The Discrete-Time Fourier Transform (ch.5)

- \Box Representation of aperiodic signals Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **□** Duality
- \square Systems characterized by difference equations

Representation of aperiodic signals

Q Consider a general sequence of finite duration: $x[n] = 0$ if $n < N_1$ or $n > N_2$ $x[n]$ $-N$ N_{2} n \Box Periodic extension of $x[n]$ with N $\widetilde{\mathsf{x}}[n]$ $-N₁$ $-N$ $N₂$

 \Box FS representation of $\tilde{x}[n]$

$$
\tilde{x}[n] = \sum_{k=\langle N\rangle} a_k e^{jk(2\pi/N)n} \qquad a_k = \frac{1}{N} \sum_{n=\langle N\rangle} \tilde{x}[n] e^{-jk(2\pi/N)n}
$$

1

FT pairs

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}
$$
 Fourier transform (FT)

$$
x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega
$$
 Inverse Fourier transform

 $\Box x[n]$ is a linear combination (specifically, an integral) of complex exponentials at different frequencies

- $\Box X(e^{j\omega})(d\omega/2\pi)$ is the weight for different frequencies
- $\Box X(e^{j\omega})$ is called the spectrum

Discrete FT vs. continuous FT

$$
x[n] = \frac{1}{2\pi} \int_{\frac{2\pi}{\pi}} X(e^{j\omega}) e^{j\omega n} d\omega
$$

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
$$

Discrete FT Continuous FT

$$
x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega)e^{j\omega t} d\omega
$$

$$
X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt
$$

 $n=-\infty$ \Box Discrete-time complex exponentials that differ in frequency by a multiple of 2π are identical

- $\Box X(e^{j\omega})$ is periodic
- \Box Finite interval of integration in the synthesis equation for $x[n]$

$$
\Box \ \omega = 0, 2\pi, 4\pi, \dots \Rightarrow \text{low-frequency}
$$

$$
\Box \omega = \pi, 3\pi, 5\pi, \dots \Rightarrow \text{high-frequency}
$$

$$
x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases} \qquad X(e^{j\omega}) = ?
$$

\nSolution
\n
$$
X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = \sum_{m=0}^{2N_1} e^{-j\omega (m-N_1)} = e^{j\omega N_1} \sum_{m=0}^{2N_1} e^{-j\omega m}
$$

\n
$$
= e^{j\omega N_1} \left(\frac{1 - e^{-j\omega (2N_1 + 1)}}{1 - e^{-j\omega}} \right)
$$

\n
$$
= \frac{e^{-j\omega/2} (e^{j\omega (N_1 + 1/2)} - e^{-j\omega (N_1 + 1/2)})}{e^{-j\omega/2} (e^{j\omega/2} - e^{-j\omega/2})}
$$

\n
$$
= \frac{\sin[\omega (N_1 + 1/2)]}{\sin(\omega/2)} \qquad \frac{1}{e^{-j\omega/2} \left(e^{j\omega/2} - e^{-j\omega/2} \right)} \qquad \frac{1}{e^{-j\omega/2} \left(e^{j\omega/2} \right)} = \frac{1}{e^{-j\omega/2} \left(e^{j\omega/2} \right)} \qquad \frac{1}{
$$

Convergence of FT

 \Box For the analysis equation

• Finite energy condition

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}
$$

$$
\sum_{n=-\infty}^{+\infty} |x[n]|^2 < \infty
$$

$$
\sum_{n=-\infty}^{+\infty} |x[n]| < \infty
$$

 \Box For the synthesis equation

• Absolutely summable

on
$$
x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega
$$

• No convergence issues (finite interval of integration)

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **L** Duality
- \square Systems characterized by difference equations

\Box Consider the sinusoidal signal

$$
x[n] = e^{j\omega_0 n}
$$

 \Box The FT should be a periodic pulse train:

 = =−∞ +∞ 2 − ⁰ − 2

 $X(e^{j\omega})$

 \Box Check validity: evaluate the inverse transform

$$
\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega
$$

$$
= e^{j(\omega_0 + 2\pi r)n} \qquad \text{Fixed in one period } l = r \text{ cause } \int_{2\pi}
$$

$$
= e^{j\omega_0 n}
$$

$$
x[n] = \sum_{k=\langle N\rangle} a_k e^{jk(2\pi/N)n}
$$

$$
X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - 2\pi k/N)
$$

Verify

$$
x[n] = a_0 + a_1 e^{j(2\pi/N)n} + a_2 e^{j2(2\pi/N)n} + \dots + a_{N-1} e^{j(N-1)(2\pi/N)n}
$$

14

Examples

$$
x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}, \omega_0 = \frac{2\pi}{5}
$$

$$
X(e^{j\omega}) = ?
$$

Solution

Examples

$$
x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN] \qquad X(e^{j\omega}) = ?
$$

Solution

$$
a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N}
$$

$$
X(e^{j\omega}) = \frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)
$$

 $k=-\infty$

 $\boldsymbol{\mathcal{N}}$

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **L** Duality
- \square Systems characterized by difference equations

Short notation for FT pairs

$$
x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
$$

$$
X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}
$$

$$
x[n] \longleftrightarrow^{T} X(e^{j\omega})
$$

$$
X(e^{j\omega}) = \mathcal{F}\{x[n]\}
$$

$$
x[n] = \mathcal{F}^{-1}\{X(e^{j\omega})\}
$$

Periodicity In contrast to continuous FT

$$
X(e^{j(\omega+2\pi)})=X(e^{j\omega})
$$

Linearity

$$
x_1[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(e^{j\omega})
$$

\n
$$
\Rightarrow ax_1[n] + bx_2[n] \stackrel{\mathcal{F}}{\longleftrightarrow} aX_1(e^{j\omega}) + bX_2(e^{j\omega})
$$

\n
$$
x_2[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(e^{j\omega})
$$

Time shifting and frequency shifting

$$
x[n] \longleftrightarrow X(e^{j\omega}) \Longrightarrow \begin{cases} x[n-n_0] \longleftrightarrow e^{-j\omega n_0}X(e^{j\omega}) \\ e^{j\omega_0 n}x[n] \longleftrightarrow X(e^{j(\omega-\omega_0)}) \end{cases}
$$

Conjugation and Conjugate Symmetry

\Box Conjugation property

$$
x[n] \longleftrightarrow X(e^{j\omega}) \implies x^*[n] \longleftrightarrow X^*(e^{-j\omega})
$$

Q Conjugation Symmetry

$$
X(e^{j\omega}) = X^*(e^{-j\omega}) \quad [x[n] \text{ real}]
$$

 $\mathcal{R}e\{X\!\left(e^{\,j\omega}\right)\}$ is even, $\mathcal{I}m\{X\!\left(e^{\,j\omega}\right)\}$ is odd.

$$
x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \implies x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-j\omega})
$$

$$
\Box x[n] \text{ even, } X(e^{j\omega}) \text{ even; } x[n] \text{ odd, } X(e^{j\omega}) \text{ odd}
$$

Recall: $x[n] \text{ real: } X(e^{j\omega}) = X^*(e^{-j\omega})$

 $\Box x[n]$ real and even $\implies X(e^{j\omega})$ real and even $x[n]$ real and odd $\implies X(e^{j\omega})$ odd and purely imaginary

Time reversal

$$
x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \implies x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-j\omega})
$$

\Box If $x[n]$ real

$$
\mathcal{F}{x[n]} = \mathcal{F}{\mathcal{E}\nu{x[n]}} + \mathcal{F}{\mathcal{O}d{x[n]}}\n= \mathcal{R}e{X(e^{j\omega})} + j\mathcal{I}m{X(e^{j\omega})}\n\qquad \qquad \bigotimes \qquad\n\mathcal{E}\nu{x[n]} \longleftrightarrow \mathcal{F}\nu{x[n]} \longleftrightarrow j\mathcal{I}m{X(e^{j\omega})}
$$

Differencing and accumulation

$$
\Box \text{ If } x[n] \longleftrightarrow X(e^{j\omega})
$$

\Box Then

$$
x[n] - x[n-1] \longleftrightarrow f(1 - e^{-j\omega})X(e^{j\omega})
$$

$$
\sum_{m=-\infty}^{n} x[m] \longleftrightarrow \frac{1}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)
$$

DC component

Differencing and accumulation

Examples Determine FT of unit sept $x[n] = u[n]$

Solution

$$
g[n] = \delta[n] \longleftrightarrow G(e^{j\omega}) = 1 \qquad x[n] = \sum_{m = -\infty}^{n} g[m]
$$

$$
X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} G(e^{j\omega}) + \pi G(e^{j0}) \sum_{k = -\infty}^{+\infty} \delta(\omega - 2\pi k)
$$

$$
=\frac{1}{1-e^{-j\omega}}+\pi\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi k)
$$

Time expansion

 \Box Recall the continuous time property

$$
x(at) \longleftrightarrow \frac{1}{|a|} X\left(\frac{j\omega}{a}\right)
$$

 \Box Try to define x [an]

 \Box a should be an integer and $a > 1$

 \Box not merely speed up, but also resample $x[n]$

Q Define instead

 $x_{(k)}[n] = \{$ $x[n/k]$, 0, if n is a multiple of k if n is not a multiple of k

Examples

 $X(e^{j\omega})=?$

Solution

$$
x[n] = y_{(2)}[n] + 2y_{(2)}[n-1]
$$

where
$$
y[n] = \begin{cases} 1, 0 \le n \le 5 \\ 0, \end{cases}
$$
 else

$$
y_2[n] = \begin{cases} y[n/2], n \text{ is even} \\ 0, \quad n \text{ is odd} \end{cases}
$$

Examples

$$
X\big(e^{j\omega}\big)=?
$$

Solution

$$
Y(e^{j\omega}) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}
$$

 \Box Using the time expansion property

$$
y_{(2)}[n] \longleftrightarrow Y_2(e^{j\omega}) = Y(e^{j2\omega}) = e^{-j4\omega} \frac{\sin(5\omega)}{\sin(\omega)}
$$

 \Box Using the linearity and time-shifting properties $2y_{(2)}[n-1] \longleftrightarrow 2e^{-j5\omega} \frac{\sin(5\omega)}{\sin(\omega)}$ $\sin(\omega$ \mathcal{F} $X(e^{j\omega}) = e^{-j4\omega}(1 + 2e^{\omega})$ $-j\omega\$ $\sin(5\omega)$ $\sin(\omega$

 $\textbf{Differentiation in frequency} \qquad nx[n] \longleftrightarrow j$

$$
nx[n] \longleftrightarrow \frac{f}{j} \frac{dX(e^{j\omega})}{d\omega}
$$

$$
x[n] \longleftrightarrow X(e^{j\omega})
$$

\n
$$
\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{+\infty} \boxed{-jnx[n]} e^{-j\omega n} \implies -jnx[n] \longleftrightarrow \frac{\mathcal{F}}{d\omega} \xrightarrow{dX(e^{j\omega})}
$$

\n
$$
\implies nx[n] \longleftrightarrow j\frac{dX(e^{j\omega})}{d\omega}
$$

Parseval's relation

Q Consider

$$
\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega
$$

• Even?

No

Examples

$$
x[n] \longleftrightarrow^{T} X(e^{j\omega})
$$

 $\Box x[n]$ is

- Periodic? No
- Real? Yes

• Of finite energy? Yes

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **LI** Duality
- \square Systems characterized by difference equations

$$
x[n] \longrightarrow \boxed{h[n]} \longrightarrow y[n]
$$

$$
y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})
$$

 \Box $H(j\omega)$: Frequency response; FT of the impulse response of the system

Examples $x[n] \longrightarrow h[n] \longrightarrow y[n]$

 $h[n] = \delta[n - n_0]$ and $X(e^{j\omega}) = \mathcal{F}\{x[n]\}$ $Y(e^{j\omega}) = \mathcal{F}\{x[n]\}$ $Y(e^{j\omega})=?$

 $H(e^{j\omega}) = \sum_{n=1}^{\infty} \delta[n - n_0]e^{-j\omega n}$ $n=-\infty$ $+\infty$ $y[n] = x[n - n_0]$ Solution $h[n] = \delta[n - n_0]$ $= e^{-j\omega n_0}$

Examples

Determine the impulse response of an ideal low-pass filter

Solution

$$
h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega
$$

$$
=\frac{1}{2\pi}\int_{-\omega_0}^{\omega_0}e^{j\omega n}d\omega
$$

= $\sin \omega_0 n$ πn

Examples

$$
x[n] \longrightarrow \boxed{h[n]} \longrightarrow y[n]
$$

 $h[n] = \alpha^n u[n], (\vert \alpha \vert < 1) \quad x[n] = \beta^n u[n], (\vert \beta \vert < 1) \quad y[n] = ?$ Solution

$$
H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}} \qquad Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}
$$

When $\alpha \neq \beta$

$$
Y(e^{j\omega}) = \frac{A}{1 - \alpha e^{-j\omega}} - \frac{B}{1 - \beta e^{-j\omega}} \qquad A = \frac{\alpha}{\alpha - \beta} \qquad B = \frac{\beta}{\alpha - \beta}
$$

$$
y[n] = \frac{\alpha}{\alpha - \beta} \alpha^n u[n] - \frac{\beta}{\alpha - \beta} \beta^n u[n] = \frac{1}{\alpha - \beta} (\alpha^{n+1} u[n] - \beta^{n+1} u[n])
$$

Examples

$$
x[n] \longrightarrow \boxed{h[n]} \longrightarrow y[n]
$$

 $h[n] = \alpha^n u[n], (\vert \alpha \vert < 1) \quad x[n] = \beta^n u[n], (\vert \beta \vert < 1) \quad y[n] = ?$ Solution

$$
H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}} \qquad Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}
$$

When $\alpha = \beta$

$$
Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})^2} = \frac{j}{\alpha} e^{j\omega} \frac{d}{d\omega} \left(\frac{1}{1 - \alpha e^{-j\omega}} \right)
$$

 $y[n] = (n + 1)\alpha^n u[n + 1] = (n + 1)\alpha^n u[n]$

Examples

Consider the ideal band-stop filter, $Y(e^{j\omega})=?$

 $w_1[n] = e^{jnn}x[n]$ $W_1(e^{j\omega}) = X(e^{j(\omega - \pi)})$ $W_2(e^{j\omega}) = H_{lp}(e^{j\omega})X(e^{j(\omega-\pi)})$ $W_3(e^{j\omega}) = W_2(e^{j(\omega - \pi))}$ $W_4(e^{j\omega}) = H_{lp}(e^{j\omega})X(e^{j\omega})$ $= H_{lp}(e^{j(\omega - \pi)})X(e^{j\omega})$ $= H_{lp}(e^{j(\omega - \pi)})X(e^{j(\omega - 2\pi)})$

37

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **L** Duality
- \square Systems characterized by difference equations

The multiplication property

$$
y[n] = x_1[n]x_2[n] \longleftrightarrow Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta
$$

Proof

$$
Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} y[n]e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} x_1[n]x_2[n]e^{-j\omega n}
$$

\n
$$
Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x_2[n] \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta})e^{j\theta n} d\theta \right\} e^{-j\omega n}
$$

\n
$$
Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left[\sum_{n=-\infty}^{+\infty} x_2[n]e^{-j(\omega-\theta)n} \right] d\theta
$$

\n
$$
Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left[\sum_{n=-\infty}^{+\infty} x_2[n]e^{-j(\omega-\theta)n} \right] d\theta
$$

$$
Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta
$$

The multiplication property

Examples

 $x_1[n] =$

Solution

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property

Duality

 \Box Systems characterized by difference equations

Duality in the discrete FS

Every property of the discrete FS has a dual.

$$
x[n - n_0] \xrightarrow{\mathcal{FS}} a_k e^{-jk(2\pi/N)n_0}
$$
\n
$$
e^{jm(2\pi/N)n} x[n] \xrightarrow{\mathcal{FS}} a_{k-m}
$$
\n
$$
\begin{cases}\n\sum_{r = \langle N \rangle} x[r] y[n - r] \xrightarrow{\mathcal{FS}} N a_k b_k \\
x[n] y[n] \xrightarrow{\mathcal{FS}} \sum_{l = \langle N \rangle} a_l b_{k-l}\n\end{cases}
$$

Duality between discrete FT and continuous FS

$$
x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \text{ Discrete FT } X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}
$$

$$
x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \text{ Continuous FS } n \to k\omega_0, \omega \to -t
$$

Summary FS and FT expressions

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- \Box Fourier transform for periodic signals
- \Box Properties of discrete-time Fourier transform
- \Box The convolution property
- \Box The multiplication property
- **LI** Duality
- \Box Systems characterized by difference equations

$$
\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]
$$

$$
\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})
$$

$$
H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}
$$

Examples Causal LTI system

$$
y[n] - ay[n-1] = x[n], |a| < 1
$$
 $h[n] = ?$

Solution

$$
H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}
$$

 $h[n] = a^n u[n]$

Solution

$$
H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}} = \frac{2}{\left(1 - \frac{1}{2}e^{-j\omega}\right)\left(1 - \frac{1}{4}e^{-j\omega}\right)}
$$

$$
= \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}
$$

$$
h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n]
$$

54

Solution

$$
Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) = \left[\frac{2}{\left(1 - \frac{1}{2}e^{-j\omega}\right)\left(1 - \frac{1}{4}e^{-j\omega}\right)}\right]\left[\frac{1}{1 - \frac{1}{4}e^{-j\omega}}\right]
$$

$$
= \frac{2}{\left(1 - \frac{1}{2}e^{-j\omega}\right)\left(1 - \frac{1}{4}e^{-j\omega}\right)^2} = -\frac{4}{1 - \frac{1}{4}e^{-j\omega}} - \frac{2}{\left(1 - \frac{1}{4}e^{-j\omega}\right)^2} + \frac{8}{1 - \frac{1}{2}e^{-j\omega}}
$$

$$
y[n] = \left\{-4\left(\frac{1}{4}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n + 8\left(\frac{1}{2}\right)^n\right\}u[n]
$$