The Discrete-Time Fourier Transform (ch.5)

- □ Representation of aperiodic signals Discrete Fourier transform
- **G** Fourier transform for periodic signals
- **Properties of discrete-time Fourier transform**
- **The convolution property**
- **The multiplication property**
- Duality
- **G** Systems characterized by difference equations

Representation of aperiodic signals

Consider a general sequence of finite duration: x[n] = 0 if $n < N_1$ or $n > N_2$

 \Box Periodic extension of x[n] with N

$\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$

Given Science FS representation of $\tilde{x}[n]$

 \widetilde{x}

$$[n] = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n} \qquad a_k = \frac{1}{N} \sum_{n = \langle N \rangle} \tilde{x}[n] e^{-jk(2\pi/N)n}$$

1

FT pairs

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$
 Fourier transform (FT)
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
 Inverse Fourier transform

x[n] is a linear combination (specifically, an integral) of complex exponentials at different frequencies

- $\Box X(e^{j\omega})(d\omega/2\pi)$ is the weight for different frequencies
- $\Box X(e^{j\omega})$ is called the spectrum

<u>FT vs. FS</u>

Discrete FT vs. continuous FT

Discrete FI

$$x[n] = \frac{1}{2\pi} \int_{\frac{2\pi}{+\infty}} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Discusto FT

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

□ Discrete-time complex exponentials that differ in frequency by a multiple of 2π are identical

- $\Box X(e^{j\omega})$ is periodic
- □ Finite interval of integration in the synthesis equation for x[n]

$$\Box \omega = 0, 2\pi, 4\pi, \dots \Rightarrow$$
 low-frequency

$$\Box \omega = \pi, 3\pi, 5\pi, \dots \Rightarrow$$
 high-frequency

Examples

Examples

$$x[n] = \begin{cases} 1, & |n| \le N_1 \\ 0, & |n| > N_1 \end{cases} X(e^{j\omega}) =?$$
Solution
$$X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = \sum_{m=0}^{2N_1} e^{-j\omega(m-N_1)} = e^{j\omega N_1} \sum_{m=0}^{2N_1} e^{-j\omega m}$$

$$= e^{j\omega N_1} \left(\frac{1 - e^{-j\omega(2N_1 + 1)}}{1 - e^{-j\omega}} \right)$$

$$= \frac{e^{-j\omega/2} (e^{j\omega(N_1 + 1/2)} - e^{-j\omega(N_1 + 1/2)})}{e^{-j\omega/2} (e^{j\omega/2} - e^{-j\omega/2})}$$

$$= \frac{\sin[\omega(N_1 + 1/2)]}{\sin(\omega/2)}$$

Convergence of FT

□ For the analysis equation

• Finite energy condition

$$X(e^{j\omega}) = \sum_{n=-\infty} x[n]e^{-j\omega n}$$
$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 < \infty$$
$$\sum_{n=-\infty}^{+\infty} |x[n]| < \infty$$

Absolutely summable

□ For the synthesis equation

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

• No convergence issues (finite interval of integration)

The Discrete-Time Fourier Transform (ch.5)

- **C** Representation of aperiodic signals- Discrete Fourier transform
- Fourier transform for periodic signals
- **O** Properties of discrete-time Fourier transform
- **The convolution property**
- □ The multiplication property
- **D**uality
- **G** Systems characterized by difference equations

Consider the sinusoidal signal

$$x[n] = e^{j\omega_0 n}$$

□ The FT should be a periodic pulse train:

Check validity: evaluate the inverse transform

$$\frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} \sum_{l=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) e^{j\omega n} d\omega$$
$$= e^{j(\omega_0 + 2\pi r)n} \quad \text{Fixed in one period } l = r d$$

$$=e^{j\omega_0 n}$$

^{*n*} Fixed in one period
$$l = r$$
 cause

X(e^{jω})

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$
FT

$$X(e^{j\omega}) = \sum_{k=-\infty}^{+\infty} 2\pi a_k \delta(\omega - 2\pi k/N)$$

Verify

$$x[n] = a_0 + a_1 e^{j(2\pi/N)n} + a_2 e^{j2(2\pi/N)n} + \dots + a_{N-1} e^{j(N-1)(2\pi/N)n}$$

14

Examples

$$x[n] = \cos \omega_0 n = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}, \omega_0 = \frac{2\pi}{5} \qquad X(e^{j\omega}) = ?$$

Solution

 $X(e^{j\omega}) = ?$

Examples

$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n - kN]$$

Solution

$$a_{k} = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N}$$
$$x(e^{j\omega}) = \frac{2\pi}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N}$$

$$X(e^{j\omega}) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{1}{N}\right)$$

The Discrete-Time Fourier Transform (ch.5)

- Representation of aperiodic signals- Discrete Fourier transform
- □ Fourier transform for periodic signals
- Properties of discrete-time Fourier transform
- **The convolution property**
- □ The multiplication property
- **D**uality
- **G** Systems characterized by difference equations

Short notation for FT pairs

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

$$x[n] \xleftarrow{\mathcal{F}} X(e^{j\omega})$$

$$X(e^{j\omega}) = \mathcal{F}\{x[n]\}$$

$$x[n] = \mathcal{F}^{-1} \{ X(e^{j\omega}) \}$$

Periodicity In contrast to continuous FT

$$X(e^{j(\omega+2\pi)}) = X(e^{j\omega})$$

Linearity

$$\begin{array}{c} x_1[n] \xleftarrow{\mathcal{F}} X_1(e^{j\omega}) \\ x_2[n] \xleftarrow{\mathcal{F}} X_2(e^{j\omega}) \end{array} \Rightarrow ax_1[n] + bx_2[n] \xleftarrow{\mathcal{F}} aX_1(e^{j\omega}) + bX_2(e^{j\omega}) \end{array}$$

Time shifting and frequency shifting

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \implies \begin{cases} x[n-n_0] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega}) \\ e^{j\omega_0 n} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j(\omega-\omega_0)}) \end{cases}$$

Examples

Conjugation and Conjugate Symmetry

Conjugation property

$$x[n] \xleftarrow{\mathcal{F}} X(e^{j\omega}) \implies x^*[n] \xleftarrow{\mathcal{F}} X^*(e^{-j\omega})$$

Conjugation Symmetry

$$X(e^{j\omega}) = X^*(e^{-j\omega})$$
 [x[n] real]

 $\mathcal{R}e\{X(e^{j\omega})\}$ is even, $\mathcal{I}m\{X(e^{j\omega})\}$ is odd.

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \implies x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-j\omega})$$

□
$$x[n]$$
 even, $X(e^{j\omega})$ even; $x[n]$ odd, $X(e^{j\omega})$ odd
Recall: $x[n]$ real: $X(e^{j\omega}) = X^*(e^{-j\omega})$
↓

 $\Box \ x[n] \text{ real and even} \implies X(e^{j\omega}) \text{ real and even}$ $x[n] \text{ real and odd} \implies X(e^{j\omega}) \text{ odd and purely imaginary}$

Time reversal

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega}) \implies x[-n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-j\omega})$$

$$\Box \quad \text{If } x[n] \text{ real}$$

$$\mathcal{F}\{x[n]\} = \mathcal{F}\{\mathcal{E}v\{x[n]\}\} + \mathcal{F}\{\mathcal{O}d\{x[n]\}\} \\ = \mathcal{R}e\{X(e^{j\omega})\} + j\mathcal{I}m\{X(e^{j\omega})\} \qquad \Rightarrow \qquad \begin{cases} \mathcal{E}v\{x[n]\} \longleftrightarrow \mathcal{R}e\{X(e^{j\omega})\} \\ \mathcal{O}d\{x[n]\} \longleftrightarrow j\mathcal{I}m\{X(e^{j\omega})\} \end{cases}$$

Differencing and accumulation

$$\Box \mid \mathbf{f} \quad x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$

Then

$$x[n] - x[n-1] \xleftarrow{\mathcal{F}} (1 - e^{-j\omega})X(e^{j\omega})$$

$$\sum_{m=-\infty}^{n} x[m] \longleftrightarrow \frac{\mathcal{F}}{1-e^{-j\omega}} X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$$

DC component

Differencing and accumulation

Examples Determine FT of unit sept x[n] = u[n]

Solution

$$g[n] = \delta[n] \xleftarrow{\mathcal{F}} G(e^{j\omega}) = 1 \qquad x[n] = \sum_{m=-\infty}^{n} g[m]$$
$$X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} G(e^{j\omega}) + \pi G(e^{j0}) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$$

$$=\frac{1}{1-e^{-j\omega}}+\pi\sum_{k=-\infty}^{+\infty}\delta(\omega-2\pi k)$$

Time expansion

Recall the continuous time property

$$x(at) \longleftrightarrow \frac{\mathcal{F}}{|a|} X\left(\frac{j\omega}{a}\right)$$

 \Box Try to define x[an]

 \Box *a* should be an integer and *a* > 1

 \Box not merely speed up, but also resample x[n]

Define instead

 $x_{(k)}[n] = \begin{cases} x[n/k], & \text{if } n \text{ is a multiple of } k \\ 0, & \text{if } n \text{ is not a multiple of } k \end{cases}$

Examples

 $X(e^{j\omega}) = ?$

Solution

$$x[n] = y_{(2)}[n] + 2y_{(2)}[n-1]$$

where
$$y[n] = \begin{cases} 1, 0 \le n \le 5\\ 0, & \text{else} \end{cases}$$

$$y_2[n] = \begin{cases} y[n/2], n \text{ is even} \\ 0, & n \text{ is odd} \end{cases}$$

Examples

$$X(e^{j\omega}) = ?$$

Solution

$$Y(e^{j\omega}) = e^{-j2\omega} \frac{\sin(5\omega/2)}{\sin(\omega/2)}$$

□ Using the time expansion property

$$y_{(2)}[n] \xleftarrow{\mathcal{F}} Y_2(e^{j\omega}) = Y(e^{j2\omega}) = e^{-j4\omega} \frac{\sin(5\omega)}{\sin(\omega)}$$

Using the linearity and time-shifting properties $2y_{(2)}[n-1] \xleftarrow{\mathcal{F}} 2e^{-j5\omega} \frac{\sin(5\omega)}{\sin(\omega)}$ $X(e^{j\omega}) = e^{-j4\omega} (1+2e^{-j\omega}) \left(\frac{\sin(5\omega)}{\sin(\omega)}\right)$

Differentiation in frequency nx[

$$nx[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$

$$\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{+\infty} -jnx[n]e^{-j\omega n} \implies -jnx[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{dX(e^{j\omega})}{d\omega}$$

$$\implies nx[n] \stackrel{\mathcal{F}}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$

Parseval's relation

Consider

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

• Even?

No

Examples

$$x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$

 $\Box x[n]$ is

- Periodic? No
- Real? Yes

Of finite energy?
 Yes

The Discrete-Time Fourier Transform (ch.5)

- **C** Representation of aperiodic signals- Discrete Fourier transform
- **G** Fourier transform for periodic signals
- **O** Properties of discrete-time Fourier transform
- □ The convolution property
- **The multiplication property**
- **D**uality
- **G** Systems characterized by difference equations

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$

 \Box $H(j\omega)$: Frequency response; FT of the impulse response of the system

 $\underbrace{\textbf{Examples}}{x[n] \longrightarrow h[n]} y[n]$

 $h[n] = \delta[n - n_0] \text{ and } X(e^{j\omega}) = \mathcal{F}\{x[n]\}$ $Y(e^{j\omega}) = ?$

Solution $h[n] = \delta[n - n_0]$ $H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} \delta[n - n_0]e^{-j\omega n}$ $y[n] = x[n - n_0]$ $= e^{-j\omega n_0}$

 $Y(e^{j\omega}) = e^{-j\omega n_0} X(e^{j\omega})$

Examples

Determine the impulse response of an ideal low-pass filter

Solution

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$=\frac{1}{2\pi}\int_{-\omega_0}^{\omega_0}e^{j\omega n}d\omega$$

 $=\frac{\sin\omega_0 n}{\pi n}$

Examples

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

 $h[n] = \alpha^n u[n], (|\alpha| < 1) \quad x[n] = \beta^n u[n], (|\beta| < 1) \quad y[n] = ?$ Solution

$$H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}} \qquad Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}$$

When $\alpha \neq \beta$

$$Y(e^{j\omega}) = \frac{A}{1 - \alpha e^{-j\omega}} - \frac{B}{1 - \beta e^{-j\omega}} \qquad A = \frac{\alpha}{\alpha - \beta} \qquad B = \frac{\beta}{\alpha - \beta}$$

$$y[n] = \frac{\alpha}{\alpha - \beta} \alpha^n u[n] - \frac{\beta}{\alpha - \beta} \beta^n u[n] = \frac{1}{\alpha - \beta} (\alpha^{n+1} u[n] - \beta^{n+1} u[n])$$

The convolution property

Examples

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

 $h[n] = \alpha^n u[n], (|\alpha| < 1) \quad x[n] = \beta^n u[n], (|\beta| < 1) \quad y[n] = ?$ Solution

$$H(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}} \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}} \qquad Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})(1 - \beta e^{-j\omega})}$$

When $\alpha = \beta$

$$Y(e^{j\omega}) = \frac{1}{(1 - \alpha e^{-j\omega})^2} = \frac{j}{\alpha} e^{j\omega} \frac{d}{d\omega} \left(\frac{1}{1 - \alpha e^{-j\omega}}\right)$$

 $y[n] = (n+1)\alpha^n u[n+1] = (n+1)\alpha^n u[n]$

The convolution property

Examples

Consider the ideal band-stop filter, $Y(e^{j\omega}) = ?$

 $w_1[n] = e^{j\pi n} x[n]$ $W_1(e^{j\omega}) = X(e^{j(\omega-\pi)})$ $W_2(e^{j\omega}) = H_{lv}(e^{j\omega})X(e^{j(\omega-\pi)})$ $W_3(e^{j\omega}) = W_2(e^{j(\omega-\pi)})$ $= H_{lp}(e^{j(\omega-\pi)})X(e^{j(\omega-2\pi)})$ $= H_{lp}(e^{j(\omega-\pi)})X(e^{j\omega})$ $W_4(e^{j\omega}) = H_{lp}(e^{j\omega})X(e^{j\omega})$

37

The Discrete-Time Fourier Transform (ch.5)

- **C** Representation of aperiodic signals- Discrete Fourier transform
- **G** Fourier transform for periodic signals
- **Properties of discrete-time Fourier transform**
- **The convolution property**
- □ The multiplication property
- **D**uality
- **G** Systems characterized by difference equations

The multiplication property

$$y[n] = x_1[n]x_2[n] \quad \longleftrightarrow \quad Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$

$$\begin{aligned} \text{Periodic convolution} \\ Y(e^{j\omega}) &= \sum_{n=-\infty}^{+\infty} y[n]e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} x_1[n]x_2[n]e^{-j\omega n} \\ Y(e^{j\omega}) &= \sum_{n=-\infty}^{+\infty} x_2[n] \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta})e^{j\theta n} d\theta \right\} e^{-j\omega n} \\ Y(e^{j\omega}) &= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left[\sum_{n=-\infty}^{+\infty} x_2[n]e^{-j(\omega-\theta)n} \right] d\theta \end{aligned}$$

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta$$

The multiplication property

The Discrete-Time Fourier Transform (ch.5)

- **C** Representation of aperiodic signals- Discrete Fourier transform
- **G** Fourier transform for periodic signals
- Properties of discrete-time Fourier transform
- **The convolution property**
- **The multiplication property**

Duality

G Systems characterized by difference equations

Duality in the discrete FS

Every property of the discrete FS has a dual.

$$x[n-n_{0}] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{k}e^{-jk(2\pi/N)n_{0}} \left\{ \begin{array}{c} \sum_{r=\langle N \rangle} x[r]y[n-r] \stackrel{\mathcal{FS}}{\longleftrightarrow} Na_{k}b_{k} \\ x[n]y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{k-m} \end{array} \right\} \left\{ \begin{array}{c} \sum_{r=\langle N \rangle} x[r]y[n-r] \stackrel{\mathcal{FS}}{\longleftrightarrow} Na_{k}b_{k} \\ x[n]y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} \sum_{l=\langle N \rangle} a_{l}b_{k-l} \end{array} \right\}$$

Duality between discrete FT and continuous FS

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad \text{Discrete FT} \quad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$$
$$n \to k\omega_0, \omega \to -t$$
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \quad \text{Continuous FS} \quad a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

Properties of discrete-time Fourier Transform

Properties of discrete-time Fourier Transform

Summary FS and FT expressions

	Continuous time		Discrete time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = $ $\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$	$a_{k} = \frac{1}{N} \sum_{k = \langle N \rangle} x[n] e^{-jk(2\pi/N)n}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time	by discrete frequency periodic in frequency
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$	$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n}$	$X(e^{j\omega)} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$
	continuous time aperiodic in time	y continuous frequency aperiodic in frequency	discrete time aperiodic in time	continuous frequency periodic in frequency

The Discrete-Time Fourier Transform (ch.5)

- **C** Representation of aperiodic signals- Discrete Fourier transform
- **G** Fourier transform for periodic signals
- **O** Properties of discrete-time Fourier transform
- **The convolution property**
- **The multiplication property**
- **D**uality

□ Systems characterized by difference equations

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

$$\sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega}) = \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

Examples Causal LTI system

$$y[n] - ay[n-1] = x[n], |a| < 1$$
 $h[n] = ?$

Solution

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

 $h[n] = a^n u[n]$

Solution

$$H(e^{j\omega}) = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}} = \frac{2}{\left(1 - \frac{1}{2}e^{-j\omega}\right)\left(1 - \frac{1}{4}e^{-j\omega}\right)}$$
$$= \frac{4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\omega}}$$
$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n]$$

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n] \qquad x[n] = \left(\frac{1}{4}\right) u[n] \qquad y[n] = ?$$

Solution

Examples

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) = \left[\frac{2}{\left(1 - \frac{1}{2}e^{-j\omega}\right)\left(1 - \frac{1}{4}e^{-j\omega}\right)}\right]\left[\frac{1}{1 - \frac{1}{4}e^{-j\omega}}\right]$$

$$=\frac{2}{\left(1-\frac{1}{2}e^{-j\omega}\right)\left(1-\frac{1}{4}e^{-j\omega}\right)^2}=-\frac{4}{1-\frac{1}{4}e^{-j\omega}}-\frac{2}{\left(1-\frac{1}{4}e^{-j\omega}\right)^2}+\frac{8}{1-\frac{1}{2}e^{-j\omega}}$$

54

$$y[n] = \left\{ -4\left(\frac{1}{4}\right)^n - 2(n+1)\left(\frac{1}{4}\right)^n + 8\left(\frac{1}{2}\right)^n \right\} u[n]$$