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Discrete-Time LTI Systems

1

Representation of Discrete-Time Signals in Terms of Impulse

+

+

=

𝑥 𝑛

↔ 𝑥1 𝑛 = −2.25 × 𝛿 𝑛 + 1

↔ 𝑥2 𝑛 = −1.5 × 𝛿 𝑛

↔ 𝑥3 𝑛 = 1 × 𝛿 𝑛 − 2

+

+

=

𝑥 𝑛
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Representation of Discrete-Time Signals in Terms of Impulse

 An arbitrary sequence can be represented as the weighted sum of 
shifted unit impulses

𝑥 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

 A general form

𝑥 𝑛

Sifting property of 𝛿[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 The response of a system to a unit impulse sequence 𝛿[𝑛] is called 
impulse response, denoted by ℎ[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• For any system whose input-output relationship is defined by 

𝑦 𝑛 = 𝑓{𝑥[𝑛]}

the impulse response ℎ 𝑛 is calculated as  

ℎ 𝑛 = 𝑓{𝛿[𝑛]} replace 𝑥 𝑛 by 𝛿 𝑛
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = 𝑎1𝑥 𝑛 + 𝑎2𝑥 𝑛 − 1 + 𝑎3𝑥 𝑛 − 2 + 𝑎4𝑥 𝑛 − 3𝑦 𝑛 = 𝑎1𝑥 𝑛 + 𝑎2𝑥 𝑛 − 1 + 𝑎3𝑥 𝑛 − 2 + 𝑎4𝑥 𝑛 − 3

ℎ 𝑛 = 𝑎1𝛿 𝑛 + 𝑎2𝛿 𝑛 − 1 + 𝑎3𝛿 𝑛 − 2 + 𝑎4𝛿 𝑛 − 3
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = 

𝑘=−∞

𝑛

𝑥[𝑘]

ℎ 𝑛 = 

𝑘=−∞

𝑛

𝛿[𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = 𝑥𝑢 𝑛 − 1 +
1

2
𝑥𝑢 𝑛 − 2 + 𝑥𝑢[𝑛]

ℎ 𝑛 = 𝛿 𝑛 − 1 +
1

2
𝛿 𝑛 − 2 + 𝛿[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 An LTI discrete system is completely characterized by its impulse 
response

 In other words, knowing the impulse response one can compute the 
output of the LTI system for an arbitrary input
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Discrete-Time Unit Impulse Response and the Convolution-Sum

LTI
 [n] h[n]

 The impulse response completely characterizes an LTI system 

LTI
x[n] y[n]=?

 Recall, an arbitrary input x[n] can be expressed as a linear combination of 
shifted unit impulses

𝑥 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

LTI

 For any 𝑘 = 𝑘0

𝑥 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

𝛿[𝑛 − 𝑘0]

LTI𝛿[𝑛]

LTI
𝑥 𝑘0 𝛿[𝑛 − 𝑘0]

ℎ[𝑛 − 𝑘0]

𝑥 𝑘0 ℎ[𝑛 − 𝑘0]

LTI
𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

ℎ[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

is refereed to as the convolution-sum

𝑥 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]
LTI

𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑥 𝑛 LTI 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation – Method 1: sum of k shifted and scaled h[n]

𝑥 𝑛 LTI 𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

0.5
1

1.5

0.25
0.5

0.75

1

2

3

0.25

1.5

2.75
3

n: variable, k:constant
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 2: calculate y[n] for each n

𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

• Step 1: determine the range of 𝑘

𝑘 ∈ {0,1}

• Step 2: determine the range of 𝑛

[𝑛 − 𝑘] ∈ {0,1,2} ↔ 𝑛 ∈ {0,1,2, 3}, 
For other n,  𝑦 𝑛 =0 

0.5
1

1.5
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 2: calculate y[n] for each n

𝑦 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

• Step 3: calculate y[n] for each 𝑛

𝑦 0 =
𝑘=0

1

𝑥 𝑘 ℎ[0 − 𝑘] = 𝑥 0 ℎ 0 + 𝑥 1 ℎ −1 = 0.25

𝑦 3 =
𝑘=0

1

𝑥 𝑘 ℎ[3 − 𝑘] = 𝑥 0 ℎ 3 + 𝑥 1 ℎ 2 = 3

0.5
1

1.5

𝑦 1 =
𝑘=0

1

𝑥 𝑘 ℎ[1 − 𝑘] = 𝑥 0 ℎ 1 + 𝑥 1 ℎ 0 = 1.5

𝑦 2 =
𝑘=0

1

𝑥 𝑘 ℎ[2 − 𝑘] = 𝑥 0 ℎ 2 + 𝑥 1 ℎ 1 = 2.75
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 3

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] = 

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

For each 𝑛 :
• Step 1: change time variables 𝑥 𝑛 → 𝑥 𝑘 , ℎ 𝑛 → ℎ 𝑘 , 

and reverse ℎ 𝑘 → ℎ −𝑘

• Step 2: Shift ℎ −𝑘 → ℎ 𝑛 − 𝑘 , 𝑛 is considered as a constant

• Step 3: multiply 𝑥[𝑘] ∙ ℎ 𝑛 − 𝑘

• Step 4: Summation σ𝑘=−∞
∞ 𝑥[𝑘] ∙ ℎ 𝑛 − 𝑘

Change 𝑛, repeat step 1 to 4, calculate another 𝑦 𝑛
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The Convolution-Sum

 Convolution-Sum calculation 
– Method 3

𝑦 0 =
𝑘=0

1

𝑥 𝑘 ℎ[0 − 𝑘]

𝑦 1 =
𝑘=0

1

𝑥 𝑘 ℎ[1 − 𝑘]

𝑦 2 =
𝑘=0

1

𝑥 𝑘 ℎ[2 − 𝑘]

𝑦 3 =
𝑘=0

1

𝑥 𝑘 ℎ[3 − 𝑘]

𝑦 𝑛 = 0, for 𝑛<0 

• If the lengths of the 
two sequences are 
M and N, then the 
sequence generated 
by the convolution is 
of length M+N-1

K: variable, n:constant

𝑦 𝑛 = 0, for 𝑛>3 
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The Convolution-Sum

 Examples

𝑦 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛

𝑦 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛 − 𝑑

=
𝑘=−∞

∞

𝑥 𝑘 𝛿 𝑛 − 𝑘 = 𝑥[𝑛]

=
𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘 − 𝑑] Let 𝑘 + 𝑑 = 𝑘′

=
𝑘′=−∞

∞

𝑥 𝑘′ − 𝑑 𝛿[𝑛 − 𝑘′]

= 𝑥 𝑛 − 𝑑 ∗ 𝛿 𝑛 = 𝑥[𝑛 − 𝑑]
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The Convolution-Sum

 Examples

𝑦1 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 −𝑚 =
𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘 −𝑚]

𝑦1 𝑛 =?

𝑦 𝑛𝑥 𝑛

𝑥 𝑛

ℎ 𝑛

ℎ 𝑛 −𝑚

=
𝑘′=−∞

∞

𝑥 𝑘′ −𝑚 ℎ[𝑛 − 𝑘′]

Let 𝑘 +𝑚 = 𝑘′

= 𝑥 𝑛 −𝑚 ∗ ℎ 𝑛 = 𝑦[𝑛 − 𝑚]
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Continuous-Time Signals in Terms of Impulse

 “staircase” approximation of 𝑥(𝑡)

𝑡

𝛿∆(𝑡)

1/∆

𝑥(𝑡)

∆ ∙ 𝑥(−2∆)𝛿∆(𝑡 + 2∆)

∆ ∙ 𝑥(−∆)𝛿∆(𝑡 + ∆)

∆ ∙ 𝑥(0)𝛿∆(𝑡)

∆ ∙ 𝑥(∆)𝛿∆(𝑡 − ∆)

ො𝑥 𝑡 =
𝑘=−∞

∞

𝑥(𝑘∆)𝛿∆(𝑡 − 𝑘∆) ∙ ∆
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Continuous-Time Signals in Terms of Impulse

 “staircase” approximation of 𝑥(𝑡)

𝑥(𝑡)

𝑥(−2∆)𝛿∆(𝑡 + 2∆) ∙ ∆

𝑥(−∆)𝛿∆(𝑡 + ∆) ∙ ∆

𝑥(0)𝛿∆(𝑡) ∙ ∆

𝑥(∆)𝛿∆(𝑡 − ∆) ∙ ∆

ො𝑥 𝑡 =
𝑘=−∞

∞

𝑥(𝑘∆)𝛿∆(𝑡 − 𝑘∆) ∙ ∆

𝑥 𝑡 = lim
∆→0

ො𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

∆→ 0, ො𝑥 𝑡 → 𝑥 𝑡 , 

𝑥(𝑘∆) → 𝑥(𝜏), 𝛿∆(𝑡 − 𝑘∆) → 𝛿(𝑡 − 𝜏)

Sifting property of 𝛿(𝑡)
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Continuous-Time Signals in Terms of Impulse

 Using sampling property of 𝛿(𝑡)

∴ න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 = න
−∞

∞

𝑥(𝑡)𝛿(𝑡 − 𝜏) 𝑑𝜏

𝑥(𝜏)𝛿 𝑡 − 𝜏 = 𝑥(𝑡)𝛿 𝑡 − 𝜏

𝑥(𝜏)

𝛿(𝑡 − 𝜏)

𝑥(𝜏)𝛿(𝑡 − 𝜏)

𝑥(𝑡)𝛿 𝑡 − 𝑡0 = 𝑥(𝑡0)𝛿 𝑡 − 𝑡0 sampling property 

= 𝑥(𝑡)න
−∞

∞

𝛿(𝑡 − 𝜏) 𝑑𝜏

= 𝑥(𝑡)

𝑥(𝑡)

t: constant

න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 =?
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Continuous-Time Signals in Terms of Impulse

 An example

𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

𝑢 𝑡 = න
−∞

∞

𝑢(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 = න
0

∞

𝛿(𝑡 − 𝜏) 𝑑𝜏
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Continuous-Time Unit Impulse Response and Convolution Integral

 Continuous-Time Unit Impulse Response

LTI
 (t) h(t)

 What about

LTI
x(t) y(t)=?

𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

Sum of weighted and shifted impulses 

𝑦 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

Sum of weighted and shifted impulse response 

 Convolution integral

න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏 = 𝑥(𝑡) ∗ ℎ(𝑡)
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

• Change time variables 𝑥(𝑡) → 𝑥(𝜏), ℎ(𝑡) → ℎ(𝜏), and 
reverse ℎ(𝜏) → ℎ(−𝜏)

• Shift ℎ(−𝜏) → ℎ(𝑡 − 𝜏)

• Multiply 𝑥(𝜏) ∙ ℎ(𝑡 − 𝜏)

• Integral −∞
∞

𝑥(𝜏) ∙ ℎ(𝑡 − 𝜏)d𝜏
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

𝑥 𝑡 ∗ 𝛿 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑥(𝑡)

𝑥 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 − 𝑡0 𝑑𝜏 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − (𝜏 + 𝑡0) 𝑑𝜏

= න
−∞

∞

𝑥 𝜏′ − 𝑡0 𝛿 𝑡 − 𝜏′ 𝑑𝜏′ = 𝑥 𝑡 − 𝑡0 ∗ 𝛿 𝑡

= 𝑥 𝑡 − 𝑡0
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

For t<0

For t≥0
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: Graphical Solution

𝜏 : variable, t: constant
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 = 𝑒2𝑡𝑢(−𝑡) 𝑥 𝑡 ∗ ℎ 𝑡 =?

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

𝑡−3

𝑒2𝜏𝑑𝜏 =
1

2
𝑒2(𝑡−3)

ℎ 𝑡 = 𝑢(𝑡 − 3)

𝑥 𝜏

ℎ 𝑡 − 𝜏

𝑦 𝑡

For 𝑡 − 3 ≤ 0

For 𝑡 − 3 ≥ 0

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

0

𝑒2𝜏𝑑𝜏 =
1

2

𝜏 : variable, t: constant
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 = ቊ
1, 0 < 𝑡 < 𝑇
0, otherwise

𝑥 𝑡 ∗ ℎ 𝑡 =?

𝑥 𝑡
ℎ 𝑡

ℎ 𝑡 = ቊ
𝑡, 0 < 𝑡 < 2𝑇
0, otherwise

𝑡 2T 𝑡
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Convolution Integral

 Computation: examples

𝑦 𝑡 =

0, 𝑡 < 0

න
0

𝑡

(𝑡 − 𝜏)𝑑𝜏 =
1

2
𝑡2, 0 < 𝑡 < 𝑇

න
0

𝑇

(𝑡 − 𝜏)𝑑𝜏 = 𝑇𝑡 −
1

2
𝑇2, 𝑇 < 𝑡 < 2𝑇

න
𝑡−2𝑇

𝑇

(𝑡 − 𝜏)𝑑𝜏 = −
1

2
𝑡2 + 𝑇𝑡 +

3

2
𝑇2, 2𝑇 < 𝑡 < 3𝑇

0, 𝑡 > 3𝑇

𝑥 𝜏

𝜏

ℎ 𝑡 − 𝜏
𝑡 < 0

𝜏

𝜏

𝜏

𝜏

𝜏

ℎ 𝑡 − 𝜏
0 < 𝑡 < T

ℎ 𝑡 − 𝜏
T < 𝑡 < 2T

ℎ 𝑡 − 𝜏
2T < 𝑡 < 3T

ℎ 𝑡 − 𝜏
𝑡 < 3T
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The commutative property

𝑥 𝑛 ∗ ℎ 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛

𝑥 𝑡 ∗ ℎ 𝑡 = න

−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

ℎ 𝜏′ 𝑥 𝑡 − 𝜏′ 𝑑𝜏′ = ℎ(𝑡) ∗ 𝑥(𝑡)

 Discrete-time

𝑥 𝑛 ∗ ℎ 𝑛 = 

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 = 

𝑚=−∞

∞

ℎ 𝑚 𝑥 𝑛 −𝑚 = ℎ 𝑛 ∗ 𝑥 𝑛
𝑛 − 𝑘 = 𝑚

 Continuous-time 𝑥 𝑡 ∗ ℎ 𝑡 = ℎ(𝑡) ∗ 𝑥(𝑡)

𝑡 − 𝜏 = 𝜏′
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The distribute property

𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 =
𝑘=−∞

∞

𝑥 𝑘 (ℎ1 𝑛 − 𝑘 + ℎ2 𝑛 − 𝑘 )

 Discrete-time

𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 + 𝑥 𝑛 ∗ ℎ2 𝑛

=
𝑘=−∞

∞

𝑥 𝑘 ℎ1 𝑛 − 𝑘 +
𝑘=−∞

∞

𝑥 𝑘 ℎ2 𝑛 − 𝑘 )

= 𝑥 𝑛 ∗ ℎ1 𝑛 + 𝑥 𝑛 ∗ ℎ2 𝑛

 Proof
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The distribute property

𝑥 𝑡 ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)

 Continuous-time

 Proof

𝑥(𝑡) ∗ ℎ1 𝑡 + ℎ2 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ1 𝑡 − 𝜏 + ℎ2 𝑡 − 𝜏 𝑑𝜏

= න
−∞

∞

𝑥 𝜏 ℎ1 𝑡 − 𝜏 𝑑𝜏 + න
−∞

∞

𝑥 𝜏 ℎ2 𝑡 − 𝜏 𝑑𝜏

= 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)
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The distribute property

𝑥 𝑡 ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)

 Continuous-time
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The associative property

𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = (𝑥 𝑛 ∗ ℎ1 𝑛 ) ∗ ℎ2 𝑛 Discrete-time

𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = 𝑥 𝑛 ∗ 𝑦 𝑛 ,

=
𝑙=−∞

∞


𝑘=−∞

∞

𝑥 𝑘 ℎ1 𝑙 − 𝑘 ℎ2 𝑛 − 𝑙

=
𝑘=−∞

∞

𝑥 𝑘 𝑦 𝑛 − 𝑘 =
𝑘=−∞

∞

𝑥 𝑘 
𝑚=−∞

∞

ℎ1 𝑚 ℎ2 𝑛 − 𝑘 −𝑚

Let 𝑘 +𝑚 = 𝑙
=

𝑘=−∞

∞

𝑥 𝑘 
𝑙=−∞

∞

ℎ1 𝑙 − 𝑘 ℎ2 𝑛 − 𝑙

=
𝑙=−∞

∞

(𝑥 𝑙 ∗ ℎ1 𝑙 ) ℎ2 𝑛 − 𝑙 = (𝑥 𝑛 ∗ ℎ1 𝑛 ) ∗ ℎ2 𝑛

𝑦 𝑛 =
𝑚=−∞

∞

ℎ1 𝑚 ℎ2 𝑛 −𝑚
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The associative property

 Discrete-time
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The associative property

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 (𝑡) Continuous-time

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ න
−∞

∞

ℎ1 𝜏 ℎ2 𝑡 − 𝜏 𝑑𝜏

Let 𝜏′ + 𝜏 = 𝜏′′

= න
−∞

∞

𝑥 𝜏′ න
−∞

∞

ℎ1 𝜏 ℎ2 𝑡 − 𝜏′ − 𝜏 𝑑𝜏 𝑑𝜏′

= න
−∞

∞

න
−∞

∞

𝑥 𝜏′ ℎ1 𝜏′′ − 𝜏′ 𝑑𝜏′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′

= න
−∞

∞

𝑥 𝜏′ න
−∞

∞

ℎ1 𝜏′′ − 𝜏′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′ 𝑑𝜏′

= න
−∞

∞

𝑥 𝜏′′ ∗ ℎ1 𝜏′′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′ = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 (𝑡)
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LTI systems with and without memory

 Discrete-time system without memory only if

 Continuous-time system without memory only if

ℎ 𝑛 = 0 for all 𝑛 ≠ 0

ℎ 𝑛 = ℎ 0 𝛿[𝑛] = 𝑘𝛿[𝑛] 𝑦 𝑛 = 𝑘𝑥[𝑛] Why? 

ℎ 𝑡 = 0 for all 𝑡 ≠ 0

ℎ 𝑡 = ℎ 0 𝛿 𝑡 = 𝑘𝛿 𝑡 𝑦 𝑡 = 𝑘𝑥 𝑡
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Invertibility for LTI systems

 If ℎ0 𝑡 ∗ ℎ1 𝑡 = 𝛿 𝑡 , the system ℎ1 𝑡 is the inverse of the 
system ℎ0 𝑡

 Similarly, if  ℎ0[𝑛] ∗ ℎ1[𝑛] = 𝛿[𝑛], the system ℎ1[𝑛] is the inverse 
system of ℎ0[𝑛]
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Invertibility for LTI systems

Consider ℎ0 𝑛 = 𝑢[𝑛], determine the inverse system ℎ1[𝑛]

 Examples
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Invertibility for LTI systems

Consider the LTI system consisting of a pure time shift

 Examples

𝑦 𝑡 = 𝑥 𝑡 − 𝑡0 ,

determine the inverse system.
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Causality for LTI systems

 If ℎ 𝑛 = 0 for n < 0, or ℎ(𝑡) = 0 for 𝑡 < 0, the system is causal

 Equivalent to the condition of initial rest

𝑦 𝑡 = න

−∞

𝑡

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝑦 𝑛 = 

𝑘=−∞

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 𝑦 𝑛 = 

𝑘=0

∞

ℎ 𝑘 𝑥 𝑛 − 𝑘or

𝑦 𝑡 = න

0

∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏or
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Causality for LTI systems

 Examples

• Accumulator: 𝑦 𝑛 = σ𝑙=−∞
𝑛 𝑥 𝑙 Causal LTI system

ℎ 𝑛 = σ𝑙=−∞
𝑛 𝛿 𝑙 = 𝑢[𝑛] ℎ 𝑛 = 0 for n < 0

• Factor 2 interpolator: 𝑦 𝑛 = 𝑥𝑢 𝑛 +
1

2
(𝑥𝑢 𝑛 − 1 + 𝑥𝑢 𝑛 + 1 )

Non-Causal LTI system

ℎ 𝑛 = 𝛿 𝑛 +
1

2
(𝛿 𝑛 − 1 + 𝛿 𝑛 + 1 )

ℎ 𝑛 ≠ 0 for n = −1
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Stability for LTI systems

 A discrete LTI system is stable if h[n] is absolutely summable

 A continuous LTI system is stable if h(t) is absolutely integrable

absolutely summable

absolutely integrable
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Stability for LTI systems

 Proof: “if and only if” (Sufficient and necessary condition)

𝑦[𝑛] = 

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘] ≤ 

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘] = 

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘]

∴ |𝑦 𝑛 | ≤ 

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘]

If 𝑥[𝑛 − 𝑘] ≤ 𝐵𝑥

If and only if σ𝑘=−∞
∞ ℎ 𝑘 < ∞

|𝑦 𝑛 | ≤ 𝐵𝑥 

𝑘=−∞

∞

ℎ 𝑘

𝑦 𝑛 < ∞
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Stability for LTI systems

 Proof: continuous case

𝑦(𝑡) = න
−∞

∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 ≤ න
−∞

∞

ℎ 𝜏 ∙ |𝑥 𝑡 − 𝜏 |𝑑𝜏

If |𝑥 𝑡 − 𝜏 | ≤ 𝐵𝑥

If and only if −∞
∞

ℎ 𝜏 𝑑𝜏 < ∞ 𝑦 𝑡 < ∞

≤ 𝐵𝑥න
−∞

∞

ℎ 𝜏 𝑑𝜏
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Stability for LTI systems

 Examples

ℎ 𝑛 = 𝛿[𝑛 − 𝑛0]



𝑛=−∞

∞

|ℎ 𝑛 | = 

𝑛=−∞

∞

|𝛿 𝑛 − 𝑛0 | = 1

𝑦 𝑛 = 𝑥[𝑛 − 𝑛0]
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Stability for LTI systems

 Examples



𝑛=−∞

∞

|ℎ 𝑛 | = 

𝑛=−∞

∞

|𝛼𝑛|𝜇[𝑛] = 

𝑛=0

∞

|𝛼𝑛| =
1

1 − |𝛼|

ℎ 𝑛 = 𝛼𝑛𝜇[𝑛]

If 𝛼 < 1

If 𝛼 = 1, the system is unstable 
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The unit step response of LTI systems

 The unit step response, 𝑠 𝑡 or 𝑠[𝑛], corresponding to the output with 
input 𝑥 𝑡 = 𝑢 𝑡 or 𝑥[𝑛] = 𝑢[𝑛]

𝑠 𝑛 = 𝜇 𝑛 ∗ ℎ 𝑛 = 

𝑘=−∞

∞

ℎ 𝑘 𝑢[𝑛 − 𝑘] = 

𝑘=−∞

𝑛

ℎ 𝑘

𝜇 𝑛 = 

𝑘=−∞

𝑛

𝛿 𝑘 𝑠 𝑛 = 

𝑘=−∞

𝑛

ℎ 𝑘

ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1
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The unit step response of LTI systems

 The unit step response, 𝑠 𝑡 or 𝑠[𝑛], corresponding to the output with 
input 𝑥 𝑡 = 𝑢 𝑡 or 𝑥[𝑛] = 𝑢[𝑛]

𝑠 𝑡 = 𝜇 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

ℎ 𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏 = න
−∞

𝑡

ℎ 𝜏 𝑑𝜏

𝜇(𝑡) = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏

ℎ 𝑡 =
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑠′(𝑡)

𝑠(𝑡) = න
−∞

𝑡

ℎ 𝜏 𝑑𝜏



Linear Time-Invariant Systems (ch.2)
 Discrete-Time LTI Systems

 Continuous-Time LTI Systems

 Properties of LTI Systems
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Differential equation

 First order system

 In general:

 Describes a relationship between the input and the output (implicit)

 Auxiliary conditions are needed for solving the DE.
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Differential equation

 First order system: example

 Solution:

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 𝑥(𝑡)

If 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡) 𝑦 𝑡 =?

𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ 𝑡

𝑦𝑝 𝑡 : particular solution, forced response (same form as input)

𝑦ℎ 𝑡 : Homogenous solution
𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 0
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Differential equation

 First order system: example

 Particular solution:

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 𝑥(𝑡)

If 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡) 𝑦 𝑡 =?

Let 𝑦𝑝 𝑡 = 𝑌𝑒3𝑡, for 𝑡>0

3𝑌𝑒3𝑡 + 2𝑌𝑒3𝑡 = 𝐾𝑒3𝑡 𝑌 = 𝐾/5 𝑦𝑝 𝑡 =
𝐾

5
𝑒3𝑡

 Homogenous solution: Let 𝑦ℎ 𝑡 = 𝐴𝑒𝑠𝑡, for 𝑡>0

𝐴𝑠𝑒𝑠𝑡 + 2𝐴𝑒𝑠𝑡 = 0 𝑠 = −2 𝑦ℎ 𝑡 = 𝐴𝑒−2𝑡

𝑦 𝑡 = 𝐴𝑒−2𝑡 +
𝐾

5
𝑒3𝑡, for 𝑡 > 0
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Differential equation

 Auxiliary condition is required to determine A

𝑦 𝑡 = 𝐴𝑒−2𝑡 +
𝐾

5
𝑒3𝑡, for 𝑡 > 0

 Initial rest as auxiliary condition for causal LTI systems: 𝑦 0 = 0

𝐴 +
𝐾

5
= 0 𝑦 𝑡 =

𝐾

5
(𝑒3𝑡+𝑒−2𝑡), for 𝑡 > 0𝐴 = −

𝐾

5

=
𝐾

5
(𝑒3𝑡+𝑒−2𝑡)𝑢(𝑡)
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Differential equation

 General case: Nth-order linear constant-coefficient differential equation


𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
=

𝑘=0

𝑀

𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘

 Initial rest as auxiliary condition, that is if 𝑥 𝑡 = 0 for  𝑡 ≤ 𝑡0, 

 Particular solution + Homogenous solution: 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ 𝑡

• 𝑦𝑝 𝑡 : forced response (same form as input)

• 𝑦ℎ 𝑡 : Natural response, σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= 0

𝑦 𝑡0 =
𝑑𝑦(𝑡0)

𝑑𝑡
= ⋯ =

𝑑𝑁−1𝑦 𝑡0
𝑑𝑡𝑁−1

= 0
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Difference equation

 General case: Nth-order linear constant-coefficient difference equation


𝑘=0

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘]

 Initial rest as auxiliary condition, that is if 𝑥[𝑛] = 0 for  𝑛 ≤ 𝑛0, 

 Particular solution + Homogenous solution: 𝑦 𝑛 = 𝑦𝑝[𝑛] + 𝑦ℎ[𝑛]

• 𝑦𝑝[𝑛]: forced response (same form as input)

• 𝑦ℎ[𝑛]: Natural response, σ𝑘=0
𝑁 𝑎𝑘𝑦[𝑛 − 𝑘] = 0

𝑦[𝑛0] = 𝑦[𝑛0−1] = ⋯ = 𝑦[𝑛0−(𝑁 − 1)] = 0
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Difference equation

 Recursive solution:

𝑦[𝑛] =
1

𝑎0


𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] −
𝑘=1

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘]

• Particular case N=0

𝑦[𝑛] =
1

𝑎0


𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] Non-recursive equation

ℎ[𝑛] =
1

𝑎0


𝑘=0

𝑀

𝑏𝑘𝛿[𝑛 − 𝑘] Finite impulse response 
(FIR) system



Differential or Difference Equations

61

Difference equation

 Recursive solution: example

• Consider 𝑥 𝑛 = 𝐾𝛿 𝑛 and take initial rest: 𝑦 −1 = 0

𝑦 0 = 𝑥 0 +
1

2
𝑦 −1 = 𝐾

𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥[𝑛]

𝑦 1 = 𝑥 1 +
1

2
𝑦 0 =

1

2
𝐾

𝑦 2 = 𝑥 2 +
1

2
𝑦 1 =

1

2

2

𝐾 … 𝑦 𝑛 = 𝑥 𝑛 +
1

2
𝑦 𝑛 − 1 =

1

2

𝑛

𝐾

∴ ℎ 𝑛 =
1

2

𝑛

𝑢[𝑛] Infinite impulse response (IIR) system

 Generally 
𝑘=0

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘] =
𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] ቊ
𝑁 = 0, FIR system
𝑁 > 0, IIR system Not always!
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Block Diagram Representations

 Basic elements: discrete-time

𝑦 𝑛 = −𝑎𝑦 𝑛 − 1 + 𝑏𝑥[𝑛]

𝑦 𝑛 + 𝑎𝑦 𝑛 − 1 = 𝑏𝑥[𝑛]



Differential or Difference Equations

63

Block Diagram Representations

 Basic elements: continuous-time
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦(𝑡) = 𝑏𝑥(𝑡)

𝑦 𝑡 = −
1

𝑎

𝑑𝑦(𝑡)

𝑑𝑡
+
𝑏

𝑎
𝑥(𝑡)
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Block Diagram Representations

 Basic elements: continuous-time

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦(𝑡) = 𝑏𝑥(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= −𝑎𝑦 𝑡 + 𝑏𝑥(𝑡)

𝑦(𝑡) = න
−∞

𝑡

𝑏𝑥 𝜏 − 𝑎𝑦 𝜏 𝑑𝜏


