Linear Time-Invariant Systems (ch.2)

] Discrete-Time LTI Systems



Discrete-Time LTI Systems

Representation of Discrete-Time Signals in Terms of Impulse
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Discrete-Time LTI Systems

Representation of Discrete-Time Signals in Terms of Impulse

1 An arbitrary sequence can be represented as the weighted sum of
shifted unit impulses

1.75 X [n] 1
- O O T 3 O O >
= e L—l lo = 1 n
—1.5 ~1.75

275

x[n]=1.758[n+3]-2.255[n+1]-1.58[n]+6[n—2]-1.755 | n—3]

J A general form

co

x[n] = z x|k]&[n — k] Sifting property of 6 [n]

k=—o0
2



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

] The response of a system to a unit impulse sequence é[n] is called
impulse response, denoted by h|n]

o |n] { [T ) h[n]p




Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

( How to calculate the impulse response of a system
* For any system whose input-output relationship is defined by
yln] = f{x[n]}
the impulse response h|n] is calculated as

hin] = f{6[n]} replace x[n] by §[n]



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

( How to calculate the impulse response of a system

* Examples: a system is defined as
yln] = a;x[n] + a,x|n — 1] + azx[n — 2] + a,x[n — 3]
its impulse response h[n] is

hin] = a,6[n] + a,6|n — 1] + a36|n — 2] + a,é[n — 3]



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

( How to calculate the impulse response of a system

* Examples: a system is defined as n



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

( How to calculate the impulse response of a system

* Examples: a system is defined as

yln] = x,[n — 1] 45 Gryln — 2] + x,n])

its impulse response h|n] is

h[n] = 6[n — 1] +%(6[n— 2] + 8[n])



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

d An LTI discrete system is completely characterized by its impulse
response

1 In other words, knowing the impulse response one can compute the
output of the LTI system for an arbitrary input



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

d The impulse response completely characterizes an LTIl system

5[n) hin] ln]

[ ] 1 yln]=?
Mt | —

{ LTI

J Recall, an arbitrary input x[n] can be expressed as a linear combination of
shifted unit impulses

oo

x|n] = Z x|[k]é[n — k]

k=—o0



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

- h[n — ko]

-/ ——




Discrete-Time LTI Systems

x[n] = x[k]6[n — k] yln] = x[k]h[n — k]
k=z—oo ’[ LTI } > k:z—oo
J Z h[n — k] is refereed to as the convolution-sum
k=—o
x[n] {1t | yinl=x[n] «hin]

11



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

d Convolution-Sum calculation — Method 1: sum of k shifted and scaled h[n]

x[n] { LTI ]— yln] = z x|k]h[n — k] = x[n] = h[n]

k=—o0
1.5 hin] n: variable, k:constant ;
1
0.5 0.5 7 08hi 275 ¢
! "% 1
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Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

 Convolution-Sum calculation—Method 2: calculate y[n] for each n

0.0)

ylnl = ) x[klhn - k] = x[n] « h[n)
K=o 159 0
* Step 1: determine the range of k . I ‘
ke €101} - I 2 n

e Step 2: determine the range of n

2
[n—k] €{0,1,2} - n €{0,1,2,3}, Al
For other n, y[n]=0
,




Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

J Convolution-§oum calculation—Method 2: calculate y[n] for each n

yln) = ) xlklh[n — k] = x[n] < h[n]

h(n]
k=—o0 1.5
* Step 3: calculate y[n] for each n 05a I ‘
1 . ! T L ®
y[0] = z x[k]h[0 — k] = x[0]A[0] + x[1]A[=1] = 0.25 0 1 2 n
k=0
1
y[1] = Zkzox[k]h[l k] = x[0]R[1] + x[1]R[0] = 1.5 2y "
y[2] = zl x[k]h[2 — k] = x[0]h[2] + x[1]R[1] = 2.75 0'51
k=0 —o —® A —o—o—o -

1
y[3] = zk=0x[k]h[3 _ k] = x[0]R[3] + x[1]R[2] = 3

14



Discrete-Time LTI Systems

Discrete-Time Unit Impulse Response and the Convolution-Sum

(J Convolution-Sum calculation—Method 3

yln] = x[n] «h[n] = ) x[k]h[n— k]

For each n:

 Step 1: change time variables x
and reverse hlk] - h|—k]

+ Step 2: Shift h[—k] = h[n — k
* Step 3: multiply x[k] - h|n — k]

k=—o0

[n] = x[k], hin] — hlk],

, n is considered as a constant

* Step 4: Summation X p—_, X[k]

Change n, repeat step 1 to 4, calcu

|- hln — k]

late another y|[n]

15



Discrete-Time LTI Systems - ] -

1 kK
The Convolution-Sum ‘ K: variable, n:constant
h[n-k], n<0
(d Convolution-Sum calculation yln] = 0, forn<o % nL : e -
- MEthOd 3 1 ‘ T h[0~k]
y[0] =z x[k]h[0 — k] - | SN
k=0 -2 -1 0 k

* If the lengths of the

two sequences are 1 | I h{1-k]
yl1] = E x[k]h[1 — k] .
k=0

M and N, then the

sequence generated . ‘ 1, (21
by the convolution is 1= 2., _HIkIH2 =K o 2 k

of length MI+N-1 1 o
vl = Zk:Ox[k]h[B —kl R 3 ] ! g k
h[n—k], n>3

y[n] = 0, for n>3 o o . ‘ T |

n2n-1 n Kk

oe



Discrete-Time LTI Systems

The Convolution-Sum

J Examples

yln] = x[n] * §[n —d] = Z:):_mx[k]cY[n —k—d] letk+d=Fk

zw %[k’ — d18[n — k']
k'=—oc0

= x[n —d] * §|n] = x[n — d]

17



Discrete-Time LTI Systems

The Convolution-Sum

x[n] yln]

O Examples { hin] } :
x[n] () ninl=?

1 h[n —m] | ,

x|k]h[n — k —m]

letk +m =k’

18



Linear Time-Invariant Systems (ch.2)

1 Continuous-Time LTI Systems



Continuous-Time LTI Systems

Continuous-Time Signals in Terms of Impulse———— A ” ;2;3‘ o t

1 “staircase” approximation of x(t) o A x(~20)85(t + 20)

" ﬂl

—, 0LZt<LA 28 A t
— J A :
0,(1)= { (] | A-x(=A)8a(t + B)
k 0, otherwise | |
8a(t) —a0 t
1/A (1 x(0) Hx(p) A - x(0)8,(t)
0 A t 0 A i: t

H‘xm A+ x(A)8A(t — A)

x(t) = Z:;_ x(kA)Sp(t — kA) - A

A 2A t



Continuous-Time LTI Systems

Continuous-Time Signals in Terms of Impulse——— A . m kiﬁ:L t
1 “staircase” approximation of x(t) xtm; ‘ ;(_ZA)(SA(H 20) - A
X(t) = zoo x(kA)oA(t — kA) - A 28 -8 t
k=—00 ] X8t +8) A
A~ 0, 2(8) - x(O), t
x(kD) = x(1), 8,(t — k&) - 8(t — 1) Hx{m X(0)84(8) - &
. 38 t

x(t) = ki_r)r(l) X(t) = f x(1)o(t —1)dr x(A)8p(t — A) - A

 X(A)

Sifting property of 6(t)

A 2A t



Continuous-Time LTI Systems

Continuous-Time Signals in Terms of Impulse

1 Using sampling property of 6 (t)

> 5t — )
f x(1)o(t — 1) dt =7 1
x(t)5(t —ty) = x(ty)d(t — ty) sampling property I
x(1)6(t — 1) = x(t)6(t — T) t:constant t
(b)
> X(0)8(t — 1) x(6)

foox(r)5(t —T)dt = f x(t)o(t —1)drt
= x(t)fooS(t —17)dt

= x(t) (©



Continuous-Time LTI Systems

Continuous-Time Signals in Terms of Impulse

d An example

x(t) = foox('r)(i(t —1)dt

u(t) = joou(r)cY(t —1)dt = jood(t — 1) dt
— 00 0

23



Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

(d Continuous-Time Unit Impulse Response

o (t) [ = } h(t)
J What about ?
. il [ LTI } Y=
WO = | x@8( 1) dr y(©) = | x@he - de
Sum of Weig_hofed and shifted impulses Sum of weighted and shifted impulse response

d Convolution integral

foox(r)h(t — 1) dt = x(t) * h(t)

24



Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

J Computation convolution integral
x(t) * h(t) = j x(t)h(t — 1) dT

* Change time variables x(t) = x(7), h(t) = h(t), and
reverse h(t) = h(—1)

* Shift h(—1) - h(t — 1)

*  Multiply x(t) - h(t — 1)

* Integral f_oooox(r) - h(t — 7)dt

25



Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

J Computation convolution integral: examples

x(t) * h(t) = joox(r)h(t —1)drt

x(t) * 8(t) = f X8 —7) dt = x()

00)

x(t) *5(t —ty) = joox(r)S(t —T—ty)dt = f x(1)6(t — (1 + ty)) dt

— 00

B foox(r’ —t)6(t — ') dt’ = x(t — to) * 6(¢)

— X(t — to) 26



Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

J Computation convolution integral: examples

x(t)=e “u(t), h(t) =u(t), a>0 x()*h()="?

y6)={ e u(r)-u(t-r)dr
Fort<0 x(7)-h(t-7)=0 = y(1) =0

t -1 _ 1 _
For tZO y(t) — J‘O e_ardz' :; al ‘:) :E(l—e aj)

27



Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

J Computation convolution integral: Graphical Solution 1 x(t)
x(1) = e “u(t), h(t)=u(r), a>0 N—_
0 T
% _
x(t) h(t) =7 T : variable, t: constant
’ x(t) h(t) jl |h(t-’l:) t<0
& | B —
0 -,; 0 T 4

1 h(t—t) 0
()= [ erdr == [ =—1-¢) } ‘

0 t 7

28




Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

(d Computation convolution integral: examples 916(1)
x(t) = e?tu(—=t) h() =u(—3) x(t)=*h(t) =? /

Fort—-3<0 0
t=3 1 T : variable, t: consgant
X(t) % h(t) = f eZTdT — EBZ(t_B) 1h t — 1)
Fort—320 ‘

0 1
x(t) * h(t) = f e?Tdr = > ‘_ﬁ




Continuous-Time LTI Systems

Continuous-Time Unit Impulse Response and Convolution Integral

(d Computation convolution integral: examples

1,0<t<T (to<t<2T
x(t) = {O, otherwise h(t) = {O, otherwise
h(t)
x(t) —+ 2T
M /|
0 T t 0 2T t

30



Continuous-Time LTI Systems

T
oT!
Convolution Integral I\ - h(t—1)
: L t<0
(J Computation: examples T -
"ETE h(t — 1)
( 0,t<0 P L 0<t<T
t 1 \\ﬁ
f(t—r)dr=—t2,0<t<T ot T
0 2 2T; M1
— ! 1 2 - T<t<2T
y(t) =< fo (t—T)dT=Tt—ET,T<t<2T t—2r0 |t T
T 1 3 2T h(t — 1)
f (t—T)dTZ—Et2+Tt+ET2,2T<t<3T | 2T <t < 3T
\ t=at O t> 3T Ut—éT t T

2T :
h(t — 1)
T ;[\KgT

o t-2T t T




Linear Time-Invariant Systems (ch.2)

[ Properties of LTI Systems
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The commutative property

 Discrete-time  x[n] * h[n] = h[n] * x[n]

 Continuous-time  x(t) * h(t) = h(t) * x(t)

0.0) 0.0)

t—1=1
x(t) * h(t) = f x(Dh(t—1)dt = f h(t)x(t —t')dt’ = h(t) * x(t)

— 00 — 0

33
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The distribute property

J Discrete-time

x[n]| * (hy[n] + hy[n]) = x[n] * hy[n] + x[n] * hy[n]
J Proof _

xfn] % (hyfn] + ho[nD) = ) x[k] (haln = k] + hy[n = k)

k=—o0

=Z:)=_OO k] by [n — k] +zk__oo 1 hy[n — k)

= x[n] * hy[n] + x[n] * hy|n]

34
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The distribute property

J Continuous-time

x(t) * (hy (6) + hy(t)) = x(8) * hy(£) + x(t) * hy(t)
J Proof

x(©) * (hy (O) + hy (D)) = f () (hy (£ — ) + hy(t — D))dr

00)

_ f S hy(t — Ddr + J (D) hy(t — 7)dT

— 00

= x(t) * hy () + x(t) * hp (1)

35



Properties of LTI Systems

The distribute property

J Continuous-time

x(t) * (hy () + hy(t)) = x(t) * hy(£) + x(t) * hy(t)

K(1) el (1) + hglt) e (1) ﬁ x(t) ——4 C y— v
o

36
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The associative property

 Discrete-time x[n] * () = (x[n] * h{[n]) * h,|n]

dnl « (uln < holn]) = 2l =ylnl, Y[l =) ylmligln—ml

_ z:z_oox[k]y[n K] = zk__oo x[k] Zm_ mlhy[n — k —m]
).

letk +m =1 o 0
etk +m =) ali Zz_m’“” — klhy[n — 1]
l=—00 k=—o0

= zz_w(x[l] x hi[I]) hy[n =[] = (x[n] * hy[n]) * hy[n]

37



Properties of LTI Systems

The associative property

J Discrete-time

X[N] | 114 [N] i 1 h,[n] > y[N] X[N] e - 1\[N] = h14[N] » D[] > y[n]

(a) (b)

x[n] ==———==| h[n] = hyln] «hy [n] = y[n] X[ === heln] = Maln] > yIn]

() (d)

38



Properties of LTI Systems

The associative property

 Continuous-time x(t) * (hy(£) * hy () = (x(t) * hy (t)) * hy ()
KO * (@ * ho(©) =x(O) * | (Ohy(t = Do

= Jr x(r’)] h{(t)h,(t — 1t — 1)dTrdT’

(0.0)

lett' +17=1"

x(@) j h(z" — )y (t — t")d7" dt’

f J x(t)h{(t" —1t")dt" h,(t —1"")dt"

_ f x(T'") % by (2') hy (t — T dT" = (x(8) * by (£)) * by (£)



Properties of LTI Systems

LTI systems with and without memory

[ Discrete-time system without memory only if ~ h[n] = 0foralln # 0

h|n] = h[0]6[n] = kd[n] yln] = kx[n]  Why?

[ Continuous-time system without memory only if h(t) = 0forallt # 0

h(t) = h(0)6(t) = k6(t) y(t) = kx(t)

40



Properties of LTI Systems

Invertibility for LTI systems

QIf hy(t) * hy(t) = 6(t), the system h,(t) is the inverse of the
system hy(t)

x(t) () [h@ w(t)=x(1)

U Similarly, if hy[n] * h{[n] = &[n], the system h [n] is the inverse
system of hy[n]

41
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Invertibility for LTI systems

d Examples

Consider hy|n] = u[n], determine the inverse system h[n]

hold

" hp[n]* b n]=uln]*nn] = o[n]
oln]=uln|-uln—1]|=uln]*(o|n]-oln—1])
Sohn]=o0[n]-0o[n—1]

42



Properties of LTI Systems L),

Invertibility for LTI systems

d Examples

Consider the LTI system consisting of a pure time shift

y(t) = x(t = to),

determine the inverse system.

43



Properties of LTI Systems

Causality for LTI systems

Q If h[n] = 0forn < 0,0r h(t) = 0 fort < 0, the system is causal

d Equivalent to the condition of initial rest

ylnl = > xlklhln—k] or ylnl= ) hlklx[n— k]
k=—c0 k=0

V(0 = f XAt —1) dr or Y() = f h(Dx(t — T)d
0

— 00

44



Properties of LTI Systems

Causality for LTI systems

J Examples

e Accumulator:  y[n] = Y__4 x[l] Causal LTI system

hin] =YL _o6[ll=u[n] hin]=0forn<0

* Factor 2 interpolator:  y[n] = x,[n] + % (xyIn — 1] + xy [n + 1])

Non-Causal LTI system

hin] = §[n] +%(6

h[n]

n—1]+6n+ 1))

#* 0forn=-1 45



Properties of LTI Systems

Stability for LTI systems

1 A discrete LTI system is stable if h[n] is absolutely summable

1 A continuous LTI system is stable if h(t) is absolutely integrable

o0

Y | hlk]|< o absolutely summable

k=—

I i | h(7)ldr <0 absolutely integrable

46



Properties of LTI Systems

Stability for LTI systems

 Proof: “if and only if” (Sufficient and necessary condition)

yinll = | D hlklxin— k]| < ) Ihlklxfn— K]l = ) [klK]| x[n = k]

k=—o0 k=—o0 k=—o0

syl < ) IRK]] Ix[n - k]

k=—o0

flfn—kI<B, Il <B ) [klK]

k=—o

If and only if ), _|h[k]| < o0 lyln]| < oo

47



Properties of LTI Systems

Stability for LTI systems

J Proof: continuous case
If |x(t —1)| < B,

oo

ly(®)| = s] |h(D)] - |x(t — T)|dt < By f_o:olh(r)ldr

joo h(t)x(t —t)dTt

if and only if [~ _|h(t)|dt < oo ly(©)] <o

48



Properties of LTI Systems

Stability for LTI systems

J Examples

49



Properties of LTI Systems

Stability for LTI systems

1 Examples hin] = a™u|n]
00 0.0 i (00 i 1
D Ihlnll= ) latuln] = ) et = flal <1
1—|a
n=—oo n=-—oo n=0

If |a| = 1, the system is unstable

50



Properties of LTI Systems

The unit step response of LTI systems

 The unit step response, s(t) or s[n], corresponding to the output with
input x(t) = u(t) or x[n] = uln]

sln = uln] «hln) = ) hlkluln—k] = ) hlk]
k=—o0 k=—o00
uln) = ) 8k sl = ) hlk
k=—o00 k=—o00

51



Properties of LTI Systems

The unit step response of LTI systems

 The unit step response, s(t) or s[n], corresponding to the output with
input x(t) = u(t) or x[n] = uln]

0 t
s(t) = u(t) * h(t) = f h()u(t — T)dr = f h(2)dr

t t
u(t) = f_ d(t)drt s(t) =f_ h(t)dt

52



Linear Time-Invariant Systems (ch.2)

1 Differential or Difference Equations



Differential or Difference Equations

Differential equation A/W\,——AL
[ First order system —j
ve (1 | C \

- v
dv(t) dv.(1) _1_ _
y Pl (r) — —f(r) I cVelt) = vs(f)
dy(t
3 In general: ;i) +ay(t) = bx(1)

d Describes a relationship between the input and the output (implicit)
d Auxiliary conditions are needed for solving the DE. 54




Differential or Difference Equations

Differential equation

dy(t
[ First order system: example %) + 2y(t) = x(t)

If x(t) = Ke3tu(t) y(t) =?
J Solution:

y() = yp(t) + yn(0)
y,, (t): particular solution, forced response (same form as input)

. H luti
vy, (t): Homogenous solution dy (D) )
T + 2y(t) =0

55



Differential or Difference Equations

Differential equation

dy(t
[ First order system: example %) + 2y(t) = x(t)

If x(t) = Ke3tu(t) y(t) =?
3 Particular solution: Let y,(t) = Ye?¢, for t>0
K
3Ye3t 4+ 2Ye3t = Ke3! mmmm) Y = (/5 wmmmd Yy, (t) = ge“
3 Homogenous solution:  Let y, (t) = Ae*t, for t>0

AseSt + 24est = () =) s=—-2 mmm) vy,(t)=Ae %

y(t) = Ae %t + §e3t, fort >0

56



Differential or Difference Equations

Differential equation

y(t) = Ade %t + §e3t, fort > 0

J Auxiliary condition is required to determine A

[ Initial rest as auxiliary condition for causal LTI systems: y(0) = 0

K K
A+§=O —’A=—§ — y(t)=§(e3t+e‘2t),fort>0

= g(e3t+e‘2t)u(t)

57



Differential or Difference Equations

Differential equation

1 General case: Nth-order linear constant-coefficient differential equation

21\’ dky(t)_zM , d*x(t)
emo KAtk T Lugeo ¥ dtk

- Particular solution + Homogenous solution: y(t) = y,(t) + y,(t)
*  y,(t): forced response (same form as input)

k
* y,(t): Natural response, Y., akddL,(f) =

[ Initial rest as auxiliary condition, that is if x(t) = 0 for t < t,,

dye) | _dV )
t dtN_l 58

y(to) =



Differential or Difference Equations

Difference equation

1 General case: Nth-order linear constant-coefficient difference equation

 Particular solution + Homogenous solution: y[n] = y,[n] + yx[n]

* Ypln]

* ypln

: forced response (same form as input)

: Natural response, Y n—o axy[n — k] =0

I Initial rest as auxiliary condition, that is if x[n] = 0 for n < n,,
Y[no] =y[ne—1] = =y[ne—(N-1)] =0

59



Differential or Difference Equations

Difference equation

[ Recursive solution:

1 M N
yln] = a—o{zkzobkx[n K= ) ayln- k]}

e Particular case N=0

1 —M
— bpx[n — k] Non-recursive equation
Ao =i k=0

=,
=,
[

1 —M
hin| = —Z bio|n — k] Finite impulse response
Ao &~ik=0 (FIR) system
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Differential or Difference Equations

Difference equation

1

[ Recursive solution: example yn] — Ey[n — 1] = x[n]
* Consider x|n| = K&[n] and take initial rest: y[—1] = 0
1 1
y[0] = x[0] + S yl-1] = K y[1] = x[1]+7y[0] = 5K
1 1\ ~ 1 Ao (B,
y[2] = x[2] +§3I[1] = (E) K .. ylnl=x[n] +§)'[n —1] = >
~ h[n] = (%) u[n] Infinite impulse response (lIIR) system

N > 0, lIR system Not always!
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U Generally z a,y[n—k] = z bpx[n — k] {N = 0, FIR system
k=0



Differential or Difference Equations

Block Diagram Representations

] Basic elements: discrete-time y[n] + ay[n — 1] = bx[n]

Xo[n]
X[ _,(g—x1[n] + 0] yln] = —ay[n — 1] + bx[n]

y[n]

X[N] ——] D |e—— XN 1]




Differential or Difference Equations

Block Diagram Representations

T e o | dy(t) B
asic elements: continuous-time T + ay(t) = bx(t)

Xo(t)

l 1dy(t) b
x 0 % t) = ————>+—x(t
1(1}—->®——> () + xolt) y(t) o d . (t)
() > ax(t)

K(t)—bLLC? l > y(t)
X(t) ———s- D r—dgit) ]
—-1/a dy(t)

X(t) e f — I l x(7) d7 e at




Differential or Difference Equations

Block Diagram Representations

[ Basic elements: continuous-time
Xo(t)

x1(t}—->®——> x1(t) + xo(t)

a
x(t) -> ax(t)

dx(t)

X(t) =——i D >

X(t)  m—- f B I l (1) dv

dy(t) 3
g + ay(t) = bx(t)
dy(t)

= —ay(t) + bx(t)

t
y(t) = f [bx(x) — ay(D)]dx




