Sampling (ch.7)

Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem

- **Q** Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Undersampling: Aliasing
- **Discrete-Time Processing of Continuous-Time Signals**
- **Sampling of Discrete-Time** Signals

□ What is sampling?

Converting continuous-time signals to discrete-time signals

Why sampling?

To use the well-developed digital technology

But, a signal could not always be uniquely specified by equally-spaced samples

Figure 7.1 Three continuous-time signals with identical values at integer multiples of T.

The sampling theorem should be satisfied

x(t)

p(t)

– x_p(t)

Impulse-Train Sampling

Time domain

 $x_p(t) = x(t) \cdot p(t)$

Impulse-Train Sampling

$$x(t) \xrightarrow{p(t)} x_p(t) = x(t) \cdot p(t)$$

□ Frequency domain

$$X_p(j\omega) = \frac{1}{2\pi} X(j\omega) * P(j\omega)$$

$$P(j\omega) = \frac{2\pi}{T} \sum_{K=-\infty}^{\infty} \delta(\omega - k\omega_s) = \frac{2\pi}{T} \sum_{K=-\infty}^{\infty} \delta\left(\omega - k\frac{2\pi}{T}\right)$$

X(jω)

Sampling Theorem

Sampling Theorem: Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, ...,$ if

 $\omega_s > 2\omega_M$,

where

$$\omega_s = \frac{2\pi}{T}.$$

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values. This impulse train is then processed through an ideal lowpass filter with gain T and cutoff frequency greater than ω_M and less than $\omega_s - \omega_M$. The resulting output signal will exactly equal x(t).

Recovery of the CT signal

Sampling with a Zero-order Hold

Why: Impulse-train is difficult to generate

 \Box Principle: Samples x(t) at a given instant and holds that value until the next instant

Sampling with a Zero-order Hold

Equivalent: Impulse-train sampling + an LTI system with a rectangular impulse response

Sampling with a Zero-order Hold

Sampling (ch.7)

- Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- **Q** Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Undersampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- **Sampling of Discrete-Time** Signals

Band-limited interpolation: (ideal low-pass filter)

Shifted (nT) and weighted [x(nT)] sum of h(t)

Band-limited interpolation: (ideal low-pass filter)

First-order hold: Impulse-train sampling + an LTI system with a tri angular impulse response

Sampling (ch.7)

- Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- □ Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Undersampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals
- **Sampling of Discrete-Time** Signals

<u>Aliasing</u>

 \Box When $\omega_s < 2\omega_M$, the individual spectrums overlap

□ Consider original signal is $x(t) = \cos \omega_0 t$, with different ω_0 but sampled at same ω_s

• When aliasing occurs, the original frequency ω_0 takes on the identity of lower frequency ($\omega_s - \omega_0$).

Aliasing

 $x(t) = \cos \omega_0 t$ Time domain

Aliasing

 $\Box \ \omega_s = 2\omega_M \text{ is not sufficient to avoid aliasing}$

- Consider a signal $x(t) = \cos(\omega_0 t + \emptyset)$ is sampled using impulse sampling with $\omega_s = 2\omega_0$
- The reconstructed signal using ideal low-pass filter is

$$x_r(t) = \cos(\emptyset)\cos(\frac{\omega_s}{2}t)$$
 $x_r(t) = x(t)$ only if $\emptyset = 2k\pi$

• Particularly, if $\phi = -\pi/2$, then $x(t) = \sin \omega_0 t$ and $x_r(t) = 0$

Aliasing

□ For signal with $f_c > B/2$, where $f_c = (f_h + f_l)/2$ and $B = f_h - f_l$

Aliasing

For harmonic related signal, e.g., a square wave

- $\omega_s > 2K\omega_0$, with K the kth harmonics you want to include
- Low-pass filtering before sampling

Sampling (ch.7)

- Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- **C** Reconstruction of a Signal from Its Samples Using Interpolation
- **The Effect of Undersampling: Aliasing**
- Discrete-Time Processing of Continuous-Time Signals
- **G** Sampling of Discrete-Time signals

General scheme

C/D: continuous-to-discrete-time conversion

D/C: discrete-to-continuous-time conversion

C/D conversion Time domain

 $x_d[n] = x_c(nT)$

C/D conversion

-4-3-2-10 1 2 3 4

n

Frequency domain: ω for continuous time and Ω for discrete time

Ω

 2π

 -2π

C/D conversion

-4-3-2-10 1 2 3 4

n

Frequency domain: ω for continuous time and Ω for discrete time

- t to n: time scaling by 1/T
- ω to Ω : frequency scaling by T

D/C conversion

 $\Box Y_d(e^{j\Omega})$: Spectrum of $y_d[n]$

 $\Box Y_p(j\omega)$: Spectrum of $y_p(t)$

 \Box Y_p(jω) can be obtained from Y_d(e^{jΩ}) by replacing Ω with ωT.

Overall system

 $\Box x_c(t)$: input

 $\Box y_c(t)$: output

□ The overall system is equivalent to a continuous-time system with frequency response $H_c(j\omega)$

 $\Box H_c(j\omega) = ?$

Overall system

Digital differentiator: frequency response

□ Band-limited CT differentiator ⇔ □ Corresponding DT differentiator

30

Sampling (ch.7)

- Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem
- **Q** Reconstruction of a Signal from Its Samples Using Interpolation
- **The Effect of Undersampling: Aliasing**
- Discrete-Time Processing of Continuous-Time Signals
- □ Sampling of Discrete-Time signals

35

Decimation

Down-sampling if $N\omega_M > \pi$

Sampling of Discrete-Time x_c(t) -

 Prevent aliasing by LPF in front of SRD ⇒ Decimator

Decimation

