Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- □ Fourier series representation of continuous periodic signals
- **Convergence of the Fourier series**
- **Properties of continuous-time Fourier series**
- □ Fourier series representation of discrete –time periodic signals
- **Properties of discrete FS**
- □ Fourier series and LTI systems

Recall Chapter 2

□ Objective: characterization of a LTI system

$$x(t) \longrightarrow LTI \longrightarrow y(t)$$

 $\Box x(t)$ is considered as linear combinations of a basis signal $\delta(t)$

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau \quad \rightarrow \quad y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

 $\Box \delta(t)$ is not the only one. In general, a basic signal should satisfy

- It can be used to construct a broad and useful class of signals
- The response of an LTI system to the basic signal is simple

Continuous-time

$$e^{st} \longrightarrow LTI \longrightarrow y(t) =?$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau = e^{st} \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

Let
$$\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s) \rightarrow y(t) = H(s)e^{st}$$

- *est* is an eigenfunction of the system
- For a specific value s, H(s) is the corresponding eigenvalue

The response of LTI systems to complex exponentials

Continuous-time

$$e^{st} \longrightarrow$$
 LTI $\int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau e^{st} = H(s) e^{st}$

f
$$x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}$$
 $y(t) = ?$

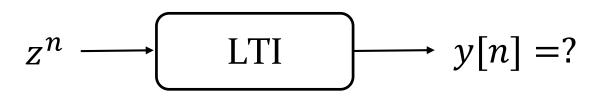
$$y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_1 H(s_3) e^{s_3 t}$$

Generally, if
$$x(t) = \sum_{k} a_{k} e^{s_{k}t}$$

 $y(t) = \sum_{k} a_{k} H(s_{k}) e^{s_{k}t}$

The response of LTI systems to complex exponentials

Discrete-time



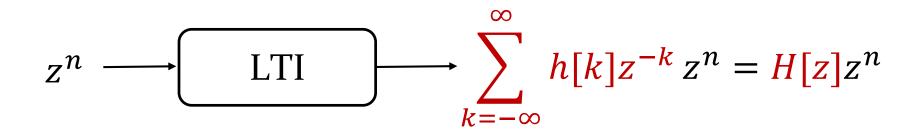
$$y[n] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k} = z^n \sum_{k=-\infty}^{\infty} h[k] z^{-k}$$

Let $H[z] = \sum_{k=-\infty}^{\infty} h[k] z^{-k} \rightarrow y[n] = H[z] z^n$

- z^n is an eigenfunction of the system
- For a specific value z, H[z] is the corresponding eigenvalue

The response of LTI systems to complex exponentials

Discrete-time



If
$$x[n] = \sum_{k} a_k \mathbf{Z}_k^n$$

$$y[n] = \sum_{k} a_{k} H(z_{k}) Z_{k}^{n}$$

Examples

For a LTI system y(t) = x(t - 3), determine H(s)

Solution 1:

$$let x(t) = e^{st}, y(t) = e^{s(t-3)} = e^{-3s}e^{st}$$
$$\therefore H(s) = e^{-3s}$$

Solution 2:

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau = \int_{-\infty}^{\infty} \delta(\tau - 3) e^{-s\tau} d\tau = e^{-3s}$$

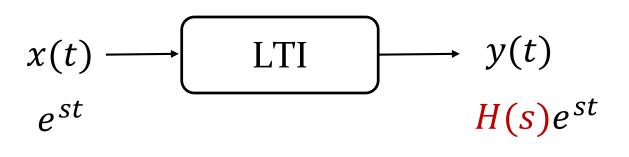
Examples

```
For a LTI system y(t) = x(t-3)
If x(t) = \cos(4t) + \cos(7t), y(t) = ?
Solution 1: y(t) = cos(4(t-3)) + cos(7(t-3))
Solution 2: x(t) = \frac{1}{2}e^{j4t} + \frac{1}{2}e^{-j4t} + \frac{1}{2}e^{j7t} + \frac{1}{2}e^{-j7t}
                  y(t) = \frac{1}{2}H(j4)e^{j4t} + \frac{1}{2}H(-j4)e^{-j4t} + \frac{1}{2}H(j7)e^{j7t} + \frac{1}{2}H(-j7)e^{-j7t}
  H(s) = e^{-3s} = \frac{1}{2}e^{-j12}e^{j4t} + \frac{1}{2}e^{j12}e^{-j4t} + \frac{1}{2}e^{-j21}e^{j7t} + \frac{1}{2}e^{j21}e^{-j7t}
                         =\frac{1}{2}e^{j4(t-3)} + \frac{1}{2}e^{-j4(t-3)} + \frac{1}{2}e^{j7(t-3)} + \frac{1}{2}e^{-j7(t-3)}
```

Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- □ Fourier series representation of continuous periodic signals
- Convergence of the Fourier series
- Properties of continuous-time Fourier series
- □ Fourier series representation of discrete –time periodic signals
- **Properties of discrete**
- □ FS Fourier series and LTI systems

<u>Recall</u>



 \Box Decompose x(t) into linear combinations of basis signals, which should satisfy

- It can be used to construct a broad and useful class of signals
- The response of an LTI system to the basic signal is simple

□ Complex exponentials are eigenfunctions of a LTI system

 \Box Can we represent x(t) as linear combinations of complex exponentials?

Linear combination of harmonically related complex exponentials

□ Harmonically related complex exponentials (consider *est* with *s* purely imaginary)

For any $k \neq 0$, fundamental frequency $|k|\omega_0$; fundamental period $\frac{2\pi}{|k|\omega_0} = \frac{T}{|k|}$

 \Box Linear combination of $\phi_k(t)$ is also periodic

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/T)t}$$

Q Representation of a periodic signal by Linear combination of $Ø_k(t)$ is referred to as Fourier Series representation, ω_0 is the fundamental frequency

□ For $a_k e^{jk\omega_0 t}$, k = 0: DC component; $k = \pm 1$: fundamental (first harmonic) components; $k = \pm N$: Nth harmonic components ¹⁰

Linear combination of harmonically related complex exponentials

An example

If
$$x(t) = \sum_{k=-3}^{3} a_k e^{jk2\pi t}$$

And
$$a_0 = 1$$
, $a_1 = a_{-1} = 1/4$, $a_2 = a_{-2} = 1/2$, $a_3 = a_{-3} = 1/3$

$$x(t) = 1 + \frac{1}{4} \left(e^{j2\pi t} + e^{-j2\pi t} \right) + \frac{1}{2} \left(e^{j4\pi t} + e^{-j4\pi t} \right) + \frac{1}{3} \left(e^{j6\pi t} + e^{-j6\pi t} \right)$$

$$= 1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t$$

Linear combination of harmonically related complex exponentials

Real signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \quad x^*(t) = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t}$$

Real $\Rightarrow x(t) = x^*(t) \Rightarrow a_k = a^*_{-k}$, or $a^*_k = a_{-k}$ (Conjugate symmetry)

□ Alternative form of Fourier Series for real signal

Determine the Fourier Series Representation

$$\int_{0}^{T} x(t)e^{-jn\omega_{0}t}dt = \int_{0}^{T} \sum_{k=-\infty}^{\infty} a_{k}e^{jk\omega_{0}t}e^{-jn\omega_{0}t}dt$$

$$= \sum_{k=-\infty}^{\infty} a_{k} \left[\int_{0}^{T} e^{j(k-n)\omega_{0}t}dt \right] = Ta_{n}$$

$$\therefore a_{n} = \frac{1}{T} \int_{0}^{T} x(t)e^{-jn\omega_{0}t}dt$$

$$a_{k} = \frac{1}{T} \int_{T}^{T} x(t)e^{-jk\omega_{0}t}dt$$
13

Fourier Series pair

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
 Analysis equation

 $\Box a_k$: Fourier Series coefficients or spectral coefficients of x(t)

$$a_0 = \frac{1}{T} \int_T x(t) dt$$

Determine the Fourier Series Representation

 \Box Examples: determine the FS coefficients of x(t)

$$x(t) = \sin \omega_0 t$$

$$\sin \omega_0 t = \frac{1}{2j} e^{j\omega_0 t} - \frac{1}{2j} e^{-j\omega_0 t}$$
$$\therefore a_1 = \frac{1}{2j} \qquad a_{-1} = -\frac{1}{2j} \qquad a_k = 0, \text{ for } k \neq \pm 1$$

Determine the Fourier Series Representation

 \Box Examples: determine the FS coefficients of x(t)

$$x(t) = 1 + \sin \omega_0 t + 2 \cos \omega_0 t + \cos \left(2\omega_0 t + \frac{\pi}{4} \right)$$

$$x(t) = 1 + \frac{1}{2j} \left[e^{j\omega_0 t} - e^{-j\omega_0 t} \right] + \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right]$$

$$+ \frac{1}{2} \left(e^{j(2\omega_0 t + \pi/4)} + e^{-j(2\omega_0 t + \pi/4)} \right)$$

$$\therefore x(t) = 1 + \left(1 + \frac{1}{2j} \right) e^{j\omega_0 t} + \left(1 - \frac{1}{2j} \right) e^{-j\omega_0 t} + \frac{1}{2} e^{j\pi/4} e^{j2\omega_0 t} + \frac{1}{2} e^{-j\pi/4} e^{-j2\omega_0 t}$$

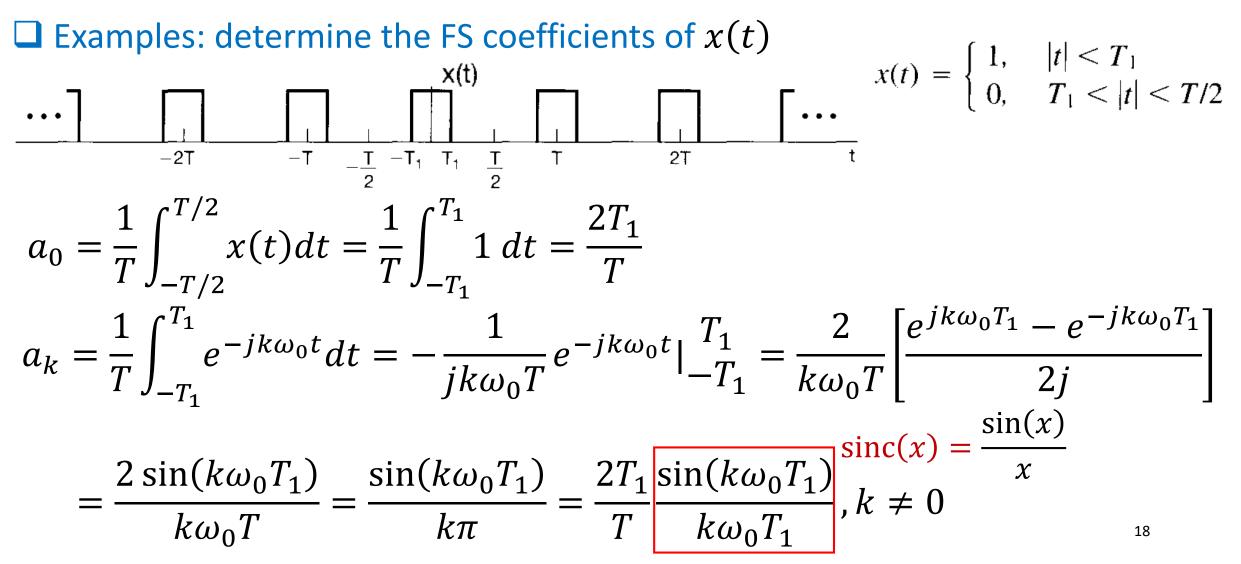
$$a_0 = a_1 = a_2 = a_2$$

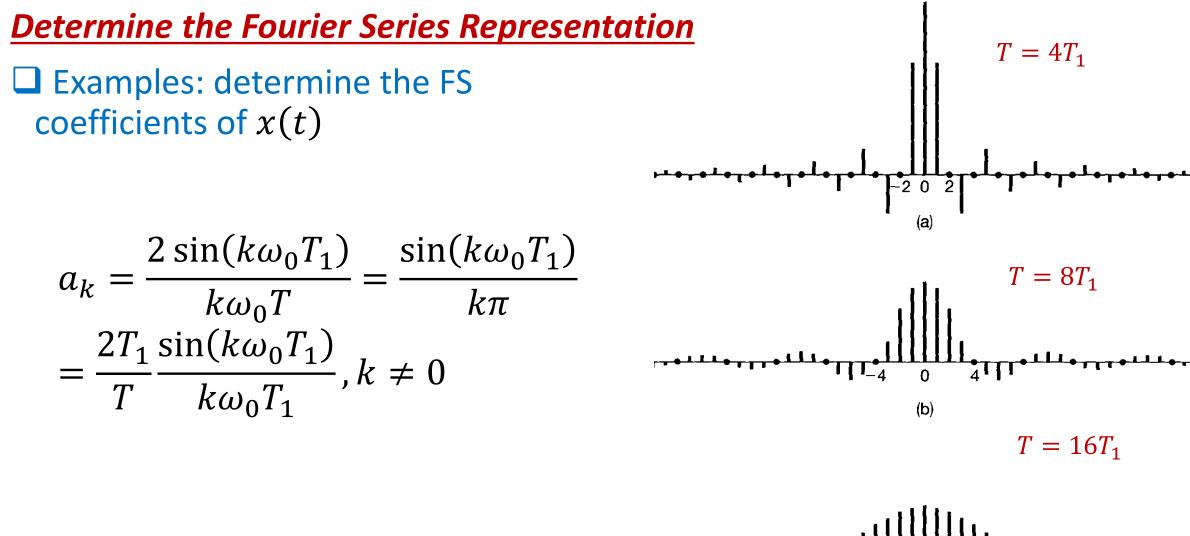
Determine the Fourier Series Representation

\Box Examples: determine the FS coefficients of x(t)



Determine the Fourier Series Representation





Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- **G** Fourier series representation of continuous periodic signals
- **Convergence of the Fourier series**
- Properties of continuous-time Fourier series
- □ Fourier series representation of discrete –time periodic signals
- **Properties of discrete FS**
- □ Fourier series and LTI systems

<u>History</u>

- Using "trigonometric sum" to describe periodic signal can be tracked back to Babylonians who predicted astronomical events similarly.
- L. Euler (in 1748) and Bernoulli (in 1753) used the "normal mode" concept to describe the motion of a vibrating string; though JL Lagrange strongly criticized this concept.
- Fourier (in 1807) had found series of harmonically related sinusoids to be useful to describe the temperature distribution through body, and he claimed "any" periodic signal can be represented by such series.
- Dirichlet (in 1829) provide a precise condition under which a periodic signal can be represented by a Fourier series.

Jean Baptiste Joseph Fourier March 21 1768 - May 16 1830 Born Auxerre, France. Died Paris, France.

Convergence problem

 \Box Approximate periodic signal x(t) by $x_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$

How good the approximation is?

$$e_N(t) = x(t) - x_N(t) = x(t) - \sum_{k=-N}^{N} a_k e^{jk\omega_0 t} \qquad E_N = \int_T |e_N(t)|^2 dt$$

• When
$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$
, E_N is minimized; $N \to \infty \Rightarrow E_N \to 0$

Problem:

• a_k may be infinite

Convergence problem!

• $N \to \infty$, $x_N(t)$ may be infinite

Two different classes of conditions

Condition 1: Finite energy condition

If $\int_T |x(t)|^2 dt < \infty$, x(t) can be represented by a FS

• Guarantees no energy in their difference; FS is not equal to x(t)

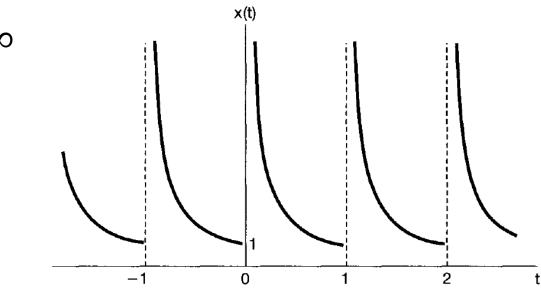
Condition 2: Dirichlet condition

(1) Absolutely integrable $\int_T |x(t)| dt < \infty$

An example: a periodic signal

$$x(t) = \frac{1}{t}, 0 < t \le 1$$

s not absolutely integrable



Two different classes of conditions

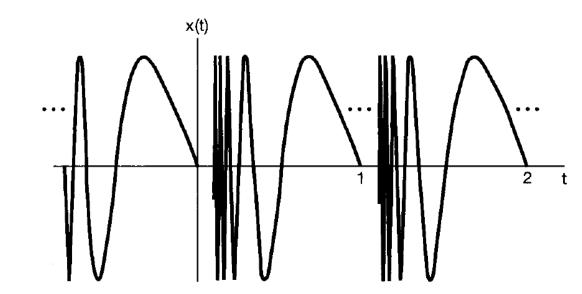
Condition 2: Dirichlet condition

(2) In any finite interval of time, x(t) is of bounded variation; finite maxima and minima in one period

An example: a periodic signal

$$x(t) = \sin\left(\frac{2\pi}{t}\right), 0 < t \le 1$$

meets (1) but not (2).



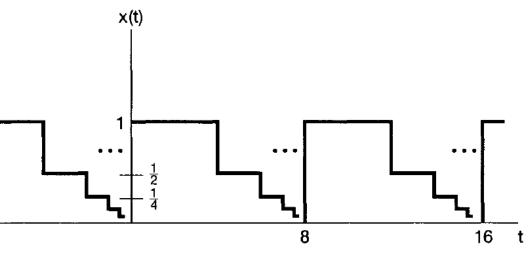
Two different classes of conditions

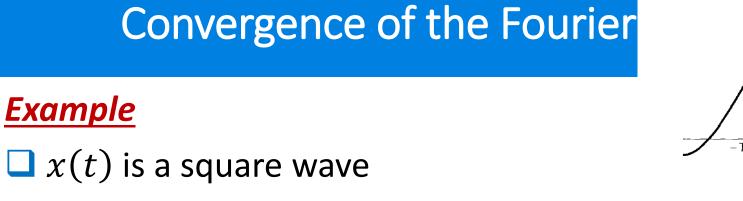
Condition 2: Dirichlet condition

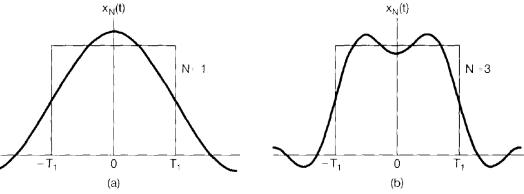
(3) In any finite interval of time, only a finite number of finite discontinuities

An example: a periodic signal meets (1) and (2) but not (3).

- Dirichlet condition guarantees x(t) equals its Fourier Series representation, except for discontinuous points.
- Three examples are pathological in nature and do not typically arise in practical contexts.

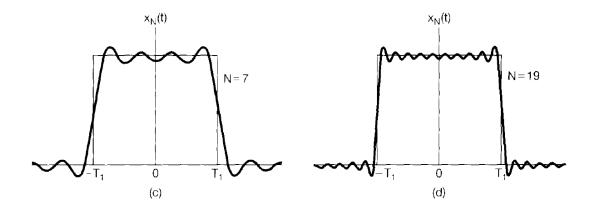




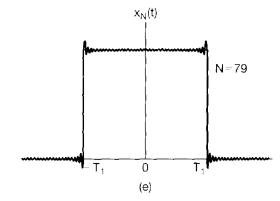


 $x_N(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t}$

Example



$$\lim_{N \to \infty} x_N(t_1) = x(t_1)$$



Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- □ Fourier series representation of continuous periodic signals
- Convergence of the Fourier series
- Properties of continuous-time Fourier series
- □ Fourier series representation of discrete –time periodic signals
- **Properties of discrete FS**
- **General Fourier series and LTI systems**

Use the notation

$$x(t) \xleftarrow{\mathcal{FS}} a_k$$

to signify the paring of a periodic signal with its FS coefficients.

 \Box Linearity: if x(t) and y(t) are periodic signals with the same period T

$$\begin{aligned} x(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \\ y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k \end{aligned} \implies z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k \end{aligned}$$

□ Time shifting

$$x(t) \xleftarrow{\mathcal{FS}} a_k \implies x(t-t_0) \xleftarrow{\mathcal{FS}} e^{-jk\omega_0 t_0} a_k$$

Proof

$$\begin{aligned} t - t_0 &= \tau \\ \frac{1}{T} \int_T x(t - t_0) e^{-jk\omega_0 t} dt &= \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0(\tau + t_0)} d\tau \\ &= e^{-jk\omega_0 t_0} \frac{1}{T} \int_T x(\tau) e^{-jk\omega_0 \tau} d\tau \\ &= e^{-jk\omega_0 t_0} a_k \end{aligned}$$

Time reversal

$$x(t) \xleftarrow{\mathcal{FS}} a_k \implies y(t) = x(-t) \xleftarrow{\mathcal{FS}} b_k = a_{-k}$$

Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \implies x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0(-t)} = \sum_{k=-\infty}^{\infty} a_k e^{j(-k)\omega_0 t}$$

$$= \sum_{m=-\infty}^{\infty} a_{-m} e^{jm\omega_0 t}$$

 $\Box \text{ If } x(t) \text{ even, } a_{-k} = a_k \text{, if } x(t) \text{ odd, } a_{-k} = -a_k$

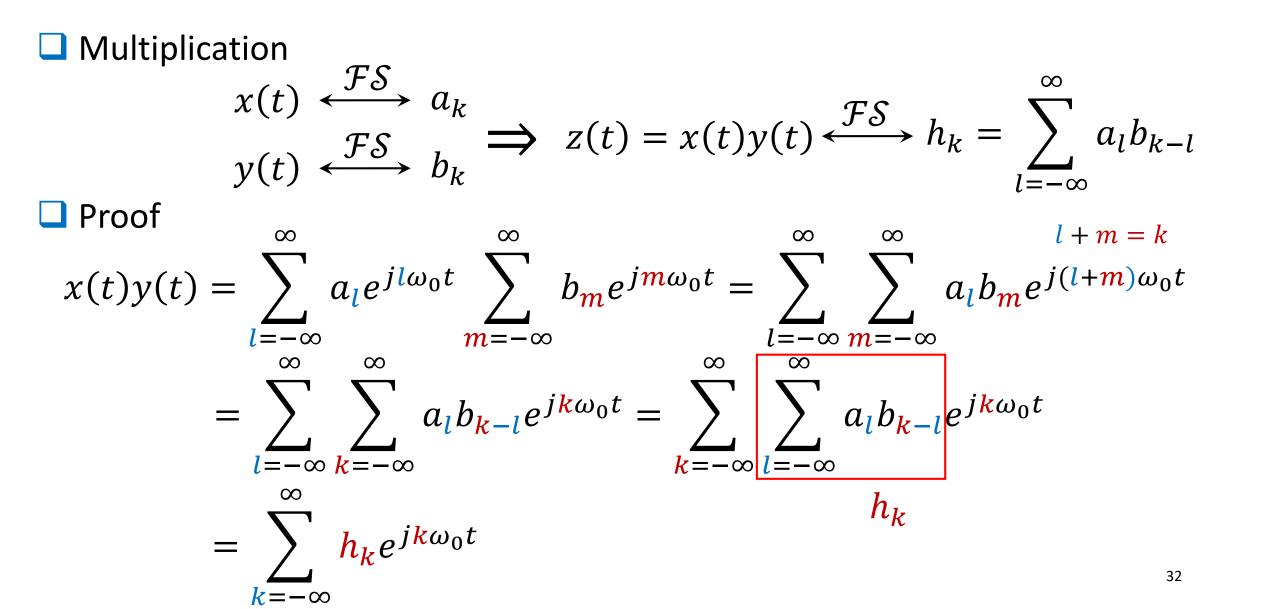
□ Time scaling

$$x(t) \xleftarrow{\mathcal{FS}} a_k \implies y(t) = x(\alpha t) \xleftarrow{\mathcal{FS}} b_k = a_k$$

Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \Longrightarrow x(\alpha t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 \alpha t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(\alpha \omega_0) t}$$

FS coefficients the same, but fundamental frequency changed.



Conjugation and conjugate symmetry

$$x(t) \xleftarrow{\mathcal{FS}} a_k \implies z(t) = x^*(t) \xleftarrow{\mathcal{FS}} b_k = a_{-k}^*$$

Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \quad \therefore x^*(t) = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t} = \sum_{m=-\infty}^{\infty} a_{-m}^* e^{jm\omega_0 t}$$

□ If x(t) real, $a_k^* = a_{-k}$ (conjugate symmetry) $\Rightarrow |a_k| = |a_{-k}|$

- x(t) real and even $(a_{-k} = a_k) \Rightarrow a_k = a_k^* \Rightarrow a_k$ real and even
- x(t) real and odd $(a_{-k} = -a_k) \Rightarrow a_k = -a_k^* \Rightarrow a_k$ pure imagery and odd

•
$$a_0 = ?$$

Differentiation and Integration

$$x(t) \xleftarrow{\mathcal{FS}} a_k \Rightarrow \begin{cases} dx(t)/dt \xleftarrow{\mathcal{FS}} jk\omega_0 a_k \\ \int_{-\infty}^t x(\tau)d\tau \xleftarrow{\mathcal{FS}} a_k/(jk\omega_0) \end{cases}$$
Proof

TC

$$\frac{dx(t)}{dt} = \sum_{k=-\infty}^{\infty} a_k \frac{d(e^{jk\omega_0 t})}{dt} = \sum_{k=-\infty}^{\infty} a_k jk\omega_0 e^{jk\omega_0 t}$$

$$\int_{-\infty}^{t} x(\tau) d\tau = \sum_{k=-\infty}^{\infty} a_k \int_{-\infty}^{t} e^{jk\omega_0\tau} d\tau = \sum_{k=-\infty}^{\infty} \frac{a_k}{(jk\omega_0)} e^{jk\omega_0\tau} d\tau$$

Frequency shifting

$$x(t) \xleftarrow{\mathcal{FS}} a_k \Rightarrow e^{jM\omega_0 t} x(t) \xleftarrow{\mathcal{FS}} a_{k-M}$$
Proof

$$e^{jM\omega_0 t}x(t) = e^{jM\omega_0 t} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k+M)\omega_0 t}$$
$$k+M=l \qquad = \sum_{l=-\infty}^{\infty} a_{l-M} e^{jl\omega_0 t}$$

Periodic convolution

$$\begin{array}{ccc} x(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & a_k \\ y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & b_k \end{array} \Longrightarrow \int_T x(\tau)y(t-\tau)d\tau \stackrel{\mathcal{FS}}{\longleftrightarrow} & Ta_k b_k \end{array}$$

$$\int_{T} x(\tau) y(t-\tau) d\tau = \int_{T} \sum_{k=-\infty}^{\infty} a_{k} e^{jk\omega_{0}\tau} \sum_{m=-\infty}^{\infty} b_{m} e^{jm\omega_{0}(t-\tau)} d\tau$$
$$= \int_{T} \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{k} e^{jk\omega_{0}\tau} b_{m} e^{-jm\omega_{0}\tau} e^{jm\omega_{0}t} d\tau$$
$$= \sum_{k=-\infty}^{\infty} a_{k} \sum_{m=-\infty}^{\infty} e^{jm\omega_{0}t} b_{m} \int_{T} e^{jk\omega_{0}\tau} e^{-jm\omega_{0}\tau} d\tau = \sum_{k=-\infty}^{\infty} Ta_{k} b_{k} e^{jk\omega_{0}\tau}$$

37

Parseval's relation

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Proof

$$\frac{1}{T} \int_{T} |x(t)|^{2} dt = \frac{1}{T} \int_{T} x(t) x^{*}(t) dt = \frac{1}{T} \int_{T} x(t) \sum_{k=-\infty}^{\infty} a_{k}^{*} e^{-jk\omega_{0}t} dt$$
$$= \sum_{k=-\infty}^{\infty} a_{k}^{*} \frac{1}{T} \int_{T} x(t) e^{-jk\omega_{0}t} dt$$
$$= \sum_{k=-\infty}^{\infty} a_{k}^{*} a_{k} = \sum_{k=-\infty}^{\infty} |a_{k}|^{2}$$

Parseval's relation

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

00

$$\frac{1}{T} \int_{T} |a_{k}e^{jk\omega_{0}t}|^{2} dt = \frac{1}{T} \int_{T} |a_{k}|^{2} dt = |a_{k}|^{2}$$

 $\Box |a_k|^2$ is the average power in the k-th harmonic component of x(t)

Total average power in x(t) equals the sum of the average powers in all of its harmonic components

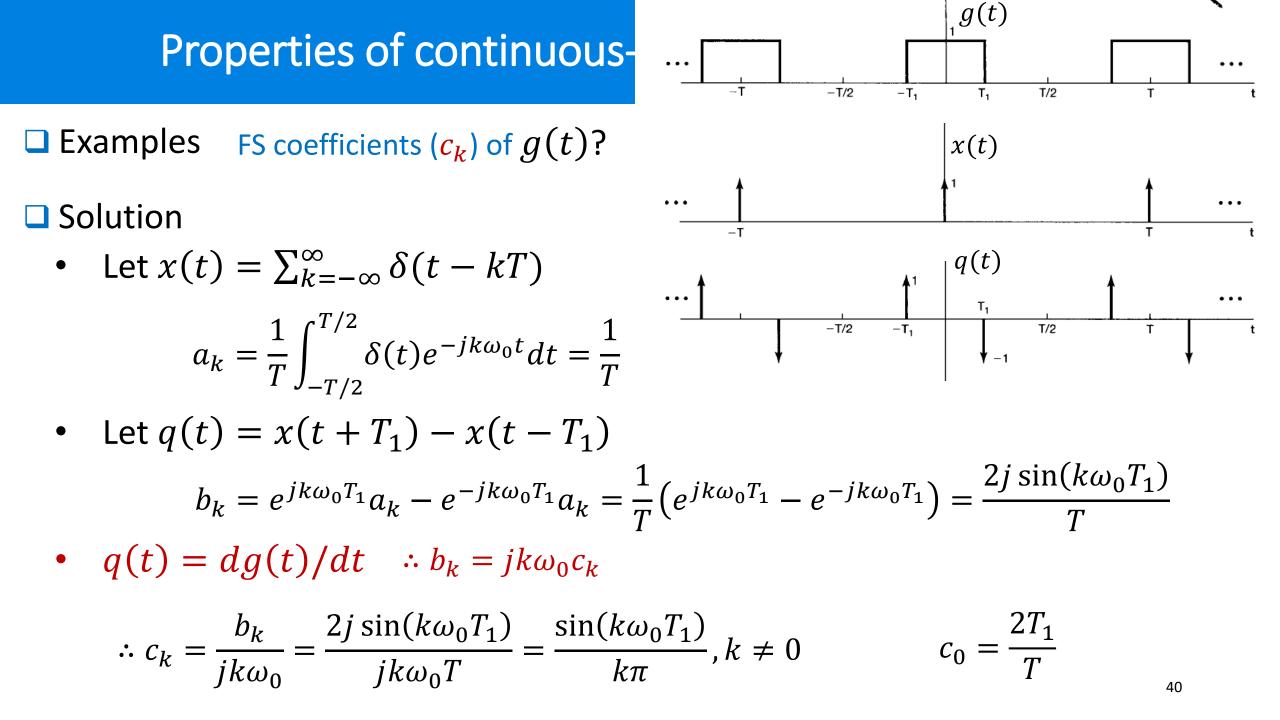
Properties of con

Summary

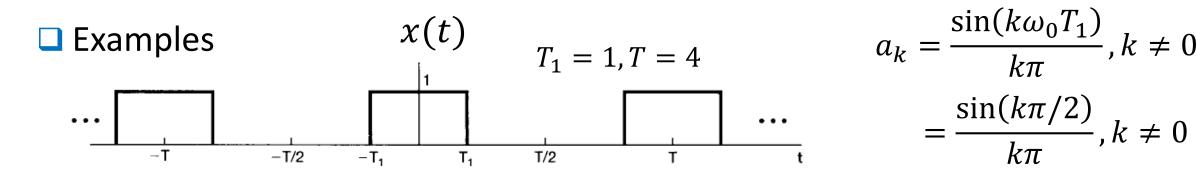
Property	Section	Periodic Signal	Fourier Series Coefficients	
		x(t) Periodic with period T and	a_k	
		$y(t)$ fundamental frequency $\omega_0 = 2\pi/T$	$b_k^{-\kappa}$	
Linearity	3.5.1	Ax(t) + By(t)	$Aa_k + Bb_k$	
Time Shifting	3.5.2	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$	
Frequency Shifting		$e^{jM\omega_0 t} = e^{jM(2\pi/T)t}x(t)$	a_{k-M}	
Conjugation	3.5.6	$x^*(t)$	a^*_{-k}	
Time Reversal	3.5.3	x(-t)	$\hat{a_{-k}}$	
Time Scaling	3.5.4	$x(\alpha t), \alpha > 0$ (periodic with period T/α)	a_k	
Periodic Convolution		$\int_T x(\tau) y(t-\tau) d\tau$	Ta_kb_k	
Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{+\infty}a_l b_{k-l}$	
Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$	
Integration		$\int_{-\infty}^{t} x(t) dt $ (finite valued and periodic only if $a_0 = 0$)	$\left(\frac{1}{jk\omega_0}\right)a_k = \left(\frac{1}{jk(2\pi/T)}\right)$	
Conjugate Symmetry for Real Signals	3.5.6	x(t) real	$\left\{egin{aligned} a_k &= a_{-k}^* \ \mathfrak{Re}\{a_k\} &= \mathfrak{Re}\{a_{-k}\} \ \mathfrak{Sm}\{a_k\} &= -\mathfrak{Sm}\{a_{-k}\} \ a_k &= a_{-k} \ \sphericalangle{a_k} &= - \measuredangle{a_{-k}} \end{aligned} ight.$	
Real and Even Signals	3.5.6	x(t) real and even	a_k real and even	
Real and Odd Signals	3.5.6	x(t) real and odd	a_k purely imaginary and od	
Even-Odd Decomposition		$\begin{cases} x_e(t) = \delta v\{x(t)\} & [x(t) \text{ real} \end{cases}$	$\Re e\{a_k\}$	
of Real Signals		$\begin{cases} x_e(t) = \& \Psi\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{cases}$	$j \mathfrak{Im}\{a_k\}$	

Parseval's Relation for Periodic Signals

$$\frac{1}{T}\int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |a_k|^2$$



 $, k \neq 0$



$$g(t) = x(t-1) - 1/2$$
 FS coefficients of $g(t)$?

Solution

$$\begin{aligned} x(t-1) &\stackrel{\mathcal{FS}}{\leftrightarrow} e^{-jk\omega_0 t_0} a_k = e^{-jk\pi/2} a_k, k \neq 0 \\ -1/2 &\stackrel{\mathcal{FS}}{\leftrightarrow} \begin{cases} 0, k \neq 0 \\ -\frac{1}{2}, k = 0 \end{cases} & \therefore x(t-1) - 1/2 &\stackrel{\mathcal{FS}}{\leftrightarrow} \begin{cases} e^{-jk\pi/2} a_k, k \neq 0 \\ a_0 - \frac{1}{2}, k = 0 \end{cases} \end{aligned}$$

Examples

Given a signal x(t) with the following facts, determine x(t)

- 1. x(t) is real;
- 2. x(t) is periodic with T=4 and FS coefficients $a_k = 0$ for $|\mathbf{k}| > 1$;
- 3. A signal with FS coefficients $b_k = e^{-j\pi k/2}a_{-k}$ is odd;

4.
$$\frac{1}{4}\int_4 |x(t)|^2 dt = \frac{1}{2}$$
.

Solution

- From 2, $x(t) = a_0 + a_1 e^{j(\frac{\pi}{2})t} + a_{-1} e^{-j(\frac{\pi}{2})t}$
- $b_k = e^{-j\pi k/2} a_{-k}$ corresponds to the signal x(-t+1), which is real and odd
- $\frac{1}{4}\int_{4}|x(t)|^{2}dt = \frac{1}{4}\int_{4}|x(-t+1)|^{2}dt = \sum_{k=-\infty}^{\infty}|b_{k}|^{2} = |b_{0}|^{2} + |b_{1}|^{2} + |b_{-1}|^{2} = \frac{1}{2}$
- x(-t+1) is real and odd $\Rightarrow b_k = -b_{-k} \Rightarrow b_0 = 0, b_1 = -b_{-1} = \frac{1}{2}$ or $-\frac{1}{2}$

•
$$a_0 = 0, a_1 = -1/2, a_{-1} = 1/2$$

42

Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- **G** Fourier series representation of continuous periodic signals
- Convergence of the Fourier series
- Properties of continuous-time Fourier series

□ Fourier series representation of discrete –time periodic signals

- **Properties of discrete FS**
- □ Fourier series and LTI systems

Linear combination of harmonically related complex exponentials

Harmonically related complex exponentials

$$\emptyset_k[n] = e^{jk(2\pi/N)n}, k = 0, \pm 1, \pm 2, \dots$$

- Fundamental frequency $|k|(\frac{2\pi}{N})$
- Only N distinct signals in $\emptyset_k[n]$, since $\emptyset_k[n] = \emptyset_{k+rN}[n]$

 \Box Linear combination of $\emptyset_k[n]$ is also periodic

$$x[n] = \sum_{k = \langle N \rangle} a_k \phi_k[n] = \sum_{k = \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$

 $\Box \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$: Discrete-Time Fourier Series; a_k : Fourier Series coefficients

Determine the Fourier Series Representation

$$\sum_{n=\langle N \rangle} x[n] e^{-jr(2\pi/N)n} = \sum_{n=\langle N \rangle} \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n} e^{-jr(2\pi/N)n}$$
$$= \begin{cases} N, k = r \\ 0, k \neq n \end{cases} = N\delta[k-r]$$
$$= \sum_{k=\langle N \rangle} a_k \sum_{n=\langle N \rangle} e^{j(k-r)(2\pi/N)n} = Na_r$$
$$\therefore a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

Determine the Fourier Series Representation

Discrete Fourier series pair

$$a_{k} = \frac{1}{N} \sum_{\substack{n = \langle N \rangle}} x[n] e^{-jk(2\pi/N)n}$$
$$x[n] = \sum_{\substack{k = \langle N \rangle}} a_{k} e^{jk(2\pi/N)n}$$

Analysis equation; a_k: Fourier Series
 coefficients

Synthesis equation; Fourier Series (Finite)

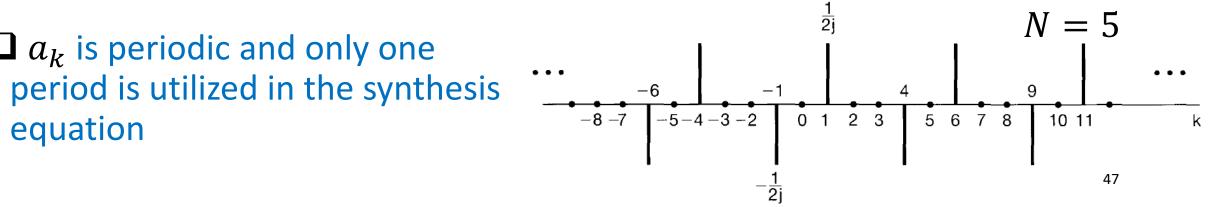
$$\Box a_{k} \text{ is periodic } x[n] = \sum_{k = \langle N \rangle} a_{k} \phi_{k}[n] = a_{0} \phi_{0}[n] + a_{1} \phi_{1}[n] + \dots + a_{N-1} \phi_{N-1}[n]$$
$$= a_{1} \phi_{1}[n] + a_{2} \phi_{2}[n] + \dots + a_{N} \phi_{N}[n]$$
$$= a_{2} \phi_{2}[n] + a_{3} \phi_{3}[n] + \dots + a_{N+1} \phi_{N+1}[n]$$
$$\therefore a_{k} = a_{k+rN}$$

Determine the Fourier Series Representation

Examples $x[n] = \sin \omega_0 n$

> If $\omega_0 = \frac{2\pi}{N}$, x[n] is periodic with fundamental period of N. $x[n] = \sin \omega_0 n = \frac{1}{2i} e^{j(2\pi/N)n} - \frac{1}{2i} e^{j(2\pi/N)n}$ $\therefore a_1 = \frac{1}{2i} \qquad a_{-1} = -\frac{1}{2i} \qquad a_k = 0, \text{ for } k \neq \pm 1 \text{ in one period}$

 $\Box a_k$ is periodic and only one



Determine the Fourier Series Representation

$$\Box \text{ Examples: } x[n] = 1 + \sin(\frac{2\pi}{N})n + 3\cos(\frac{2\pi}{N})n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

$$x[n] = 1 + \frac{1}{2j} \left[e^{j(2\pi/N)n} - e^{-j(2\pi/N)n} \right] + \frac{3}{2} \left[e^{j(2\pi/N)n} + e^{-j(2\pi/N)n} \right] \\ + \frac{1}{2} \left(e^{j(4\pi n/N + \pi/2)} + e^{-j(4\pi n/N + \pi/2)} \right) \\ \therefore x[n] = 1 + \left[\frac{3}{2} + \frac{1}{2j} \right] e^{j(2\pi/N)n} + \left[\frac{3}{2} - \frac{1}{2j} \right] e^{-j(2\pi/N)n} \\ + \frac{1}{2} e^{j\pi/2} e^{j2(2\pi/N)n} + \left[\frac{3}{2} - \frac{2\pi}{2} e^{-j2(2\pi/N)n} \right]$$

48

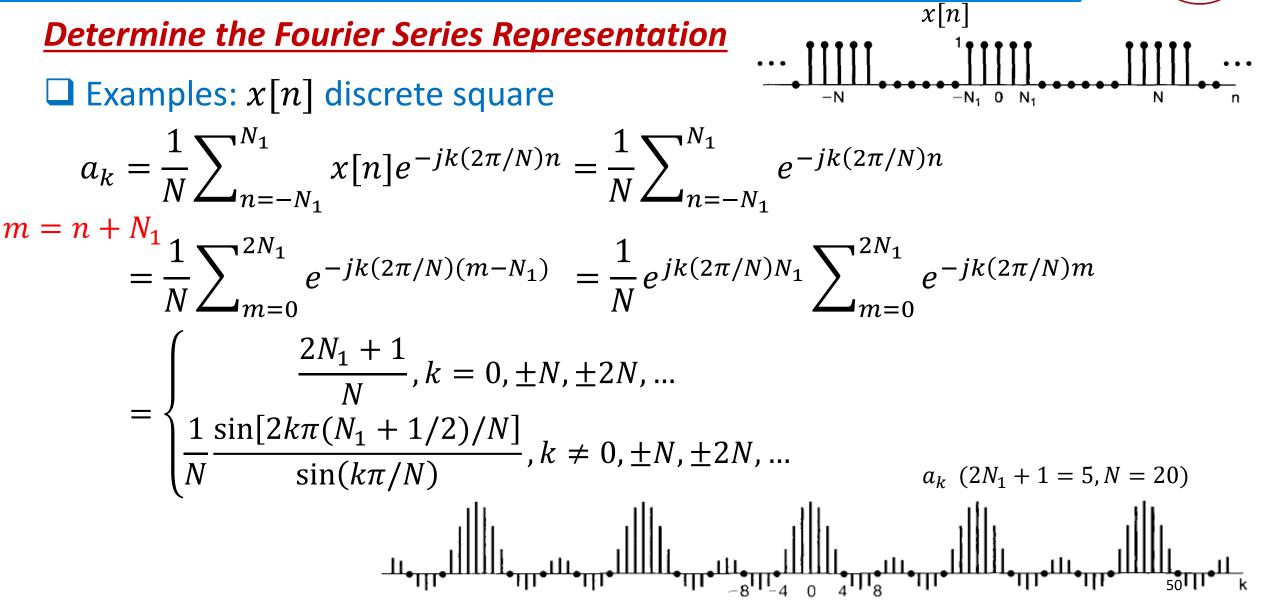
Linear combination of harmonically related complex exponentials

Q Real signal
$$a_k = a_{-k}^*$$
, or $a_k^* = a_{-k}$

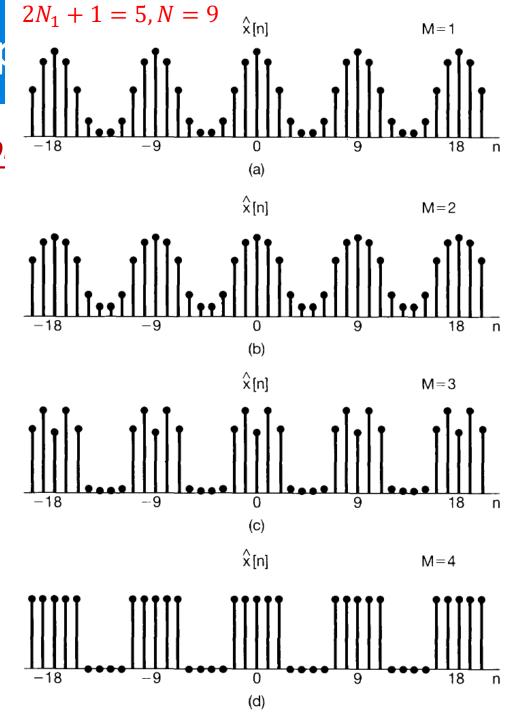
$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$x^*[n] = \sum_{k=\langle N \rangle} a_k^* e^{-jk(2\pi/N)n} = \sum_{k=\langle N \rangle} a_{-k}^* e^{jk(2\pi/N)n}$$

 $x[n] = x^*[n] \implies a_k = a^*_{-k}$



Fourier series representation of D-T



Linear combination of harmonically related co

Approximate a discrete square by $\hat{x}[n]$

$$\hat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk(2\pi/N)n}$$

With
$$a_k = \begin{cases} \frac{2N_1+1}{N}, k = 0, \pm N, \pm 2N, ...\\ \frac{1}{N} \frac{\sin[2k\pi(N_1+1/2)/N]}{\sin(k\pi/N)}, \text{ else} \end{cases}$$

Given Solution For M=4, $\hat{x}[n] = x[n]$

No convergence issues for the discrete-time Fourier series!

Fourier Series Representation of Periodic signals (ch.3)

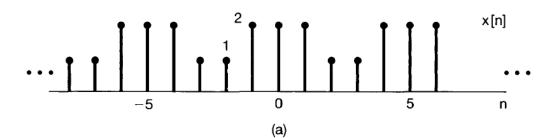
- □ The response of LTI systems to complex exponentials
- □ Fourier series representation of continuous periodic signals
- Convergence of the Fourier series
- Properties of continuous-time Fourier series
- □ Fourier series representation of discrete –time periodic signals
- Properties of discrete FS
- **General Fourier series and LTI systems**

	Property	Periodic Signal	Fourier Series Coefficients
Properties of discre		$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$ \begin{array}{c} a_k \\ b_k \end{array} \right\} \begin{array}{c} \text{Periodic with} \\ \text{period } N \end{array} $
$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$ $\square \text{ Multiplication}$	Linearity Time Shifting Frequency Shifting Conjugation Time Reversal Time Scaling	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ (\text{periodic with period } mN) \end{cases}$	$Aa_{k} + Bb_{k}$ $a_{k}e^{-jk(2\pi/N)n_{0}}$ a_{k-M} a_{-k}^{*} a_{-k} $\frac{1}{m}a_{k}$ (viewed as periodic) (with period mN)
$x[n]y[n] \xrightarrow{\mathcal{FS}} \sum_{l=\langle N \rangle} a_l b_{k-l}$	Periodic Convolution Multiplication	$\sum_{\substack{r=\langle N\rangle\\ x[n]y[n]}} x[r]y[n-r]$	$egin{aligned} & oldsymbol{N} oldsymbol{a}_k oldsymbol{b}_k \ & \sum_{l=\langle N angle} oldsymbol{a}_l oldsymbol{b}_{k-l} \end{aligned}$
First difference	First Difference Running Sum	$x[n] - x[n-1]$ $\sum_{k=-\infty}^{n} x[k] \left(\begin{array}{c} \text{finite valued and periodic only} \\ \text{if } a_0 = 0 \end{array} \right)$	$(1 - e^{-jk(2\pi/N)})a_k$ $\left(\frac{1}{(1 - e^{-jk(2\pi/N)})}\right)a_k$
$x[n] - x[n-1] \stackrel{\mathcal{FS}}{\longleftrightarrow} \left(1 - e^{-jk(2\pi/N)}\right)$	a _k Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{aligned} &a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ {\mathcal G}m\{a_k\} &= -{\mathcal G}m\{a_{-k}\} \ a_k &= a_{-k} \ {\not\preccurlyeq} a_k &= -{\not\preccurlyeq} a_{-k} \end{aligned} ight.$
Parseval's relation	Real and Even Signals Real and Odd Signals Even-Odd Decomposition	x[n] real and even x[n] real and odd $\begin{cases} x_e[n] = \mathcal{E} v\{x[n]\} & [x[n] \text{ real}] \end{cases}$	a_k real and even a_k purely imaginary and odd $\Re e\{a_k\}$
$\frac{1}{N} \sum_{l=\langle N \rangle} x[n] ^2 = \sum_{l=\langle N \rangle} a_k ^2$	of Real Signals	$\begin{cases} x_o[n] = \mathbb{O}d\{x[n]\} [x[n] \text{ real}] \end{cases}$ Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n = \langle N \rangle} x[n] ^2 = \sum_{k = \langle N \rangle} a_k ^2$	jIm{a _k }

Properties of discrete-time FS

Examples
$$x[n] = x_1[n] + x_2[n]$$

$$\Box x_1[n] \text{ is a square wave with } N = 5 \text{ and } N_1 = 1$$



$$b_{k} = \begin{cases} \frac{2N_{1} + 1}{N}, k = \pm N, \pm 2N, \dots \\ \frac{1}{N} \frac{\sin[2k\pi(N_{1} + 1/2)/N]}{\sin(k\pi/N)}, \text{else} \end{cases} = \begin{cases} \frac{3}{5}, k = \pm 5, \pm 10, \dots \\ \frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}, \text{else} \\ \frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}, \text{else} \\ \frac{1}{5} \frac{\sin(3k\pi/5)}{\sin(k\pi/5)}, \text{else} \end{cases} \cdots \underbrace{1}_{(c)} \prod_{\substack{n \\ (c) \\$$

55

Properties of discrete-time FS

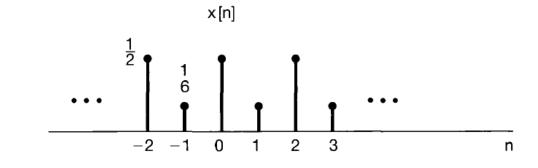
Examples

Suppose we are given the following facts about a sequence x[n]:

- **1.** x[n] is periodic with period N = 6.
- **2.** $\sum_{n=0}^{5} x[n] = 2.$
- **3.** $\sum_{n=2}^{7} (-1)^n x[n] = 1.$
- 4. x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

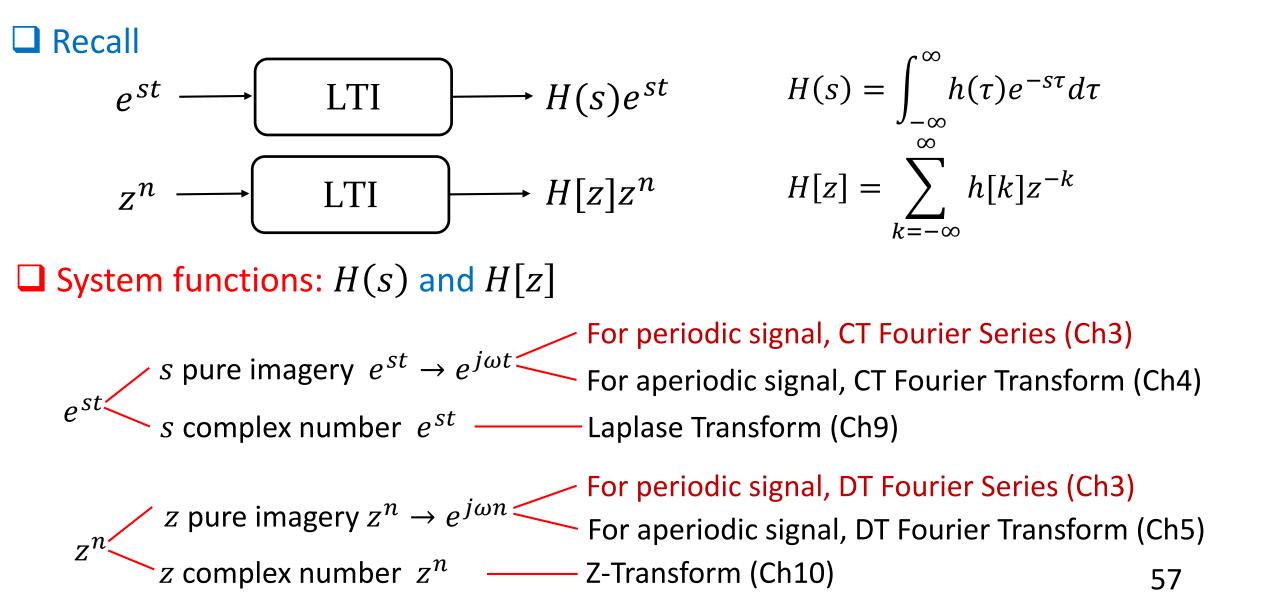
Solution

- $\sum_{n=0}^{5} x[n] = 2 \implies a_0 = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j0(2\pi/N)n} = 1/3.$
- $\sum_{n=2}^{7} (-1)^n x[n] = 1 \Longrightarrow \sum_{n=\langle N \rangle} x[n] e^{-j3(2\pi/N)n} = 1 \Longrightarrow a_3 = 1/6$
- from 4, $a_1 = a_2 = a_4 = a_5 = 0$
- $\therefore x[n] = a_0 e^{-j0(2\pi/N)n} + a_3 e^{-j3(2\pi/N)n} = \frac{1}{3} + \frac{1}{6}e^{-j\pi n} = \frac{1}{3} + \frac{1}{6}(-1)^n$



Fourier Series Representation of Periodic signals (ch.3)

- □ The response of LTI systems to complex exponentials
- □ Fourier series representation of continuous periodic signals
- Convergence of the Fourier series
- Properties of continuous-time Fourier series
- □ Fourier series representation of discrete –time periodic signals
- **Properties of discrete FS**
- □ Fourier series and LTI systems



\Box Frequency response for CT system: $H(j\omega)$

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau \quad \stackrel{s=j\omega}{\Longrightarrow} \quad H(j\omega) = \int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau$$

$$e^{j\omega t}$$
 LTI $H(j\omega)e^{j\omega t}$

$$x(t) = \sum_{k=\infty}^{\infty} a_k e^{jk\omega_0 t} \longrightarrow LTI \qquad y(t) = \sum_{k=\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

$$\mathcal{FS} \downarrow_{a_k} \qquad b_k = a_k H(jk\omega_0) \qquad b_k$$

□ Frequency response for CT system: example

$$x(t) = \sum_{k=-3}^{3} a_k e^{jk2\pi t}$$
 ($a_0 = 1$, $a_1 = a_{-1} = \frac{1}{4}$, $a_2 = a_{-2} = \frac{1}{2}$, $a_3 = a_{-3} = \frac{1}{3}$) is the input of a LTI system with $h(t) = e^{-t}u(t)$, determine $y(t)$

Solution

$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk2\pi t} \qquad H(j\omega) = \int_0^{\infty} e^{-\tau} e^{-j\omega\tau} d\tau = \frac{1}{1+j\omega}$$

$$b_k = a_k H(jk\omega_0) = a_k \frac{1}{1+jk2\pi} \quad b_0 = 1 \cdot 1 = 1 \qquad b_1 = \frac{1}{4} \frac{1}{1+j2\pi} \quad b_{-1} = \frac{1}{4} \frac{1}{1-j2\pi}$$

$$b_2 = \frac{1}{2} \frac{1}{1+j4\pi} \qquad b_{-2} = \frac{1}{2} \frac{1}{1-j4\pi} \qquad b_3 = \frac{1}{3} \frac{1}{1+j6\pi} \qquad b_{-3} = \frac{1}{3} \frac{1}{1-j6\pi}$$

$$59$$

\Box Frequency response DT system: $H(e^{j\omega})$

$$H[z] = \sum_{n=-\infty}^{\infty} h[k] z^{-n} \qquad \stackrel{z=e^{j\omega}}{\Longrightarrow} \quad H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}$$

$$e^{j\omega n} \longrightarrow LTI \longrightarrow H(e^{j\omega})e^{j\omega n}$$

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk(2\pi/N)n} \underbrace{\text{LTI}}_{k = \langle N \rangle} y[n] = \sum_{k = \langle N \rangle} a_k H(e^{jk(2\pi/N)}) e^{jk(2\pi/N)n}$$

 $b_k = a_k H(e^{jk(2\pi/N)})$ 60

Г

Frequency response DT system: example

$$h[n] = \alpha^{n}u[n], |\alpha| < 1$$

$$x[n] = \cos \frac{2\pi n}{N} \longrightarrow \text{LTI} \longrightarrow y[n]?$$
Solution

$$x[n] = \frac{1}{2}e^{j(2\pi/N)n} + \frac{1}{2}e^{-j(2\pi/N)n}$$

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} = \sum_{n=0}^{\infty} \alpha^{n}e^{-j\omega n} = \frac{1}{1-\alpha e^{-j\omega}}$$

$$x[n] = \frac{1}{2}\left(\frac{1}{1-\alpha e^{-j2\pi/N}}\right)e^{j(2\pi/N)n} + \frac{1}{2}\left(\frac{1}{1-\alpha e^{j2\pi/N}}\right)e^{-j(2\pi/N)n}$$
61

