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Representation of Discrete-Time Signals in Terms of Impulse

+

+

=

𝑥 𝑛

↔ 𝑥1 𝑛 = −2.25 × 𝛿 𝑛 + 1

↔ 𝑥2 𝑛 = −1.5 × 𝛿 𝑛

↔ 𝑥3 𝑛 = 1 × 𝛿 𝑛 − 2

+

+

=

𝑥 𝑛
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Representation of Discrete-Time Signals in Terms of Impulse

 An arbitrary sequence can be represented as the weighted sum of 
shifted unit impulses

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

 A general form

𝑥 𝑛

Sifting property of 𝛿[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 The response of a system to a unit impulse sequence 𝛿[𝑛] is called 
impulse response, denoted by ℎ[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• For any system whose input-output relationship is defined by 

𝑦 𝑛 = 𝑓{𝑥[𝑛]}

the impulse response ℎ 𝑛 is calculated as  

ℎ 𝑛 = 𝑓{𝛿[𝑛]} replace 𝑥 𝑛 by 𝛿 𝑛
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = 𝑎1𝑥 𝑛 + 𝑎2𝑥 𝑛 − 1 + 𝑎3𝑥 𝑛 − 2 + 𝑎4𝑥 𝑛 − 3𝑦 𝑛 = 𝑎1𝑥 𝑛 + 𝑎2𝑥 𝑛 − 1 + 𝑎3𝑥 𝑛 − 2 + 𝑎4𝑥 𝑛 − 3

ℎ 𝑛 = 𝑎1𝛿 𝑛 + 𝑎2𝛿 𝑛 − 1 + 𝑎3𝛿 𝑛 − 2 + 𝑎4𝛿 𝑛 − 3
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = ෍

𝑘=−∞

𝑛

𝑥[𝑘]

ℎ 𝑛 = ෍

𝑘=−∞

𝑛

𝛿[𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 How to calculate the impulse response of a system

• Examples: a system is defined as 

its impulse response ℎ 𝑛 is

𝑦 𝑛 = 𝑥𝑢 𝑛 − 1 +
1

2
𝑥𝑢 𝑛 − 2 + 𝑥𝑢[𝑛]

ℎ 𝑛 = 𝛿 𝑛 − 1 +
1

2
𝛿 𝑛 − 2 + 𝛿[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 An LTI discrete system is completely characterized by its impulse 
response

 In other words, knowing the impulse response one can compute the 
output of the LTI system for an arbitrary input
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Discrete-Time Unit Impulse Response and the Convolution-Sum

LTI
 [n] h[n]

 The impulse response completely characterizes an LTI system 

LTI
x[n] y[n]=?

 Recall, an arbitrary input x[n] can be expressed as a linear combination of 
shifted unit impulses

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

LTI

 For any 𝑘 = 𝑘0

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

𝛿[𝑛 − 𝑘0]

LTI𝛿[𝑛]

LTI
𝑥 𝑘0 𝛿[𝑛 − 𝑘0]

ℎ[𝑛 − 𝑘0]

𝑥 𝑘0 ℎ[𝑛 − 𝑘0]

LTI
𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

ℎ[𝑛]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

is refereed to as the convolution-sum

𝑥 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]
LTI

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

𝑥 𝑛 LTI 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]

 ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation – Method 1: sum of k shifted and scaled h[n]

𝑥 𝑛 LTI 𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

0.5
1

1.5

0.25
0.5

0.75

1

2

3

0.25

1.5

2.75
3

n: variable, k:constant
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 2: calculate y[n] for each n

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

• Step 1: determine the range of 𝑘

𝑘 ∈ {0,1}

• Step 2: determine the range of 𝑛

[𝑛 − 𝑘] ∈ {0,1,2} ↔ 𝑛 ∈ {0,1,2, 3}, 
For other n,  𝑦 𝑛 =0 

0.5
1

1.5
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 2: calculate y[n] for each n

𝑦 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] = 𝑥 𝑛 ∗ ℎ[𝑛]

• Step 3: calculate y[n] for each 𝑛

𝑦 0 =෍
𝑘=0

1

𝑥 𝑘 ℎ[0 − 𝑘] = 𝑥 0 ℎ 0 + 𝑥 1 ℎ −1 = 0.25

𝑦 3 =෍
𝑘=0

1

𝑥 𝑘 ℎ[3 − 𝑘] = 𝑥 0 ℎ 3 + 𝑥 1 ℎ 2 = 3

0.5
1

1.5

𝑦 1 =෍
𝑘=0

1

𝑥 𝑘 ℎ[1 − 𝑘] = 𝑥 0 ℎ 1 + 𝑥 1 ℎ 0 = 1.5

𝑦 2 =෍
𝑘=0

1

𝑥 𝑘 ℎ[2 − 𝑘] = 𝑥 0 ℎ 2 + 𝑥 1 ℎ 1 = 2.75
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Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation–Method 3

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛] = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘]

For each 𝑛 :
• Step 1: change time variables 𝑥 𝑛 → 𝑥 𝑘 , ℎ 𝑛 → ℎ 𝑘 , 

and reverse ℎ 𝑘 → ℎ −𝑘

• Step 2: Shift ℎ −𝑘 → ℎ 𝑛 − 𝑘 , 𝑛 is considered as a constant

• Step 3: multiply 𝑥[𝑘] ∙ ℎ 𝑛 − 𝑘

• Step 4: Summation σ𝑘=−∞
∞ 𝑥[𝑘] ∙ ℎ 𝑛 − 𝑘

Change 𝑛, repeat step 1 to 4, calculate another 𝑦 𝑛
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The Convolution-Sum

 Convolution-Sum calculation 
– Method 3

𝑦 0 =෍
𝑘=0

1

𝑥 𝑘 ℎ[0 − 𝑘]

𝑦 1 =෍
𝑘=0

1

𝑥 𝑘 ℎ[1 − 𝑘]

𝑦 2 =෍
𝑘=0

1

𝑥 𝑘 ℎ[2 − 𝑘]

𝑦 3 =෍
𝑘=0

1

𝑥 𝑘 ℎ[3 − 𝑘]

𝑦 𝑛 = 0, for 𝑛<0 

• If the lengths of the 
two sequences are 
M and N, then the 
sequence generated 
by the convolution is 
of length M+N-1

K: variable, n:constant

𝑦 𝑛 = 0, for 𝑛>3 
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The Convolution-Sum

 Examples

𝑦 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛

𝑦 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛 − 𝑑

=෍
𝑘=−∞

∞

𝑥 𝑘 𝛿 𝑛 − 𝑘 = 𝑥[𝑛]

=෍
𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘 − 𝑑] Let 𝑘 + 𝑑 = 𝑘′

=෍
𝑘′=−∞

∞

𝑥 𝑘′ − 𝑑 𝛿[𝑛 − 𝑘′]

= 𝑥 𝑛 − 𝑑 ∗ 𝛿 𝑛 = 𝑥[𝑛 − 𝑑]
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The Convolution-Sum

 Examples

𝑦1 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛 −𝑚 =෍
𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘 −𝑚]

𝑦1 𝑛 =?

𝑦 𝑛𝑥 𝑛

𝑥 𝑛

ℎ 𝑛

ℎ 𝑛 −𝑚

=෍
𝑘′=−∞

∞

𝑥 𝑘′ −𝑚 ℎ[𝑛 − 𝑘′]

Let 𝑘 +𝑚 = 𝑘′

= 𝑥 𝑛 −𝑚 ∗ ℎ 𝑛 = 𝑦[𝑛 − 𝑚]
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Continuous-Time Signals in Terms of Impulse

 “staircase” approximation of 𝑥(𝑡)

𝑡

𝛿∆(𝑡)

1/∆

𝑥(𝑡)

∆ ∙ 𝑥(−2∆)𝛿∆(𝑡 + 2∆)

∆ ∙ 𝑥(−∆)𝛿∆(𝑡 + ∆)

∆ ∙ 𝑥(0)𝛿∆(𝑡)

∆ ∙ 𝑥(∆)𝛿∆(𝑡 − ∆)

ො𝑥 𝑡 =෍
𝑘=−∞

∞

𝑥(𝑘∆)𝛿∆(𝑡 − 𝑘∆) ∙ ∆
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Continuous-Time Signals in Terms of Impulse

 “staircase” approximation of 𝑥(𝑡)

𝑥(𝑡)

𝑥(−2∆)𝛿∆(𝑡 + 2∆) ∙ ∆

𝑥(−∆)𝛿∆(𝑡 + ∆) ∙ ∆

𝑥(0)𝛿∆(𝑡) ∙ ∆

𝑥(∆)𝛿∆(𝑡 − ∆) ∙ ∆

ො𝑥 𝑡 =෍
𝑘=−∞

∞

𝑥(𝑘∆)𝛿∆(𝑡 − 𝑘∆) ∙ ∆

𝑥 𝑡 = lim
∆→0

ො𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

∆→ 0, ො𝑥 𝑡 → 𝑥 𝑡 , 

𝑥(𝑘∆) → 𝑥(𝜏), 𝛿∆(𝑡 − 𝑘∆) → 𝛿(𝑡 − 𝜏)

Sifting property of 𝛿(𝑡)
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Continuous-Time Signals in Terms of Impulse

 Using sampling property of 𝛿(𝑡)

∴ න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 = න
−∞

∞

𝑥(𝑡)𝛿(𝑡 − 𝜏) 𝑑𝜏

𝑥(𝜏)𝛿 𝑡 − 𝜏 = 𝑥(𝑡)𝛿 𝑡 − 𝜏

𝑥(𝜏)

𝛿(𝑡 − 𝜏)

𝑥(𝜏)𝛿(𝑡 − 𝜏)

𝑥(𝑡)𝛿 𝑡 − 𝑡0 = 𝑥(𝑡0)𝛿 𝑡 − 𝑡0 sampling property 

= 𝑥(𝑡)න
−∞

∞

𝛿(𝑡 − 𝜏) 𝑑𝜏

= 𝑥(𝑡)

𝑥(𝑡)

t: constant

න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 =?
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Continuous-Time Signals in Terms of Impulse

 An example

𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

𝑢 𝑡 = න
−∞

∞

𝑢(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏 = න
0

∞

𝛿(𝑡 − 𝜏) 𝑑𝜏
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Continuous-Time Unit Impulse Response and Convolution Integral

 Continuous-Time Unit Impulse Response

LTI
 (t) h(t)

 What about

LTI
x(t) y(t)=?

𝑥 𝑡 = න
−∞

∞

𝑥(𝜏)𝛿(𝑡 − 𝜏) 𝑑𝜏

Sum of weighted and shifted impulses 

𝑦 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

Sum of weighted and shifted impulse response 

 Convolution integral

න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏 = 𝑥(𝑡) ∗ ℎ(𝑡)
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

• Change time variables 𝑥(𝑡) → 𝑥(𝜏), ℎ(𝑡) → ℎ(𝜏), and 
reverse ℎ(𝜏) → ℎ(−𝜏)

• Shift ℎ(−𝜏) → ℎ(𝑡 − 𝜏)

• Multiply 𝑥(𝜏) ∙ ℎ(𝑡 − 𝜏)

• Integral ׬−∞
∞

𝑥(𝜏) ∙ ℎ(𝑡 − 𝜏)d𝜏
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ(𝑡 − 𝜏) 𝑑𝜏

𝑥 𝑡 ∗ 𝛿 𝑡 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑥(𝑡)

𝑥 𝑡 ∗ 𝛿 𝑡 − 𝑡0 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − 𝜏 − 𝑡0 𝑑𝜏 = න
−∞

∞

𝑥 𝜏 𝛿 𝑡 − (𝜏 + 𝑡0) 𝑑𝜏

= න
−∞

∞

𝑥 𝜏′ − 𝑡0 𝛿 𝑡 − 𝜏′ 𝑑𝜏′ = 𝑥 𝑡 − 𝑡0 ∗ 𝛿 𝑡

= 𝑥 𝑡 − 𝑡0
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

For t<0

For t≥0



Continuous-Time LTI Systems

28

Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: Graphical Solution

𝜏 : variable, t: constant
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 = 𝑒2𝑡𝑢(−𝑡) 𝑥 𝑡 ∗ ℎ 𝑡 =?

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

𝑡−3

𝑒2𝜏𝑑𝜏 =
1

2
𝑒2(𝑡−3)

ℎ 𝑡 = 𝑢(𝑡 − 3)

𝑥 𝜏

ℎ 𝑡 − 𝜏

𝑦 𝑡

For 𝑡 − 3 ≤ 0

For 𝑡 − 3 ≥ 0

𝑥 𝑡 ∗ ℎ 𝑡 = න
−∞

0

𝑒2𝜏𝑑𝜏 =
1

2

𝜏 : variable, t: constant
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Continuous-Time Unit Impulse Response and Convolution Integral

 Computation convolution integral: examples

𝑥 𝑡 = ቊ
1, 0 < 𝑡 < 𝑇
0, otherwise

𝑥 𝑡 ∗ ℎ 𝑡 =?

𝑥 𝑡
ℎ 𝑡

ℎ 𝑡 = ቊ
𝑡, 0 < 𝑡 < 2𝑇
0, otherwise

𝑡 2T 𝑡
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Convolution Integral

 Computation: examples

𝑦 𝑡 =

0, 𝑡 < 0

න
0

𝑡

(𝑡 − 𝜏)𝑑𝜏 =
1

2
𝑡2, 0 < 𝑡 < 𝑇

න
0

𝑇

(𝑡 − 𝜏)𝑑𝜏 = 𝑇𝑡 −
1

2
𝑇2, 𝑇 < 𝑡 < 2𝑇

න
𝑡−2𝑇

𝑇

(𝑡 − 𝜏)𝑑𝜏 = −
1

2
𝑡2 + 𝑇𝑡 +

3

2
𝑇2, 2𝑇 < 𝑡 < 3𝑇

0, 𝑡 > 3𝑇

𝑥 𝜏

𝜏

ℎ 𝑡 − 𝜏
𝑡 < 0

𝜏

𝜏

𝜏

𝜏

𝜏

ℎ 𝑡 − 𝜏
0 < 𝑡 < T

ℎ 𝑡 − 𝜏
T < 𝑡 < 2T

ℎ 𝑡 − 𝜏
2T < 𝑡 < 3T

ℎ 𝑡 − 𝜏
𝑡 < 3T
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The commutative property

𝑥 𝑛 ∗ ℎ 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛

𝑥 𝑡 ∗ ℎ 𝑡 = න

−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 = න

−∞

∞

ℎ 𝜏′ 𝑥 𝑡 − 𝜏′ 𝑑𝜏′ = ℎ(𝑡) ∗ 𝑥(𝑡)

 Discrete-time

𝑥 𝑛 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘 ℎ 𝑛 − 𝑘 = ෍

𝑚=−∞

∞

ℎ 𝑚 𝑥 𝑛 −𝑚 = ℎ 𝑛 ∗ 𝑥 𝑛
𝑛 − 𝑘 = 𝑚

 Continuous-time 𝑥 𝑡 ∗ ℎ 𝑡 = ℎ(𝑡) ∗ 𝑥(𝑡)

𝑡 − 𝜏 = 𝜏′
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The distribute property

𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 =෍
𝑘=−∞

∞

𝑥 𝑘 (ℎ1 𝑛 − 𝑘 + ℎ2 𝑛 − 𝑘 )

 Discrete-time

𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 + 𝑥 𝑛 ∗ ℎ2 𝑛

=෍
𝑘=−∞

∞

𝑥 𝑘 ℎ1 𝑛 − 𝑘 +෍
𝑘=−∞

∞

𝑥 𝑘 ℎ2 𝑛 − 𝑘 )

= 𝑥 𝑛 ∗ ℎ1 𝑛 + 𝑥 𝑛 ∗ ℎ2 𝑛

 Proof
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The distribute property

𝑥 𝑡 ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)

 Continuous-time

 Proof

𝑥(𝑡) ∗ ℎ1 𝑡 + ℎ2 𝑡 = න
−∞

∞

𝑥 𝜏 ℎ1 𝑡 − 𝜏 + ℎ2 𝑡 − 𝜏 𝑑𝜏

= න
−∞

∞

𝑥 𝜏 ℎ1 𝑡 − 𝜏 𝑑𝜏 + න
−∞

∞

𝑥 𝜏 ℎ2 𝑡 − 𝜏 𝑑𝜏

= 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)
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The distribute property

𝑥 𝑡 ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥(𝑡) ∗ ℎ2(𝑡)

 Continuous-time
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The associative property

𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = (𝑥 𝑛 ∗ ℎ1 𝑛 ) ∗ ℎ2 𝑛 Discrete-time

𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = 𝑥 𝑛 ∗ 𝑦 𝑛 ,

=෍
𝑙=−∞

∞

෍
𝑘=−∞

∞

𝑥 𝑘 ℎ1 𝑙 − 𝑘 ℎ2 𝑛 − 𝑙

=෍
𝑘=−∞

∞

𝑥 𝑘 𝑦 𝑛 − 𝑘 =෍
𝑘=−∞

∞

𝑥 𝑘 ෍
𝑚=−∞

∞

ℎ1 𝑚 ℎ2 𝑛 − 𝑘 −𝑚

Let 𝑘 +𝑚 = 𝑙
=෍

𝑘=−∞

∞

𝑥 𝑘 ෍
𝑙=−∞

∞

ℎ1 𝑙 − 𝑘 ℎ2 𝑛 − 𝑙

=෍
𝑙=−∞

∞

(𝑥 𝑙 ∗ ℎ1 𝑙 ) ℎ2 𝑛 − 𝑙 = (𝑥 𝑛 ∗ ℎ1 𝑛 ) ∗ ℎ2 𝑛

𝑦 𝑛 =෍
𝑚=−∞

∞

ℎ1 𝑚 ℎ2 𝑛 −𝑚
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The associative property

 Discrete-time
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The associative property

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 (𝑡) Continuous-time

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ න
−∞

∞

ℎ1 𝜏 ℎ2 𝑡 − 𝜏 𝑑𝜏

Let 𝜏′ + 𝜏 = 𝜏′′

= න
−∞

∞

𝑥 𝜏′ න
−∞

∞

ℎ1 𝜏 ℎ2 𝑡 − 𝜏′ − 𝜏 𝑑𝜏 𝑑𝜏′

= න
−∞

∞

න
−∞

∞

𝑥 𝜏′ ℎ1 𝜏′′ − 𝜏′ 𝑑𝜏′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′

= න
−∞

∞

𝑥 𝜏′ න
−∞

∞

ℎ1 𝜏′′ − 𝜏′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′ 𝑑𝜏′

= න
−∞

∞

𝑥 𝜏′′ ∗ ℎ1 𝜏′′ ℎ2 𝑡 − 𝜏′′ 𝑑𝜏′′ = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 (𝑡)
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LTI systems with and without memory

 Discrete-time system without memory only if

 Continuous-time system without memory only if

ℎ 𝑛 = 0 for all 𝑛 ≠ 0

ℎ 𝑛 = ℎ 0 𝛿[𝑛] = 𝑘𝛿[𝑛] 𝑦 𝑛 = 𝑘𝑥[𝑛] Why? 

ℎ 𝑡 = 0 for all 𝑡 ≠ 0

ℎ 𝑡 = ℎ 0 𝛿 𝑡 = 𝑘𝛿 𝑡 𝑦 𝑡 = 𝑘𝑥 𝑡
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Invertibility for LTI systems

 If ℎ0 𝑡 ∗ ℎ1 𝑡 = 𝛿 𝑡 , the system ℎ1 𝑡 is the inverse of the 
system ℎ0 𝑡

 Similarly, if  ℎ0[𝑛] ∗ ℎ1[𝑛] = 𝛿[𝑛], the system ℎ1[𝑛] is the inverse 
system of ℎ0[𝑛]
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Invertibility for LTI systems

Consider ℎ0 𝑛 = 𝑢[𝑛], determine the inverse system ℎ1[𝑛]

 Examples
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Invertibility for LTI systems

Consider the LTI system consisting of a pure time shift

 Examples

𝑦 𝑡 = 𝑥 𝑡 − 𝑡0 ,

determine the inverse system.



Properties of LTI Systems

44

Causality for LTI systems

 If ℎ 𝑛 = 0 for n < 0, or ℎ(𝑡) = 0 for 𝑡 < 0, the system is causal

 Equivalent to the condition of initial rest

𝑦 𝑡 = න

−∞

𝑡

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝑦 𝑛 = ෍

𝑘=−∞

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 𝑦 𝑛 = ෍

𝑘=0

∞

ℎ 𝑘 𝑥 𝑛 − 𝑘or

𝑦 𝑡 = න

0

∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏or
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Causality for LTI systems

 Examples

• Accumulator: 𝑦 𝑛 = σ𝑙=−∞
𝑛 𝑥 𝑙 Causal LTI system

ℎ 𝑛 = σ𝑙=−∞
𝑛 𝛿 𝑙 = 𝑢[𝑛] ℎ 𝑛 = 0 for n < 0

• Factor 2 interpolator: 𝑦 𝑛 = 𝑥𝑢 𝑛 +
1

2
(𝑥𝑢 𝑛 − 1 + 𝑥𝑢 𝑛 + 1 )

Non-Causal LTI system

ℎ 𝑛 = 𝛿 𝑛 +
1

2
(𝛿 𝑛 − 1 + 𝛿 𝑛 + 1 )

ℎ 𝑛 ≠ 0 for n = −1
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Stability for LTI systems

 A discrete LTI system is stable if h[n] is absolutely summable

 A continuous LTI system is stable if h(t) is absolutely integrable

absolutely summable

absolutely integrable
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Stability for LTI systems

 Proof: “if and only if” (Sufficient and necessary condition)

𝑦[𝑛] = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘] ≤ ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘] = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘]

∴ |𝑦 𝑛 | ≤ ෍

𝑘=−∞

∞

ℎ 𝑘 𝑥[𝑛 − 𝑘]

If 𝑥[𝑛 − 𝑘] ≤ 𝐵𝑥

If and only if σ𝑘=−∞
∞ ℎ 𝑘 < ∞

|𝑦 𝑛 | ≤ 𝐵𝑥 ෍

𝑘=−∞

∞

ℎ 𝑘

𝑦 𝑛 < ∞
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Stability for LTI systems

 Proof: continuous case

𝑦(𝑡) = න
−∞

∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 ≤ න
−∞

∞

ℎ 𝜏 ∙ |𝑥 𝑡 − 𝜏 |𝑑𝜏

If |𝑥 𝑡 − 𝜏 | ≤ 𝐵𝑥

If and only if ׬−∞
∞

ℎ 𝜏 𝑑𝜏 < ∞ 𝑦 𝑡 < ∞

≤ 𝐵𝑥න
−∞

∞

ℎ 𝜏 𝑑𝜏



Properties of LTI Systems

49

Stability for LTI systems

 Examples

ℎ 𝑛 = 𝛿[𝑛 − 𝑛0]

෍

𝑛=−∞

∞

|ℎ 𝑛 | = ෍

𝑛=−∞

∞

|𝛿 𝑛 − 𝑛0 | = 1

𝑦 𝑛 = 𝑥[𝑛 − 𝑛0]
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Stability for LTI systems

 Examples

෍

𝑛=−∞

∞

|ℎ 𝑛 | = ෍

𝑛=−∞

∞

|𝛼𝑛|𝜇[𝑛] = ෍

𝑛=0

∞

|𝛼𝑛| =
1

1 − |𝛼|

ℎ 𝑛 = 𝛼𝑛𝜇[𝑛]

If 𝛼 < 1

If 𝛼 = 1, the system is unstable 
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The unit step response of LTI systems

 The unit step response, 𝑠 𝑡 or 𝑠[𝑛], corresponding to the output with 
input 𝑥 𝑡 = 𝑢 𝑡 or 𝑥[𝑛] = 𝑢[𝑛]

𝑠 𝑛 = 𝜇 𝑛 ∗ ℎ 𝑛 = ෍

𝑘=−∞

∞

ℎ 𝑘 𝑢[𝑛 − 𝑘] = ෍

𝑘=−∞

𝑛

ℎ 𝑘

𝜇 𝑛 = ෍

𝑘=−∞

𝑛

𝛿 𝑘 𝑠 𝑛 = ෍

𝑘=−∞

𝑛

ℎ 𝑘

ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1
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The unit step response of LTI systems

 The unit step response, 𝑠 𝑡 or 𝑠[𝑛], corresponding to the output with 
input 𝑥 𝑡 = 𝑢 𝑡 or 𝑥[𝑛] = 𝑢[𝑛]

𝑠 𝑡 = 𝜇 𝑡 ∗ ℎ 𝑡 = න
−∞

∞

ℎ 𝜏 𝑢 𝑡 − 𝜏 𝑑𝜏 = න
−∞

𝑡

ℎ 𝜏 𝑑𝜏

𝜇(𝑡) = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏

ℎ 𝑡 =
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑠′(𝑡)

𝑠(𝑡) = න
−∞

𝑡

ℎ 𝜏 𝑑𝜏



Linear Time-Invariant Systems (ch.2)
 Discrete-Time LTI Systems

 Continuous-Time LTI Systems

 Properties of LTI Systems

 Differential or Difference Equations
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Differential equation

 First order system

 In general:

 Describes a relationship between the input and the output (implicit)

 Auxiliary conditions are needed for solving the DE.
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Differential equation

 First order system: example

 Solution:

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 𝑥(𝑡)

If 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡) 𝑦 𝑡 =?

𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ 𝑡

𝑦𝑝 𝑡 : particular solution, forced response (same form as input)

𝑦ℎ 𝑡 : Homogenous solution
𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 0
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Differential equation

 First order system: example

 Particular solution:

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦(𝑡) = 𝑥(𝑡)

If 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡) 𝑦 𝑡 =?

Let 𝑦𝑝 𝑡 = 𝑌𝑒3𝑡, for 𝑡>0

3𝑌𝑒3𝑡 + 2𝑌𝑒3𝑡 = 𝐾𝑒3𝑡 𝑌 = 𝐾/5 𝑦𝑝 𝑡 =
𝐾

5
𝑒3𝑡

 Homogenous solution: Let 𝑦ℎ 𝑡 = 𝐴𝑒𝑠𝑡, for 𝑡>0

𝐴𝑠𝑒𝑠𝑡 + 2𝐴𝑒𝑠𝑡 = 0 𝑠 = −2 𝑦ℎ 𝑡 = 𝐴𝑒−2𝑡

𝑦 𝑡 = 𝐴𝑒−2𝑡 +
𝐾

5
𝑒3𝑡, for 𝑡 > 0
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Differential equation

 Auxiliary condition is required to determine A

𝑦 𝑡 = 𝐴𝑒−2𝑡 +
𝐾

5
𝑒3𝑡, for 𝑡 > 0

 Initial rest as auxiliary condition for causal LTI systems: 𝑦 0 = 0

𝐴 +
𝐾

5
= 0 𝑦 𝑡 =

𝐾

5
(𝑒3𝑡+𝑒−2𝑡), for 𝑡 > 0𝐴 = −

𝐾

5

=
𝐾

5
(𝑒3𝑡+𝑒−2𝑡)𝑢(𝑡)



Differential or Difference Equations

58

Differential equation

 General case: Nth-order linear constant-coefficient differential equation

෍
𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
=෍

𝑘=0

𝑀

𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘

 Initial rest as auxiliary condition, that is if 𝑥 𝑡 = 0 for  𝑡 ≤ 𝑡0, 

 Particular solution + Homogenous solution: 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ 𝑡

• 𝑦𝑝 𝑡 : forced response (same form as input)

• 𝑦ℎ 𝑡 : Natural response, σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= 0

𝑦 𝑡0 =
𝑑𝑦(𝑡0)

𝑑𝑡
= ⋯ =

𝑑𝑁−1𝑦 𝑡0
𝑑𝑡𝑁−1

= 0
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Difference equation

 General case: Nth-order linear constant-coefficient difference equation

෍
𝑘=0

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘] =෍
𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘]

 Initial rest as auxiliary condition, that is if 𝑥[𝑛] = 0 for  𝑛 ≤ 𝑛0, 

 Particular solution + Homogenous solution: 𝑦 𝑛 = 𝑦𝑝[𝑛] + 𝑦ℎ[𝑛]

• 𝑦𝑝[𝑛]: forced response (same form as input)

• 𝑦ℎ[𝑛]: Natural response, σ𝑘=0
𝑁 𝑎𝑘𝑦[𝑛 − 𝑘] = 0

𝑦[𝑛0] = 𝑦[𝑛0−1] = ⋯ = 𝑦[𝑛0−(𝑁 − 1)] = 0
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Difference equation

 Recursive solution:

𝑦[𝑛] =
1

𝑎0
෍

𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] −෍
𝑘=1

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘]

• Particular case N=0

𝑦[𝑛] =
1

𝑎0
෍

𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] Non-recursive equation

ℎ[𝑛] =
1

𝑎0
෍

𝑘=0

𝑀

𝑏𝑘𝛿[𝑛 − 𝑘] Finite impulse response 
(FIR) system
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Difference equation

 Recursive solution: example

• Consider 𝑥 𝑛 = 𝐾𝛿 𝑛 and take initial rest: 𝑦 −1 = 0

𝑦 0 = 𝑥 0 +
1

2
𝑦 −1 = 𝐾

𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥[𝑛]

𝑦 1 = 𝑥 1 +
1

2
𝑦 0 =

1

2
𝐾

𝑦 2 = 𝑥 2 +
1

2
𝑦 1 =

1

2

2

𝐾 … 𝑦 𝑛 = 𝑥 𝑛 +
1

2
𝑦 𝑛 − 1 =

1

2

𝑛

𝐾

∴ ℎ 𝑛 =
1

2

𝑛

𝑢[𝑛] Infinite impulse response (IIR) system

 Generally ෍
𝑘=0

𝑁

𝑎𝑘𝑦[𝑛 − 𝑘] =෍
𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] ቊ
𝑁 = 0, FIR system
𝑁 > 0, IIR system Not always!
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Block Diagram Representations

 Basic elements: discrete-time

𝑦 𝑛 = −𝑎𝑦 𝑛 − 1 + 𝑏𝑥[𝑛]

𝑦 𝑛 + 𝑎𝑦 𝑛 − 1 = 𝑏𝑥[𝑛]
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Block Diagram Representations

 Basic elements: continuous-time
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦(𝑡) = 𝑏𝑥(𝑡)

𝑦 𝑡 = −
1

𝑎

𝑑𝑦(𝑡)

𝑑𝑡
+
𝑏

𝑎
𝑥(𝑡)
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Block Diagram Representations

 Basic elements: continuous-time

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦(𝑡) = 𝑏𝑥(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= −𝑎𝑦 𝑡 + 𝑏𝑥(𝑡)

𝑦(𝑡) = න
−∞

𝑡

𝑏𝑥 𝜏 − 𝑎𝑦 𝜏 𝑑𝜏


