform

Anti-causality

Anti-causal ROC of 𝐻 𝑠 is a left-half plane⟹ Converse is not necssaryily true

A system with rational 
𝐻 𝑠 is anti-causal

ROC of 𝐻 𝑠 is the left-half plane to the left of the left-
most pole

⟺
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Analysis and characterization of LTI systems using the Laplace transform

Stability

Stable The ROC of 𝐻 𝑠 includes the entire 𝑗𝜔-axis⟺

Stable The impulse response of 𝐻 𝑠 is absolutely integrable⟺

⟹
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Analysis and characterization of LTI systems using the Laplace transform

Examples

𝐻 𝑠 =
𝑠 − 1

𝑠 + 1 𝑠 − 2
Causal?  Stable?

ℎ 𝑡 =
2

3
𝑒𝑡 +

1

3
𝑒2𝑡 𝑢 𝑡 ℎ 𝑡 =

2

3
𝑒−𝑡𝑢 𝑡 −

1

3
𝑒2𝑡𝑢 −𝑡 ℎ 𝑡 = −

2

3
𝑒𝑡 +

1

3
𝑒2𝑡 𝑢 −𝑡

Solution

Causal
Unstable system

Noncausal
Stable system

Anti-causal
Unstable system
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Analysis and characterization of LTI systems using the Laplace transform

Stability

Stable All the poles have negative real parts⟺

For a causal system, with rational system function 𝐻 𝑠 ,

Stable All the poles of 𝐻 𝑠 lie in the left-half of the 𝑠-plane  ⟺

OR

Examples

𝐻 𝑠 =
1

𝑠 + 1
𝐻 𝑠 =

1

𝑠 − 2

Pole: 𝑠 = −1

⟹ Stable

Pole: 𝑠 = 2

⟹ UnstableCausal Causal
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Examples

Analysis and characterization of LTI systems using the Laplace transform

Consider the class of causal second-order systems

𝐻 𝑠 =
𝜔𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 =

𝜔𝑛
𝑠 − 𝑐1 𝑠 − 𝑐2

𝑐2 = −𝜁𝜔𝑛 −𝜔𝑛 𝜁2 − 1

𝑀 =
𝜔𝑛

2 𝜁2 − 1

𝑐1 = −𝜁𝜔𝑛 + 𝜔𝑛 𝜁2 − 1

ℎ 𝑡 = 𝑀 𝑒𝑐1𝑡 − 𝑒𝑐2𝑡 𝑢 𝑡

𝜁 < 0

Is the system stable when 𝜁 < 0?

Unstable

Solution
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Analysis and characterization of LTI systems using the Laplace transform

LTI systems characterized by linear constant-coefficient differential equations

𝑑𝑦 𝑡

𝑑𝑡
+ 3𝑦 𝑡 = 𝑥 𝑡

𝐻 𝑠 =
1

𝑠 + 3

 Examples

𝑠𝑌(𝑠) + 3𝑌(𝑠) = 𝑋(𝑠)

Differential equation: not a complete specification of the LTI system!

ℎ 𝑡 = 𝑒−3𝑡𝑢(𝑡)Pre-knowledge: if causal

Anti-causal ℎ 𝑡 = −𝑒−3𝑡𝑢(−𝑡)
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Analysis and characterization of LTI systems using the Laplace transform

LTI systems characterized by linear constant-coefficient differential equations

෍

𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦 𝑡

𝑑𝑡𝑘
= ෍

𝑘=0

𝑀

𝑏𝑘
𝑑𝑘𝑥 𝑡

𝑑𝑡𝑘

෍

𝑘=0

𝑁

𝑎𝑘𝑠
𝑘 𝑌 𝑠 = ෍

𝑘=0

𝑀

𝑏𝑘𝑠
𝑘 𝑋 𝑠

𝐻 𝑠 =
σ𝑘=0
𝑀 𝑏𝑘𝑠

𝑘

σ𝑘=0
𝑁 𝑎𝑘𝑠

𝑘

Poles at the solution of 

Zeros at the solution of ෍

𝑘=0

𝑀

𝑏𝑘𝑠
𝑘 = 0

෍

𝑘=0

𝑁

𝑎𝑘𝑠
𝑘 = 0

⟹

 Generally
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Analysis and characterization of LTI systems using the Laplace transform

Examples

𝑅𝐶
𝑑𝑦 𝑡

𝑑𝑡
+ 𝐿𝐶

𝑑2𝑦 𝑡

𝑑𝑡2
+ 𝑦 𝑡 = 𝑥 𝑡

𝐻 𝑠 =
1/𝐿𝐶

𝑠2 + 𝑅/𝐿 𝑠 + (1/𝐿𝐶)

Poles have negative real parts when 𝑅 > 0, 𝐿 > 0, and 𝐶 > 0

⟹ Stable

Solution
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Analysis and characterization of LTI systems using the Laplace transform

Examples relating system behavior to the system function

𝑥 𝑡 = 𝑒−3𝑡𝑢 𝑡

𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
=

𝑠 + 3

𝑠 + 1 𝑠 + 2
=

𝑠 + 3

𝑠2 + 3𝑠 + 2

If the input to an LTI system is 

Then the output is 𝑦 𝑡 = [𝑒−𝑡 − 𝑒−2𝑡]𝑢 𝑡

𝑌 𝑠 =
1

𝑠 + 1 𝑠 + 2
, ℛℯ 𝑠 > −1

𝑋 𝑠 =
1

𝑠 + 3
, ℛℯ 𝑠 > −3

𝑑2𝑦 𝑡

𝑑𝑡2
+ 3

𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 =

𝑑𝑥 𝑡

𝑑𝑡
+ 3𝑥 𝑡

Solution
System function?

Causal and stable
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Analysis and characterization of LTI systems using the Laplace transform

Examples relating system behavior to the system function

Given the following information about an LTI system, determine 𝐻 𝑠 .

Solution

1. The system is causal;
2. 𝐻 𝑠 is rational and has only two poles at 𝑠 = −2 and 𝑠 = 4;
3. If 𝑥 𝑡 = 1, then 𝑦 𝑡 = 0;
4. ℎ 0+ = 4

𝐻 𝑠 =
𝑝 𝑠

𝑠 + 2 𝑠 − 4
=

𝑝 𝑠

𝑠2 − 2𝑠 − 8

𝑝 0 = 0 ⟹ 𝑝 𝑠 = 𝑠𝑞 𝑠

𝑝 𝑠 is an polynomial in s

𝑞 𝑠 is an polynomial in s

lim
𝑠→∞

𝑠𝐻 𝑠 = lim
𝑠→∞

𝑠2𝑞 𝑠

𝑠2 − 2𝑠 − 8
= lim

𝑠→∞

𝐾𝑠2

𝑠2 − 2𝑠 − 8
= 4 𝑞 𝑠 = 𝐾 is a constant

𝐾 = 4 ⟹ 𝐻 𝑠 =
4𝑠

𝑠 + 2 𝑠 − 4
, ℛℯ 𝑠 > 4
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Analysis and characterization of LTI systems using the Laplace transform

Examples relating system behavior to the system function

A stable and causal system with impulse response ℎ 𝑡 and system function 𝐻 𝑠 ,
which is rational and contains a pole at s=-2, and does not have a zero at the origin.

 ℱ ℎ 𝑡 𝑒3𝑡 converges.

 ∞−׬
+∞

ℎ 𝑡 𝑑𝑡 = 0

 𝑡ℎ 𝑡 is the impulse response of a causal and stable system.

 𝑑ℎ(𝑡)/𝑑𝑡 contains at least one pole in its Laplace transform.

 ℎ 𝑡 has finite duration.

 𝐻(𝑠) = 𝐻(−𝑠).

 lim
𝑠→∞

𝐻 𝑠 = 2.

False

False

True

True

False

False

Insufficient information



The Laplace Transform
(ch.9)

 The Laplace transform

 The region of convergence for Laplace transforms

 The inverse Laplace transform

 Geometric evaluation of the Fourier transform from the pole-zero plot

 Properties of the Laplace transform

 Some Laplace transform pairs

 Analysis and characterization of LTI systems using the Laplace transform

 System function algebra and block diagram representations

 The unilateral Laplace transform
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System function algebra and block diagram representations

ℎ 𝑡 = ℎ1 𝑡 + ℎ2 𝑡

𝐻 𝑠 = 𝐻1 𝑠 + 𝐻2 𝑠

ℎ 𝑡 = ℎ1 𝑡 ∗ ℎ2 𝑡

𝐻 𝑠 = 𝐻1 𝑠 𝐻2 𝑠

 Parallel interconnection

 Series interconnection

 Feedback interconnection

System functions for interconnections of LTI systems

𝑌 𝑠 = 𝐻1 𝑠 𝐸 𝑠

𝐸 𝑠 = 𝑋 𝑠 − 𝑍 𝑠

𝑍 𝑠 = 𝐻2 𝑠 𝑌 𝑠

𝐻 𝑠 =
𝐻1 𝑠

1 + 𝐻1 𝑠 𝐻2 𝑠
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System function algebra and block diagram representations

𝑑𝑦 𝑡

𝑑𝑡
+ 3𝑦 𝑡 = 𝑥 𝑡

𝐻 𝑠 =
1

𝑠 + 3

Block diagram representations for causal LTI systems

Or equivalently

𝐻 𝑠 =
1/𝑠

1 + 3/𝑠

Using basic operations: addition, 
multiplication, and integration
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System function algebra and block diagram representations

𝑦 𝑡 =
𝑑𝑧 𝑡

𝑑𝑡
+ 2𝑧 𝑡

𝐻 𝑠 =
𝑠 + 2

𝑠 + 3
=

1

𝑠 + 3
𝑠 + 2

Examples: block diagram representations for causal LTI systems

Or equivalently

𝑦 𝑡 = 𝑒 𝑡 + 2𝑧 𝑡
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System function algebra and block diagram representations

𝑑2𝑦 𝑡

𝑑𝑡2
+ 3

𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥 𝑡

𝐻 𝑠 =
1

𝑠2 + 3𝑠 + 2

Examples: block diagram representations for causal LTI systems

Direct form

Cascade form

Parallel form

=
1

𝑠 + 1
⋅

1

𝑠 + 2
=

1

𝑠 + 1
−

1

𝑠 + 2

𝑒(𝑡) =
𝑑2𝑦 𝑡

𝑑𝑡2
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System function algebra and block diagram representations

𝐻 𝑠 =
2𝑠2 + 4𝑠 − 6

𝑠2 + 3𝑠 + 2

Examples: block diagram representations for causal LTI systems

Direct form

Cascade form

Parallel form

𝐻 𝑠 =
𝑠 + 3

𝑠 + 2

2 𝑠 − 1

𝑠 + 1



The Laplace Transform
(ch.9)

 The Laplace transform

 The region of convergence for Laplace transforms

 The inverse Laplace transform

 Geometric evaluation of the Fourier transform from the pole-zero plot

 Properties of the Laplace transform

 Some Laplace transform pairs

 Analysis and characterization of LTI systems using the Laplace transform

 System function algebra and block diagram representations

 The unilateral Laplace transform
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The unilateral Laplace transform

𝒳 𝑠 ≜ න
0−

∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

𝑥 𝑡 𝒳 𝑠 = 𝒰𝔏 𝑥 𝑡
𝒰𝔏

Examples

𝑥 𝑡 =
𝑡𝑛−1

𝑛 − 1 !
𝑒−𝑎𝑡𝑢(𝑡)

𝒳 𝑠 ≜
1

𝑠 + 𝑎 𝑛
, ℛ𝑒 𝑠 > −𝑎

𝑥 𝑡 = 0, for 𝑡 < 0

• 𝑥 𝑡 = 0, for 𝑡 < 0, the unilateral and bilateral transforms are identical
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The unilateral Laplace transform

Examples

𝑥 𝑡 = 𝑒−𝑎 𝑡+1 𝑢 𝑡 + 1

𝒳 𝑠 = න
0−

∞

𝑒−𝑎 𝑡+1 𝑢 𝑡 + 1 𝑒−𝑠𝑡𝑑𝑡

𝑋 𝑠 =
𝑒𝑠

𝑠 + 𝑎
, ℛ𝑒 𝑠 > −𝑎

= න
0−

∞

𝑒−𝑎𝑒−𝑡 𝑠+𝑎 𝑑𝑡

=
𝑒−𝑎

𝑠 + 𝑎
, ℛ𝑒 𝑠 > −𝑎

• 𝑥 𝑡 ≠ 0, for −1 < 𝑡 < 0, the unilateral and bilateral transforms are different
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The unilateral Laplace transform

Examples

𝑥 𝑡 = 𝛿 𝑡 + 2𝑢1 𝑡 + 𝑒𝑡𝑢 𝑡

𝒳 𝑠 = 𝑋 𝑠

𝑥 𝑡 = 0, for 𝑡 < 0

= 1 + 2𝑠 +
1

𝑠 − 1

=
𝑠 2𝑠 − 1

𝑠 − 1
, ℛ𝑒 𝑠 > 1

𝒳 𝑠 =
1

𝑠 + 1 𝑠 + 2
,

𝑥 𝑡 = 𝑒−𝑡 − 𝑒−2𝑡 𝑢 𝑡 for 𝑡 > 0−

Examples

ℛ𝑒 𝑠 > −1
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The unilateral Laplace transform

𝒳 𝑠 =
𝑠2 − 3

𝑠 + 2

𝑥 𝑡 = −2𝛿 𝑡 + 𝑢1 𝑡 + 𝑒−2𝑡𝑢 𝑡 for 𝑡 > 0−

Examples

= −2 + 𝑠 +
1

𝑠 + 2
, ℛ𝑒 𝑠 > −2

Note: 𝑢𝑛 𝑡 =
𝑑𝑛𝛿 𝑡

𝑑𝑡𝑛
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The unilateral Laplace transform

Properties of the unilateral Laplace transform

Note: no ROC is specified cause it is always the right-half plane
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The unilateral Laplace transform

𝑑2𝑥 𝑡

𝑑𝑡2

Differentiation property
𝑥 𝑡 𝒳 𝑠

𝒰𝔏 𝑑𝑥 𝑡

𝑑𝑡
𝑠𝒳 𝑠 − 𝑥(0−)

𝒰𝔏

න
0−

∞𝑑𝑥 𝑡

𝑑𝑡
𝑒−𝑠𝑡𝑑𝑡 = 𝑥 𝑡 𝑒−𝑠𝑡 ቚ

0−

∞
+ 𝑠න

0−

∞

𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡 = 𝑠𝒳 𝑠 − 𝑥(0−)

𝑠2𝒳 𝑠 − 𝑠𝑥 0− − 𝑥′(0−)
𝒰𝔏

Similarly
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The unilateral Laplace transform

Convolution property
𝑥1 𝑡 𝒳1 𝑠

𝒰𝔏

𝑥1 𝑡 ∗ 𝑥2 𝑡 𝒳1 𝑠 𝒳2 𝑠
𝒰𝔏

 Example

𝑥2 𝑡 𝒳2 𝑠
𝒰𝔏

Only if 𝑥1 𝑡 and 𝑥2 𝑡 are zero for 𝑡 < 0

A causal LTI system:

∴ 𝑦 𝑡 = 𝛼
1

2
− 𝑒−𝑡 +

1

2
𝑒−2𝑡 𝑢 𝑡

Causal ⟹ ℋ 𝑠 = 𝐻(𝑠) =
1

𝑠2+3𝑠+2

𝒴 𝑠 = ℋ 𝑠 𝒳 𝑠 =
𝛼

𝑠 𝑠 + 1 𝑠 + 2
=
𝛼/2

𝑠
−

𝛼

𝑠 + 1
+

𝛼/2

𝑠 + 2

If: 𝑥 𝑡 = 𝛼𝑢(𝑡), 𝑦 𝑡 =?

convolution property for unilateral Laplace transforms

Note: this can also be done by bilateral Laplace transforms

𝑑2𝑦 𝑡

𝑑𝑡2
+ 3

𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥 𝑡

 Solution
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The unilateral Laplace transform

Solving differential equations using the unilateral Laplace transform

𝑦 0− = 𝛽 𝑦′ 0− = 𝛾

If 𝑥 𝑡 = 𝛼𝑢 𝑡 , 𝑦 𝑡 =?

𝑠2𝒴 𝑠 − 𝛽𝑠 − 𝛾 + 3𝑠𝒴 𝑠 − 3𝛽 + 2𝒴 𝑠 =
𝛼

𝑠

𝒴 𝑠 =
𝛽 𝑠 + 3

𝑠 + 1 𝑠 + 2
+

𝛾

𝑠 + 1 𝑠 + 2
+

𝛼

𝑠 𝑠 + 1 𝑠 + 2

 Solution

A LTI system:
𝑑2𝑦 𝑡

𝑑𝑡2
+ 3

𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥 𝑡

Why unilateral Laplace transform? 

 Example:

Non-zero initial condition

𝑦 𝑡 = 𝒰𝔏−1 𝒴 𝑠
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The unilateral Laplace transform

Solving differential equations using the unilateral Laplace transform

𝑦 0− = 𝛽 𝑦′ 0− = 𝛾

If 𝑥 𝑡 = 𝛼𝑢 𝑡 , 𝑦 𝑡 =?

𝒴 𝑠 =
𝛽 𝑠 + 3

𝑠 + 1 𝑠 + 2
+

𝛾

𝑠 + 1 𝑠 + 2
+

𝛼

𝑠 𝑠 + 1 𝑠 + 2

A LTI system:
𝑑2𝑦 𝑡

𝑑𝑡2
+ 3

𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥 𝑡 Example:

Zero-input response Zero-state response

𝑦1 𝑡

𝒰𝔏−1

𝑦2 𝑡

𝒰𝔏−1

𝑦 𝑡 = +


