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Recall Chapter 2

 Objective: characterization of a LTI system

LTI𝑥(𝑡) 𝑦(𝑡)

 𝑥(𝑡) is considered as linear combinations of a basis signal 𝛿(𝑡)

𝑥 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿(𝑡 − 𝜏) 𝑑𝜏 → 𝑦 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

 𝛿(𝑡) is not the only one. In general, a basic signal should satisfy

• It can be used to construct a broad and useful class of signals

• The response of an LTI system to the basic signal is simple
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Continuous-time

LTI𝑒𝑠𝑡 𝑦 𝑡 =?

𝑦 𝑡 = න
−∞

∞

ℎ 𝜏 𝑒𝑠(𝑡−𝜏)𝑑𝜏 = 𝑒𝑠𝑡න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏

Let

• 𝑒𝑠𝑡 is an eigenfunction of the system

• For a specific value s, 𝐻(𝑠) is the corresponding eigenvalue

න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏 = 𝐻(𝑠) → 𝑦 𝑡 = 𝐻(𝑠)𝑒𝑠𝑡
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Continuous-time

LTI

𝑥 𝑡 = 𝑎1𝑒
𝑠1𝑡 + 𝑎2𝑒

𝑠2𝑡+𝑎3𝑒
𝑠3𝑡

න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏 𝑒𝑠𝑡 = 𝐻(𝑠)𝑒𝑠𝑡

If  𝑦 𝑡 =?

𝑒𝑠𝑡

𝑦 𝑡 = 𝑎1𝐻 𝑠1 𝑒𝑠1𝑡 + 𝑎2𝐻(𝑠2)𝑒
𝑠2𝑡+𝑎1𝐻(𝑠3)𝑒

𝑠3𝑡

Generally, if 𝑥 𝑡 =෍

𝑘

𝑎𝑘𝑒
𝑠𝑘𝑡

𝑦 𝑡 =෍

𝑘

𝑎𝑘𝐻 𝑠𝑘 𝑒𝑠𝑘𝑡
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Discrete-time

LTI 𝑦[𝑛] =?𝑧𝑛

𝑦 𝑛 = ෍

𝑘=−∞

∞

ℎ[𝑘]𝑧𝑛−𝑘 = 𝑧𝑛 ෍

𝑘=−∞

∞

ℎ[𝑘]𝑧−𝑘

Let

• 𝑧𝑛 is an eigenfunction of the system

• For a specific value z, 𝐻[𝑧] is the corresponding eigenvalue

𝐻 𝑧 = ෍

𝑘=−∞

∞

ℎ[𝑘]𝑧−𝑘 → 𝑦 𝑛 = 𝐻[𝑧]𝑧𝑛
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Discrete-time

LTI

If  𝑥[𝑛] =෍

𝑘

𝑎𝑘𝑧𝑘𝑛

𝑦 𝑛 =෍

𝑘

𝑎𝑘𝐻 𝑧𝑘 𝑧𝑘𝑛

𝑧𝑛 ෍

𝑘=−∞

∞

ℎ[𝑘]𝑧−𝑘 𝑧𝑛 = 𝐻[𝑧]𝑧𝑛
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Examples

For a LTI system 𝑦 𝑡 = 𝑥(𝑡 − 3), determine 𝐻 𝑠

𝐻 𝑠 = න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏 = න
−∞

∞

𝛿 𝜏 − 3 𝑒−𝑠𝜏𝑑𝜏 = 𝑒−3𝑠

Solution 2:

Solution 1:

let 𝑥 𝑡 = 𝑒𝑠𝑡, 𝑦 𝑡 = 𝑒𝑠(𝑡−3) = 𝑒−3𝑠𝑒𝑠𝑡

∴ 𝐻 𝑠 = 𝑒−3𝑠
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Examples

For a LTI system 𝑦 𝑡 = 𝑥(𝑡 − 3)

If 𝑥 𝑡 = cos(4𝑡) + cos(7𝑡), 𝑦 𝑡 =?

Solution 1:    𝑦 𝑡 = cos 4 𝑡 − 3 + cos 7 𝑡 − 3

Solution 2: 𝑥 𝑡 =
1

2
𝑒𝑗4𝑡 +

1

2
𝑒−𝑗4𝑡 +

1

2
𝑒𝑗7𝑡 +

1

2
𝑒−𝑗7𝑡

𝑦 𝑡 =
1

2
𝐻 𝑗4 𝑒𝑗4𝑡 +

1

2
𝐻 −𝑗4 𝑒−𝑗4𝑡 +

1

2
𝐻 𝑗7 𝑒𝑗7𝑡 +

1

2
𝐻 −𝑗7 𝑒−𝑗7𝑡

=
1

2
𝑒−𝑗12𝑒𝑗4𝑡 +

1

2
𝑒𝑗12𝑒−𝑗4𝑡 +

1

2
𝑒−𝑗21𝑒𝑗7𝑡 +

1

2
𝑒𝑗21𝑒−𝑗7𝑡𝐻 𝑠 = 𝑒−3𝑠

=
1

2
𝑒𝑗4(𝑡−3) +

1

2
𝑒−𝑗4(𝑡−3) +

1

2
𝑒𝑗7(𝑡−3) +

1

2
𝑒−𝑗7(𝑡−3)
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Recall

LTI𝑥(𝑡) 𝑦(𝑡)

 Decompose 𝑥(𝑡) into linear combinations of basis signals, which should satisfy

• It can be used to construct a broad and useful class of signals

• The response of an LTI system to the basic signal is simple

 Complex exponentials are eigenfunctions of a LTI system

 Can we represent 𝑥(𝑡) as linear combinations of complex exponentials?

Fourier series representation of C-T periodic signals

𝐻(𝑠)𝑒𝑠𝑡𝑒𝑠𝑡
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Linear combination of harmonically related complex exponentials

 Harmonically related complex exponentials (consider 𝑒𝑠𝑡 with 𝑠 purely imaginary)

∅𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡 = 𝑒𝑗𝑘(2𝜋/𝑇)𝑡, 𝑘 = 0,±1,±2,…

For any 𝑘 ≠ 0, fundamental frequency |𝑘|𝜔0; fundamental period
2𝜋

|𝑘|𝜔0
=

𝑇

|𝑘|

 Linear combination of ∅𝑘 𝑡 is also periodic

𝑥 𝑡 =෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 =෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘(2𝜋/𝑇)𝑡

 Representation of  a periodic signal by Linear combination of ∅𝑘 𝑡 is referred 
to as Fourier Series representation, 𝜔0 is the fundamental frequency

 For 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 , 𝑘 = 0: DC component; 𝑘 = ±1: fundamental (first harmonic)

components; 𝑘 = ±𝑁: 𝑁th harmonic components
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Linear combination of harmonically related complex exponentials

 An example

And 𝑎0 = 1, 𝑎1 = 𝑎−1 = 1/4, 𝑎2 = 𝑎−2 = 1/2, 𝑎3 = 𝑎−3 = 1/3

𝑥 𝑡 =෍
𝑘=−3

3

𝑎𝑘𝑒
𝑗𝑘2𝜋𝑡

𝑥 𝑡 = 1 +
1

4
𝑒𝑗2𝜋𝑡 + 𝑒−𝑗2𝜋𝑡 +

1

2
𝑒𝑗4𝜋𝑡 + 𝑒−𝑗4𝜋𝑡 +

1

3
𝑒𝑗6𝜋𝑡 + 𝑒−𝑗6𝜋𝑡

= 1 +
1

2
cos 2𝜋𝑡 + cos 4𝜋𝑡 +

2

3
cos 6𝜋𝑡

If 
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Linear combination of harmonically related complex exponentials

 Real signal

𝑥 𝑡 =෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑥∗ 𝑡 =෍

𝑘=−∞

∞

𝑎𝑘
∗𝑒−𝑗𝑘𝜔0𝑡 =෍

𝑘=−∞

∞

𝑎−𝑘
∗ 𝑒𝑗𝑘𝜔0𝑡

Real ⇒ 𝑥 𝑡 = 𝑥∗ 𝑡 ⇒ 𝑎𝑘 = 𝑎−𝑘
∗ , or 𝑎𝑘

∗ = 𝑎−𝑘（Conjugate symmetry）

𝑥 𝑡 = 𝑎0 +෍
𝑘=1

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 + 𝑎−𝑘𝑒

−𝑗𝑘𝜔0𝑡

 Alternative form of Fourier Series for real signal

= 𝑎0 +෍
𝑘=1

∞

2ℛ𝑒 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

𝑎𝑘 = 𝐴𝑘𝑒
𝑗𝜃𝑘

= 𝑎0 + 2෍
𝑘=1

∞

𝐴𝑘 cos 𝑘𝜔0𝑡 + 𝜃𝑘
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Determine the Fourier Series Representation 

න
0

𝑇

𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 = න
0

𝑇

෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑒𝑗−𝑛𝜔0𝑡𝑑𝑡න

0

𝑇

𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 = න
0

𝑇

෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡න

0

𝑇

𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 = න
0

𝑇

෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

=෍
𝑘=−∞

∞

𝑎𝑘 න
0

𝑇

𝑒𝑗(𝑘−𝑛)𝜔0𝑡𝑑𝑡

= ቊ
𝑇, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

= 𝑇𝛿[𝑘 − 𝑛]

= 𝑇𝑎𝑛

∴ 𝑎𝑛 =
1

𝑇
න
0

𝑇

𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

𝑎𝑘 =
1

𝑇
න
𝑇

𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡



Fourier series representation of C-T periodic signals

14

Fourier Series pair 

𝑥 𝑡 =෍
𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

𝑎𝑘 =
1

𝑇
න
𝑇

𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

 𝑎𝑘: Fourier Series coefficients or spectral coefficients of 𝑥 𝑡

𝑎0 =
1

𝑇
න
𝑇

𝑥 𝑡 𝑑𝑡

Synthesis equation

Analysis equation
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Determine the Fourier Series Representation 

 Examples: determine the FS coefficients of 𝑥 𝑡

𝑥 𝑡 = sin𝜔0𝑡

sin𝜔0𝑡 =
1

2𝑗
𝑒𝑗𝜔0𝑡 −

1

2𝑗
𝑒−𝑗𝜔0𝑡

∴ 𝑎1 =
1

2𝑗 𝑎−1 = −
1

2𝑗
𝑎𝑘 = 0, for 𝑘 ≠ ±1
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Determine the Fourier Series Representation 

 Examples: determine the FS coefficients of 𝑥 𝑡

𝑥 𝑡 = 1 + sin𝜔0𝑡 + 2 cos𝜔0𝑡 + cos 2𝜔0𝑡 +
𝜋

4

𝑥 𝑡 = 1 +
1

2𝑗
𝑒𝑗𝜔0𝑡 − 𝑒−𝑗𝜔0𝑡 + 𝑒𝑗𝜔0𝑡 + 𝑒−𝑗𝜔0𝑡

+
1

2
𝑒𝑗 2𝜔0𝑡+𝜋/4 + 𝑒−𝑗 2𝜔0𝑡+𝜋/4

∴ 𝑥 𝑡 = 1 + 1 +
1

2𝑗
𝑒𝑗𝜔0𝑡 + 1 −

1

2𝑗
𝑒−𝑗𝜔0𝑡 +

1

2
𝑒𝑗𝜋/4𝑒𝑗2𝜔0𝑡 +

1

2
𝑒−𝑗𝜋/4𝑒−𝑗2𝜔0𝑡

𝑎0 𝑎1 𝑎−1 𝑎2 𝑎−2
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Determine the Fourier Series Representation 

 Examples: determine the FS coefficients of 𝑥 𝑡

𝑥 𝑡 = 1 + 1 +
1

2𝑗
𝑒𝑗𝜔0𝑡 + 1 −

1

2𝑗
𝑒−𝑗𝜔0𝑡 +

1

2
𝑒𝑗𝜋/4𝑒𝑗2𝜔0𝑡 +

1

2
𝑒−𝑗𝜋/4𝑒−𝑗2𝜔0𝑡

𝑎0 𝑎1 𝑎−1 𝑎2 𝑎−2
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Determine the Fourier Series Representation 

 Examples: determine the FS coefficients of 𝑥 𝑡

𝑎0 =
1

𝑇
න
−𝑇/2

𝑇/2

𝑥 𝑡 𝑑𝑡 =
1

𝑇
න
−𝑇1

𝑇1

1 𝑑𝑡 =
2𝑇1
𝑇

𝑎𝑘 =
1

𝑇
න
−𝑇1

𝑇1

𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 = −
1

𝑗𝑘𝜔0𝑇
𝑒−𝑗𝑘𝜔0𝑡|

𝑇1
−𝑇1

=
2

𝑘𝜔0𝑇

𝑒𝑗𝑘𝜔0𝑇1 − 𝑒−𝑗𝑘𝜔0𝑇1

2𝑗

=
2 sin 𝑘𝜔0𝑇1

𝑘𝜔0𝑇
=
sin 𝑘𝜔0𝑇1

𝑘𝜋
=
2𝑇1
𝑇

sin 𝑘𝜔0𝑇1
𝑘𝜔0𝑇1

, 𝑘 ≠ 0

sinc 𝑥 =
sin 𝑥

𝑥
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 Examples: determine the FS 
coefficients of 𝑥 𝑡

𝑎𝑘 =
2 sin 𝑘𝜔0𝑇1

𝑘𝜔0𝑇
=
sin 𝑘𝜔0𝑇1

𝑘𝜋

=
2𝑇1
𝑇

sin 𝑘𝜔0𝑇1
𝑘𝜔0𝑇1

, 𝑘 ≠ 0

Determine the Fourier Series Representation 
𝑇 = 4𝑇1

𝑇 = 8𝑇1

𝑇 = 16𝑇1
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 Using “trigonometric sum” to describe periodic signal can be 
tracked back to Babylonians who predicted astronomical events 
similarly.

 L. Euler (in 1748) and Bernoulli (in 1753) used the “normal mode” 
concept to describe the motion of a vibrating string; though JL 
Lagrange strongly criticized this concept.

 Fourier (in 1807) had found series of harmonically related 
sinusoids to be useful to describe the temperature distribution 
through body, and he claimed “any” periodic signal can be 
represented by such series.

 Dirichlet (in 1829) provide a precise condition under which a 
periodic signal can be represented by a Fourier series.

History
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 Approximate periodic signal 𝑥 𝑡 by 𝑥𝑁 𝑡 = σ𝑘=−𝑁
𝑁 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡

Convergence problem

 How good the approximation is?

• When 𝑎𝑘 =
1

𝑇
𝑇׬ 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡, 𝐸𝑁 is minimized; 𝑁 → ∞ ⇒ 𝐸𝑁 → 0

𝐸𝑁 = න
𝑇

𝑒𝑁(𝑡)
2𝑑𝑡𝑒𝑁(𝑡) = 𝑥 𝑡 − 𝑥𝑁 𝑡 = 𝑥 𝑡 −෍

𝑘=−𝑁

𝑁

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 Problem:

• 𝑎𝑘 may be infinite

• 𝑁 → ∞, 𝑥𝑁 𝑡 may be infinite
Convergence problem!
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 Condition 1: Finite energy condition

Two different classes of conditions

If ׬𝑇 |𝑥(𝑡)|
2𝑑𝑡 < ∞, 𝑥(𝑡) can be represented by a FS

• Guarantees no energy in their difference; FS is not equal to 𝑥(𝑡)

 Condition 2: Dirichlet condition

(1)  Absolutely integrable 𝑇׬ |𝑥(𝑡)|𝑑𝑡 < ∞

is not absolutely integrable. 

𝑥 𝑡 =
1

𝑡
, 0 < 𝑡 ≤ 1

An example: a periodic signal
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Two different classes of conditions

 Condition 2: Dirichlet condition

(2) In any finite interval of time, x(t) is of bounded variation; finite maxima 
and minima in one period

meets (1) but not (2). 

𝑥 𝑡 = sin
2𝜋

𝑡
, 0 < 𝑡 ≤ 1

An example: a periodic signal
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Two different classes of conditions

 Condition 2: Dirichlet condition

(3) In any finite interval of time, only a finite number of finite discontinuities 

An example: a periodic signal meets (1) and (2) but not (3). 

• Dirichlet condition guarantees 𝑥 𝑡 equals 
its Fourier Series representation, except 
for discontinuous points.

• Three examples are pathological in nature 

and do not typically arise in practical 

contexts.
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Example

 𝑥 𝑡 is a square wave

𝑥𝑁 𝑡 =෍
𝑘=−𝑁

𝑁

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

lim
𝑁→∞

𝑥𝑁 𝑡1 = 𝑥 𝑡1
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 Use the notation

𝑥 𝑡 𝑎𝑘
ℱ𝒮

to signify the paring of a periodic signal with its FS coefficients.

 Linearity: if 𝑥 𝑡 and 𝑦 𝑡 are periodic signals with the same period T

𝑦 𝑡 𝑏𝑘
ℱ𝒮 ⇒ 𝑧 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑦 𝑡 𝑐𝑘 = 𝐴𝑎𝑘 + 𝐵𝑏𝑘

ℱ𝒮

𝑥 𝑡 𝑎𝑘
ℱ𝒮
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 Time shifting

⇒ 𝑥 𝑡 − 𝑡0 𝑒−𝑗𝑘𝜔0𝑡0𝑎𝑘
ℱ𝒮

𝑥 𝑡 𝑎𝑘
ℱ𝒮

 Proof

1

𝑇
න
𝑇

𝑥 𝑡 − 𝑡0 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 =
1

𝑇
න
𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0(𝜏+𝑡0)𝑑𝜏

= 𝑒−𝑗𝑘𝜔0𝑡0
1

𝑇
න
𝑇

𝑥 𝜏 𝑒−𝑗𝑘𝜔0𝜏𝑑𝜏

= 𝑒−𝑗𝑘𝜔0𝑡0𝑎𝑘

𝑡 − 𝑡0 = 𝜏
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 Time reversal

⇒ 𝑦 𝑡 = 𝑥 −𝑡 𝑏𝑘 = 𝑎−𝑘
ℱ𝒮

𝑥 𝑡 𝑎𝑘
ℱ𝒮

 Proof

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑥 −𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0(−𝑡) = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗(−𝑘)𝜔0𝑡⇒

= ෍

𝑚=−∞

∞

𝑎−𝑚𝑒
𝑗𝑚𝜔0𝑡

 If 𝑥 𝑡 even, 𝑎−𝑘 = 𝑎𝑘, if  𝑥 𝑡 odd, 𝑎−𝑘 = −𝑎𝑘



Properties of continuous-time FS

31

 Time scaling

⇒ 𝑦 𝑡 = 𝑥 𝛼𝑡 𝑏𝑘 = 𝑎𝑘
ℱ𝒮

𝑥 𝑡 𝑎𝑘
ℱ𝒮

 Proof

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑥 𝛼𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝛼𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘(𝛼𝜔0)𝑡⇒

FS coefficients the same, but fundamental frequency changed.
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Multiplication

𝑥 𝑡 𝑎𝑘
ℱ𝒮

𝑦 𝑡 𝑏𝑘
ℱ𝒮 ⇒ 𝑧 𝑡 = 𝑥 𝑡 𝑦 𝑡 ℎ𝑘 = ෍

𝑙=−∞

∞

𝑎𝑙𝑏𝑘−𝑙
ℱ𝒮

 Proof

𝑥 𝑡 𝑦 𝑡 = ෍

𝑙=−∞

∞

𝑎𝑙𝑒
𝑗𝑙𝜔0𝑡 ෍

𝑚=−∞

∞

𝑏𝑚𝑒
𝑗𝑚𝜔0𝑡 = ෍

𝑙=−∞

∞

෍

𝑚=−∞

∞

𝑎𝑙𝑏𝑚𝑒
𝑗(𝑙+𝑚)𝜔0𝑡

= ෍

𝑙=−∞

∞

෍

𝑘=−∞

∞

𝑎𝑙𝑏𝑘−𝑙𝑒
𝑗𝑘𝜔0𝑡 = ෍

𝑘=−∞

∞

෍

𝑙=−∞

∞

𝑎𝑙𝑏𝑘−𝑙𝑒
𝑗𝑘𝜔0𝑡

𝑙 + 𝑚 = 𝑘

ℎ𝑘
= ෍

𝑘=−∞

∞

ℎ𝑘𝑒
𝑗𝑘𝜔0𝑡
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 Conjugation and conjugate symmetry

𝑥 𝑡 𝑎𝑘
ℱ𝒮

𝑧 𝑡 = 𝑥∗ 𝑡 𝑏𝑘 = 𝑎−𝑘
∗ℱ𝒮

 Proof

∴ 𝑥∗ 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘
∗𝑒−𝑗𝑘𝜔0𝑡 = ෍

𝑚=−∞

∞

𝑎−𝑚
∗ 𝑒𝑗𝑚𝜔0𝑡

−𝑘 = 𝑚

⇒

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 If 𝑥 𝑡 real, 𝑎𝑘
∗ = 𝑎−𝑘 (conjugate symmetry) ⇒ |𝑎𝑘| = |𝑎−𝑘|

• 𝑥 𝑡 real and even (𝑎−𝑘 = 𝑎𝑘) ⇒ 𝑎𝑘 = 𝑎𝑘
∗ ⇒ 𝑎𝑘 real and even

• 𝑥 𝑡 real and odd (𝑎−𝑘 = −𝑎𝑘) ⇒ 𝑎𝑘 = −𝑎𝑘
∗ ⇒ 𝑎𝑘 pure imagery and odd

• 𝑎0 =?
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 Differentiation and Integration

𝑥 𝑡 𝑎𝑘
ℱ𝒮

ℱ𝒮

 Proof

⇒ ൞

𝑑𝑥(𝑡)/𝑑𝑡

න
−∞

𝑡

𝑥 𝜏 𝑑𝜏

𝑗𝑘𝜔0𝑎𝑘

ℱ𝒮
𝑎𝑘/(𝑗𝑘𝜔0)

𝑑𝑥(𝑡)

𝑑𝑡
= ෍

𝑘=−∞

∞

𝑎𝑘
𝑑(𝑒𝑗𝑘𝜔0𝑡)

𝑑𝑡
= ෍

𝑘=−∞

∞

𝑎𝑘𝑗𝑘𝜔0𝑒
𝑗𝑘𝜔0𝑡

න
−∞

𝑡

𝑥 𝜏 𝑑𝜏 = ෍

𝑘=−∞

∞

𝑎𝑘න
−∞

𝑡

𝑒𝑗𝑘𝜔0𝜏𝑑𝜏 = ෍

𝑘=−∞

∞

𝑎𝑘/(𝑗𝑘𝜔0)𝑒
𝑗𝑘𝜔0𝑡
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 Frequency shifting

𝑥 𝑡 𝑎𝑘
ℱ𝒮 ℱ𝒮

 Proof
𝑎𝑘−𝑀

𝑒𝑗𝑀𝜔0𝑡𝑥 𝑡 = 𝑒𝑗𝑀𝜔0𝑡 ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗(𝑘+𝑀)𝜔0𝑡

𝑒𝑗𝑀𝜔0𝑡𝑥 𝑡⇒

= ෍

𝑙=−∞

∞

𝑎𝑙−𝑀𝑒
𝑗𝑙𝜔0𝑡𝑘 +𝑀 = 𝑙
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𝑥 𝑡 𝑎𝑘
ℱ𝒮

𝑦 𝑡 𝑏𝑘
ℱ𝒮 ⇒ න

𝑇

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 𝑇𝑎𝑘𝑏𝑘
ℱ𝒮

 Proof

න
𝑇

𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 = න
𝑇

෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝜏 ෍

𝑚=−∞

∞

𝑏𝑚𝑒
𝑗𝑚𝜔0 𝑡−𝜏 𝑑𝜏

= න
𝑇

෍

𝑘=−∞

∞

෍

𝑚=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝜏𝑏𝑚𝑒

−𝑗𝑚𝜔0𝜏𝑒𝑗𝑚𝜔0𝑡 𝑑𝜏

 Periodic convolution

𝑇𝛿[𝑘 −𝑚]

= ෍

𝑘=−∞

∞

𝑎𝑘 ෍

𝑚=−∞

∞

𝑒𝑗𝑚𝜔0𝑡𝑏𝑚න
𝑇

𝑒𝑗𝑘𝜔0𝜏𝑒−𝑗𝑚𝜔0𝜏𝑑𝜏 = ෍

𝑘=−∞

∞

𝑇𝑎𝑘𝑏𝑘𝑒
𝑗𝑘𝜔0𝑡
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 Parseval’s relation

 Proof

1

𝑇
න
𝑇

|𝑥(𝑡)|2𝑑𝑡 = ෍

𝑘=−∞

∞

|𝑎𝑘|
2

1

𝑇
න
𝑇

|𝑥(𝑡)|2𝑑𝑡 =
1

𝑇
න
𝑇

𝑥 𝑡 𝑥∗ 𝑡 𝑑𝑡 =
1

𝑇
න
𝑇

𝑥 𝑡 ෍

𝑘=−∞

∞

𝑎𝑘
∗𝑒−𝑗𝑘𝜔0𝑡 𝑑𝑡

= ෍

𝑘=−∞

∞

𝑎𝑘
∗ 1

𝑇
න
𝑇

𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡 𝑑𝑡

= ෍

𝑘=−∞

∞

𝑎𝑘
∗𝑎𝑘 = ෍

𝑘=−∞

∞

|𝑎𝑘|
2
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 Parseval’s relation

 |𝑎𝑘|
2 is the average power in the k-th harmonic component of 𝑥(𝑡)

1

𝑇
න
𝑇

|𝑥(𝑡)|2𝑑𝑡 = ෍

𝑘=−∞

∞

|𝑎𝑘|
2

1

𝑇
න
𝑇

|𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡|2𝑑𝑡 =

1

𝑇
න
𝑇

|𝑎𝑘|
2𝑑𝑡 = |𝑎𝑘|

2

 Total average power in 𝑥(𝑡) equals the sum of the average powers in all of 
its harmonic components
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 Summary
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 Examples

• Let 𝑥 𝑡 = σ𝑘=−∞
∞ 𝛿(𝑡 − 𝑘𝑇)

𝑎𝑘 =
1

𝑇
න
−𝑇/2

𝑇/2

𝛿 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 =
1

𝑇

• Let 𝑞 𝑡 = 𝑥 𝑡 + 𝑇1 − 𝑥 𝑡 − 𝑇1

𝑏𝑘 = 𝑒𝑗𝑘𝜔0𝑇1𝑎𝑘 − 𝑒−𝑗𝑘𝜔0𝑇1𝑎𝑘 =
1

𝑇
𝑒𝑗𝑘𝜔0𝑇1 − 𝑒−𝑗𝑘𝜔0𝑇1 =

2𝑗 sin 𝑘𝜔0𝑇1
𝑇

𝑥(𝑡)

𝑔(𝑡)

𝑞(𝑡)

∴ 𝑐𝑘 =
𝑏𝑘
𝑗𝑘𝜔0

=
2𝑗 sin 𝑘𝜔0𝑇1

𝑗𝑘𝜔0𝑇
=
sin 𝑘𝜔0𝑇1

𝑘𝜋
, 𝑘 ≠ 0

 Solution

FS coefficients (𝑐𝑘) of 𝑔 𝑡 ?

• 𝑞 𝑡 = 𝑑𝑔 𝑡 /𝑑𝑡

𝑐0 =
2𝑇1
𝑇

∴ 𝑏𝑘 = 𝑗𝑘𝜔0𝑐𝑘
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 Examples 𝑎𝑘 =
sin 𝑘𝜔0𝑇1

𝑘𝜋
, 𝑘 ≠ 0𝑥(𝑡)

𝑔 𝑡 = 𝑥 𝑡 − 1 − 1/2 FS coefficients of 𝑔 𝑡 ?

𝑇1 = 1, 𝑇 = 4

=
sin 𝑘𝜋/2

𝑘𝜋
, 𝑘 ≠ 0

𝑥 𝑡 − 1 ↔ 𝑒−𝑗𝑘𝜔0𝑡0𝑎𝑘 = 𝑒−𝑗𝑘𝜋/2𝑎𝑘, 𝑘 ≠ 0

−1/2 ↔ ቐ
0, 𝑘 ≠ 0

−
1

2
, 𝑘 = 0

∴ 𝑥 𝑡 − 1 − 1/2 ↔ ቐ
𝑒−𝑗𝑘𝜋/2𝑎𝑘 , 𝑘 ≠ 0

𝑎0 −
1

2
, 𝑘 = 0

ℱ𝒮

ℱ𝒮 ℱ𝒮

 Solution
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 Examples

Given a signal 𝑥 𝑡 with the following facts, determine 𝑥 𝑡
1. 𝑥 𝑡 is real; 
2. 𝑥 𝑡 is periodic with T=4 and FS coefficients 𝑎𝑘 = 0 for k > 1;
3. A signal with FS coefficients 𝑏𝑘 = 𝑒−𝑗𝜋𝑘/2𝑎−𝑘 is odd;

4.
1

4
4׬ |𝑥 𝑡 |2𝑑𝑡 =

1

2
.

 Solution

• From 2, 𝑥 𝑡 = 𝑎0 + 𝑎1𝑒
𝑗(
𝜋

2
)𝑡 + 𝑎−1𝑒

−𝑗
𝜋

2
𝑡

• 𝑏𝑘 = 𝑒−𝑗𝜋𝑘/2𝑎−𝑘 corresponds to the signal 𝑥 −𝑡 + 1 , which is real and odd

•
1

4
4׬ |𝑥 𝑡 |2𝑑𝑡 =

1

4
4׬ |𝑥 −𝑡 + 1 |2𝑑𝑡 = σ𝑘=−∞

∞ |𝑏𝑘|
2 = |𝑏0|

2 + |𝑏1|
2+|𝑏−1|

2 =
1

2

• 𝑥 −𝑡 + 1 is real and odd  ⇒ 𝑏𝑘 = −𝑏−𝑘 ⇒ 𝑏0 = 0, 𝑏1 = −𝑏−1 =
j

2
or -

j

2

• 𝑎0 = 0, 𝑎1 = −1/2, 𝑎−1 = 1/2



Fourier Series Representation of Periodic 
signals (ch.3)

 The response of  LTI systems to complex exponentials

 Fourier series representation of continuous periodic signals

 Convergence of the Fourier series

 Properties of continuous-time Fourier series

 Fourier series representation of discrete –time periodic signals

 Properties of discrete FS

 Fourier series and LTI systems



Fourier series representation of D-T periodic signals

44

Linear combination of harmonically related complex exponentials

 Harmonically related complex exponentials

∅𝑘[𝑛] = 𝑒𝑗𝑘(2𝜋/𝑁)𝑛, 𝑘 = 0,±1,±2,…

• Fundamental frequency |𝑘|(
2𝜋

𝑁
)

• Only N distinct signals in ∅𝑘[𝑛], since ∅𝑘[𝑛] = ∅𝑘+𝑟𝑁[𝑛]

 Linear combination of ∅𝑘[𝑛] is also periodic

𝑥[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘∅𝑘[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 = ෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛

 σ𝑘= 𝑁 𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛: Discrete-Time Fourier Series; 𝑎𝑘: Fourier Series 

coefficients
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Determine the Fourier Series Representation 

= ቊ
𝑁, 𝑘 = 𝑟
0, 𝑘 ≠ 𝑛

= 𝑁𝛿[𝑘 − 𝑟]

= 𝑁𝑎𝑟

∴ 𝑎𝑘 =
1

𝑁
෍

𝑛= 𝑁

𝑥[𝑛]𝑒−𝑗𝑘 2𝜋/𝑁 𝑛

෍

𝑛= 𝑁

𝑥[𝑛]𝑒−𝑗𝑟 2𝜋/𝑁 𝑛 = ෍

𝑛= 𝑁

෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛 𝑒−𝑗𝑟 2𝜋/𝑁 𝑛

= ෍

𝑘= 𝑁

𝑎𝑘 ෍

𝑛= 𝑁

𝑒𝑗(𝑘−𝑟) 2𝜋/𝑁 𝑛

෍

𝑛= 𝑁

𝑥[𝑛]𝑒−𝑗𝑟 2𝜋/𝑁 𝑛 = ෍

𝑛= 𝑁

෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛 𝑒−𝑗𝑟 2𝜋/𝑁 𝑛෍

𝑛= 𝑁

𝑥[𝑛]𝑒−𝑗𝑟 2𝜋/𝑁 𝑛 = ෍

𝑛= 𝑁

෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛 𝑒−𝑗𝑟 2𝜋/𝑁 𝑛
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Determine the Fourier Series Representation 

Synthesis equation; Fourier Series (Finite)

 Discrete Fourier series pair

Analysis equation; 𝑎𝑘: Fourier Series 
coefficients

𝑎𝑘 =
1

𝑁
෍

𝑛= 𝑁

𝑥[𝑛]𝑒−𝑗𝑘 2𝜋/𝑁 𝑛

𝑥[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛

∴ 𝑎𝑘= 𝑎𝑘+𝑟𝑁

 𝑎𝑘 is periodic 𝑥 𝑛 = ෍

𝑘= 𝑁

𝑎𝑘∅𝑘 𝑛 = 𝑎0∅0 𝑛 + 𝑎1∅1 𝑛 +⋯+ 𝑎𝑁−1∅𝑁−1[𝑛]

= 𝑎1∅1 𝑛 + 𝑎2∅2 𝑛 +⋯+ 𝑎𝑁∅𝑁[𝑛]

= 𝑎2∅2 𝑛 + 𝑎3∅3 𝑛 +⋯+ 𝑎𝑁+1∅𝑁+1[𝑛]
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Determine the Fourier Series Representation 

 Examples 𝑥[𝑛] = sin𝜔0𝑛

𝑥[𝑛] = sin𝜔0𝑛 =
1

2𝑗
𝑒𝑗(2𝜋/𝑁)𝑛 −

1

2𝑗
𝑒𝑗(2𝜋/𝑁)𝑛

∴ 𝑎1 =
1

2𝑗 𝑎−1 = −
1

2𝑗
𝑎𝑘 = 0, for 𝑘 ≠ ±1 in one period

If 𝜔0 =
2𝜋

𝑁
, 𝑥[𝑛] is periodic with fundamental period of N.

𝑁 = 5
 𝑎𝑘 is periodic and only one 

period is utilized in the synthesis 
equation
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Determine the Fourier Series Representation 

 Examples: 𝑥[𝑛] = 1 + sin(
2𝜋

𝑁
)𝑛 + 3 cos(

2𝜋

𝑁
)𝑛 + cos

4𝜋

𝑁
𝑛 +

𝜋

2

𝑥[𝑛] = 1 +
1

2𝑗
𝑒𝑗 2𝜋/𝑁 𝑛 − 𝑒−𝑗 2𝜋/𝑁 𝑛 +

3

2
𝑒𝑗 2𝜋/𝑁 𝑛 + 𝑒−𝑗 2𝜋/𝑁 𝑛

+
1

2
𝑒𝑗 4𝜋𝑛/𝑁+𝜋/2 + 𝑒−𝑗 4𝜋𝑛/𝑁+𝜋/2

∴ 𝑥[𝑛] = 1 +
3

2
+
1

2𝑗
𝑒𝑗 2𝜋/𝑁 𝑛 +

3

2
−
1

2𝑗
𝑒−𝑗 2𝜋/𝑁 𝑛

𝑎0
𝑎1 𝑎−1

𝑎2
𝑎−2

+
1

2
𝑒𝑗𝜋/2𝑒𝑗2 2𝜋/𝑁 𝑛 +

1

2
𝑒−𝑗𝜋/2𝑒−𝑗2 2𝜋/𝑁 𝑛
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Linear combination of harmonically related complex exponentials

 Real signal

𝑥[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛

𝑥∗[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘
∗𝑒−𝑗𝑘 2𝜋/𝑁 𝑛 = ෍

𝑘= 𝑁

𝑎−𝑘
∗ 𝑒𝑗𝑘 2𝜋/𝑁 𝑛

𝑎𝑘 = 𝑎−𝑘
∗ , or 𝑎𝑘

∗ = 𝑎−𝑘

𝑥 𝑛 = 𝑥∗ 𝑛 ⟹ 𝑎𝑘 = 𝑎−𝑘
∗
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Determine the Fourier Series Representation 

 Examples: 𝑥[𝑛] discrete square  

𝑎𝑘 =
1

𝑁
෍

𝑛=−𝑁1

𝑁1
𝑥[𝑛]𝑒−𝑗𝑘 2𝜋/𝑁 𝑛 =

1

𝑁
෍

𝑛=−𝑁1

𝑁1
𝑒−𝑗𝑘 2𝜋/𝑁 𝑛

𝑥[𝑛]

=
1

𝑁
𝑒𝑗𝑘 2𝜋/𝑁 𝑁1 ෍

𝑚=0

2𝑁1
𝑒−𝑗𝑘 2𝜋/𝑁 𝑚

𝑚 = 𝑛 + 𝑁1

=
1

𝑁
෍

𝑚=0

2𝑁1
𝑒−𝑗𝑘 2𝜋/𝑁 (𝑚−𝑁1)

=

2𝑁1 + 1

𝑁
, 𝑘 = 0,±𝑁,±2𝑁,…

1

𝑁

sin 2𝑘𝜋(𝑁1 + 1/2)/𝑁

sin 𝑘𝜋/𝑁
, 𝑘 ≠ 0,±𝑁,±2𝑁,…

𝑎𝑘 (2𝑁1 + 1 = 5,𝑁 = 20)
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Linear combination of harmonically related complex exponentials

ො𝑥[𝑛] =෍
𝑘=−𝑀

𝑀

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛

With 𝑎𝑘 = ൞

2𝑁1+1

𝑁
, 𝑘 = 0,±𝑁,±2𝑁,…

1

𝑁

sin 2𝑘𝜋(𝑁1+1/2)/𝑁

sin 𝑘𝜋/𝑁
, else

2𝑁1 + 1 = 5,𝑁 = 9

 No convergence issues for the
discrete−time Fourier series!

 For M=4, ො𝑥[𝑛] = 𝑥 𝑛

 Approximate a discrete square by  ො𝑥[𝑛]
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 The response of  LTI systems to complex exponentials

 Fourier series representation of continuous periodic signals

 Convergence of the Fourier series

 Properties of continuous-time Fourier series

 Fourier series representation of discrete –time periodic signals

 Properties of discrete FS 

Fourier series and LTI systems
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𝑥[𝑛] 𝑎𝑘
ℱ𝒮

𝑥[𝑛]𝑦[𝑛] ෍

𝑙= 𝑁

𝑎𝑙𝑏𝑘−𝑙
ℱ𝒮

Multiplication

𝑦[𝑛] 𝑏𝑘
ℱ𝒮

 First difference

𝑥 𝑛 − 𝑥[𝑛 − 1]
ℱ𝒮

1 − 𝑒−𝑗𝑘 2𝜋/𝑁 𝑎𝑘

 Parseval’s relation

1

𝑁
෍

𝑙= 𝑁

|𝑥[𝑛]|2 = ෍

𝑙= 𝑁

|𝑎𝑘|
2
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 Examples

 𝑥1 𝑛 is a square wave with 𝑁 = 5 and 
𝑁1 = 1

𝑥 𝑛 = 𝑥1 𝑛 + 𝑥2[𝑛]

 For 𝑥2 𝑛

𝑏𝑘 =

2𝑁1 + 1

𝑁
, 𝑘 = ±𝑁,±2𝑁,…

1

𝑁

sin 2𝑘𝜋(𝑁1 + 1/2)/𝑁

sin 𝑘𝜋/𝑁
, else

=

3

5
, 𝑘 = ±5,±10,…

1

5

sin 3𝑘𝜋/5

sin 𝑘𝜋/5
, else

𝑐𝑘 = ቊ
1, 𝑘 = ±𝑁,±2𝑁,…
0, else

∴ 𝑎𝑘 = 𝑏𝑘 + 𝑐𝑘 =

8

5
, 𝑘 = ±5,±10,…

1

5

sin 3𝑘𝜋/5

sin 𝑘𝜋/5
, else
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 Examples

• σ𝑛=0
5 𝑥[𝑛] = 2 ⟹ 𝑎0 =

1

𝑁
σ𝑛= 𝑁 𝑥 𝑛 𝑒−𝑗0 2𝜋/𝑁 𝑛 = 1/3.

 Solution

• σ𝑛=2
7 −1 𝑛𝑥[𝑛] = 1 ⟹ σ𝑛= 𝑁 𝑥 𝑛 𝑒−𝑗3 2𝜋/𝑁 𝑛 = 1 ⟹ 𝑎3 = 1/6

• from 4, 𝑎1 = 𝑎2 = 𝑎4 = 𝑎5 = 0

• ∴ 𝑥 𝑛 = 𝑎0𝑒
−𝑗0 2𝜋/𝑁 𝑛 + 𝑎3𝑒

−𝑗3 2𝜋/𝑁 𝑛 =
1

3
+

1

6
𝑒−𝑗𝜋𝑛 =

1

3
+

1

6
(−1)𝑛
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 The response of  LTI systems to complex exponentials

 Fourier series representation of continuous periodic signals

 Convergence of the Fourier series
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 Fourier series representation of discrete –time periodic signals
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 Recall

 System functions: 𝐻 𝑠 and 𝐻 𝑧

LTI 𝐻(𝑠)𝑒𝑠𝑡 𝐻 𝑠 = න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏𝑒𝑠𝑡

LTI𝑧𝑛 𝐻[𝑧]𝑧𝑛 𝐻 𝑧 = ෍

𝑘=−∞

∞

ℎ[𝑘]𝑧−𝑘

𝑒𝑠𝑡
𝑠 pure imagery  𝑒𝑠𝑡 → 𝑒𝑗𝜔𝑡

For periodic signal, CT Fourier Series (Ch3)

For aperiodic signal, CT Fourier Transform (Ch4)

𝑠 complex number  𝑒𝑠𝑡 Laplase Transform (Ch9)

𝑧𝑛
𝑧 pure imagery 𝑧𝑛 → 𝑒𝑗𝜔𝑛

𝑧 complex number  𝑧𝑛 Z-Transform (Ch10)

For periodic signal, DT Fourier Series (Ch3)

For aperiodic signal, DT Fourier Transform (Ch5)
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 Frequency response for CT system: 𝐻 𝑗𝜔

𝐻 𝑠 = න
−∞

∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏
𝑠=𝑗𝜔

𝐻 𝑗𝜔 = න
−∞

∞

ℎ 𝜏 𝑒−𝑗𝜔𝜏𝑑𝜏

LTI 𝐻(𝑗𝜔)𝑒𝑗𝜔𝑡𝑒𝑗𝜔𝑡

LTI𝑥 𝑡 = ෍

𝑘−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝑦 𝑡 = ෍

𝑘−∞

∞

𝑎𝑘𝐻(𝑗𝑘𝜔0)𝑒
𝑗𝑘𝜔0𝑡

𝑎𝑘

ℱ𝒮
𝑏𝑘

ℱ𝒮

𝑏𝑘 = 𝑎𝑘𝐻(𝑗𝑘𝜔0)
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 Frequency response for CT system: example

𝑥 𝑡 = σ𝑘=−3
3 𝑎𝑘𝑒

𝑗𝑘2𝜋𝑡 (𝑎0 = 1, 𝑎1 = 𝑎−1 =
1

4
, 𝑎2 = 𝑎−2 =

1

2
, 𝑎3 = 𝑎−3 =

1

3
) is 

the input of a LTI system with ℎ 𝑡 = 𝑒−𝑡𝑢(𝑡), determine 𝑦 𝑡

𝐻 𝑗𝜔 = න
0

∞

𝑒−𝜏𝑒−𝑗𝜔𝜏𝑑𝜏 =
1

1 + 𝑗𝜔

 Solution

𝑦 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝐻(𝑗𝑘𝜔0)𝑒
𝑗𝑘2𝜋𝑡

𝑏0 = 1 ∙ 1 = 1 𝑏1 =
1

4

1

1 + 𝑗2𝜋
𝑏−1 =

1

4

1

1 − 𝑗2𝜋

𝑏2 =
1

2

1

1 + 𝑗4𝜋 𝑏−2 =
1

2

1

1 − 𝑗4𝜋
𝑏3 =

1

3

1

1 + 𝑗6𝜋 𝑏−3 =
1

3

1

1 − 𝑗6𝜋

𝑏𝑘 = 𝑎𝑘𝐻 𝑗𝑘𝜔0 = 𝑎𝑘
1

1 + 𝑗𝑘2𝜋
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 Frequency response DT system: 𝐻 𝑒𝑗𝜔

𝐻 𝑧 = ෍

𝑛=−∞

∞

ℎ[𝑘]𝑧−𝑛
𝑧=𝑒𝑗𝜔

𝐻 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

ℎ[𝑛]𝑒−𝑗𝜔𝑛

LTI 𝐻 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛𝑒𝑗𝜔𝑛

LTI
𝑥[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘𝑒
𝑗𝑘 2𝜋/𝑁 𝑛 𝑦[𝑛] = ෍

𝑘= 𝑁

𝑎𝑘𝐻 𝑒𝑗𝑘 2𝜋/𝑁 𝑒𝑗𝑘 2𝜋/𝑁 𝑛

𝑏𝑘 = 𝑎𝑘𝐻(𝑒
𝑗𝑘 2𝜋/𝑁 )
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 Frequency response DT system: example

ℎ 𝑛 = 𝛼𝑛𝑢 𝑛 , 𝛼 < 1

LTI 𝑦 𝑛 ?

𝑥 𝑛 =
1

2
𝑒𝑗 2𝜋/𝑁 𝑛 +

1

2
𝑒−𝑗 2𝜋/𝑁 𝑛

𝑥[𝑛] = cos
2𝜋𝑛

𝑁

 Solution

𝐻 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

ℎ[𝑛]𝑒−𝑗𝜔𝑛 = ෍

𝑛=0

∞

𝛼𝑛𝑒−𝑗𝜔𝑛 =
1

1 − 𝛼𝑒−𝑗𝜔

𝑥 𝑛 =
1

2

1

1 − 𝛼𝑒−𝑗2𝜋/𝑁
𝑒𝑗 2𝜋/𝑁 𝑛 +

1

2

1

1 − 𝛼𝑒𝑗2𝜋/𝑁
𝑒−𝑗 2𝜋/𝑁 𝑛


