The z-Transform (ch.10)

\Box The z-transform

- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \square System function algebra and block diagram representations
- \square The unilateral z-transform

Recall

\square The response of LTI systems to complex exponentials z^n

$$
y[n] = H(z)z^{n}
$$

$$
H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n}
$$

Definition

$$
x[n] \longleftrightarrow X(z)
$$

$$
X(z) \triangleq \sum_{n=-\infty}^{+\infty} x[n]z^{-n}
$$

 $n=-\infty$

 $x[n]z^{-n}$

 $z=re^{j\omega}$

 $X(z$

 $+\infty$

 \mathcal{Z}

 $X(z) \triangleq$ >

 $x[n]$

Z-transform vs Fourier transform

 $z=e^{j\omega}$

 $|z| = 1$

$$
X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n](re^{j\omega})^{-n}
$$

$$
X(re^{j\omega}) = \sum_{n=-\infty}^{+\infty} \{x[n]r^{-n}\}e^{-j\omega n}
$$

$$
X(re^{j\omega}) = F\{x[n]r^{-n}\}
$$

Unit circle

z-plane

 Re

 \mathfrak{g}_{m}

 $z = e^{j\omega}$

 \sim

Examples

$$
x[n] = a^n u[n] \qquad X(z) = ?
$$

Solution

Examples

$$
x[n] = -a^n u[-n-1] \qquad X(z) = ?
$$

Solution

4

 $X(z) = ?$

Examples

$$
x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]
$$

Solution

1

$$
7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n] \longleftrightarrow \frac{7}{1 - \frac{1}{3}z^{-1}} - \frac{6}{1 - \frac{1}{2}z^{-1}} \qquad |z| > \frac{1}{2}
$$

Examples

$$
x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u[n] = \frac{1}{2j} \left(\frac{1}{3} e^{j\pi/4}\right)^n u[n] - \frac{1}{2j} \left(\frac{1}{3} e^{-j\pi/4}\right)^n u[n] \qquad X(z) = ?
$$

Solution

$$
X(z) = \sum_{n=-\infty}^{+\infty} \left\{ \frac{1}{2j} \left(\frac{1}{3} e^{j\pi/4} \right)^n u[n] - \frac{1}{2j} \left(\frac{1}{3} e^{-j\pi/4} \right)^n u[n] \right\} z^{-n}
$$

= $\frac{1}{2j} \sum_{n=0}^{+\infty} \left(\frac{1}{3} e^{j\pi/4} \right)^n z^{-n} - \frac{1}{2j} \sum_{n=0}^{+\infty} \left(\frac{1}{3} e^{-j\pi/4} \right)^n z^{-n}$
= $\frac{1}{2j} \frac{1}{1 - \frac{1}{3} e^{j\pi/4} z^{-1}} - \frac{1}{2j} \frac{1}{1 - \frac{1}{3} e^{-j\pi/4} z^{-1}}$

For convergence,

$$
\left|\frac{1}{3}e^{j\pi/4}z^{-1}\right| < 1 \, \& \left|\frac{1}{3}e^{-j\pi/4}z^{-1}\right| < 1 \quad \Rightarrow \quad |z| > 1/3
$$

The z-Transform (ch.10)

 \Box The z-transform

\Box The region of convergence for the z-transforms

- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \square System function algebra and block diagram representations
- \square The unilateral z-transform

Properties

The ROC of $X(z)$ consists of a ring in the z-plane centered about the origin.

ROC of $X(z)$: $x[n]r^{-n}$ converges (absolutely summable)

 \sum $n=-\infty$ $+\infty$ $x[n]|r^{-n} < \infty$

 \Box The ROC does not contain any poles.

 $X(z)$ is infinite at a pole

Properties

- \Box If $x[n]$ is of finite duration $(x[n] \neq 0$ for $N_1 < n < N_2$), then the ROC is the entire z-plane, except possibly $z = 0$ and/or $z = \infty$
	- If $N_1 < 0$ and $N_2 > 0$ ROC does not include $z = 0$ or $z = \infty$

If $N_1 \geq 0$,

ROC includes $z = \infty$, not $z = 0$

If $N_2 \leq 0$,

ROC includes $z = 0$, not $z = \infty$

Examples

 $\delta[n] \stackrel{Z}{\longleftrightarrow} \sum$ $n=-\infty$ $+\infty$ $\delta[n]z^{-n} = 1$ ROC = the entire z-plane

$$
\delta[n-1] \longleftrightarrow \sum_{n=-\infty}^{+\infty} \delta[n-1]z^{-n} = z^{-1} \quad \text{ROC = the entire z-plane except } z = 0
$$

$$
\delta[n+1] \longleftrightarrow \sum_{n=-\infty}^{+\infty} \delta[n+1]z^{-n} = z
$$
 ROC = the entire finite z-plane
(except $z = \infty$)

Properties

 \Box If $x[n]$ is a right-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also be in the ROC.

11 \Box If $x[n]$ is a left-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $0 < |z| < r_0$ will also be in the ROC.

Properties

\Box If $x[n]$ is a two-sided sequence, and if the circle $|z| = r_0$ is in the ROC, then the ROC will consist of a ring in the z-plane that includes the circle $|z| = r_0$.

 \implies

ROC for two-sided signal

Examples

$$
[n] = \begin{cases} a^n & 0 \le n \le N - 1, a > 0 \\ 0 & otherwise \end{cases} \qquad X(z) = ?
$$

Solution

 $\boldsymbol{\chi}$

$$
X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} (az^{-1})^n = \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1}{z^{N-1}} \frac{z^N - a^N}{z - a}
$$

The N roots of the numerator polynomial:

$$
z_k = ae^{j\left(\frac{2\pi k}{N}\right)}, \qquad k = 0, 1, \cdots, N-1
$$

When $k = 0$, the zero cancels the pole at $z = a$

$$
z_k = ae^{j\left(\frac{2\pi k}{N}\right)}, \qquad k = 1, \cdots, N-1
$$

Properties

- \Box If the z-transform $X(z)$ of $x[n]$ is rational, then its ROC is bounded by poles or extends to infinity.
- \Box If the z-transform $X(z)$ of $x[n]$ is rational, then if $x[n]$ is right-sided, the ROC is the region in the z-plane outside the outer-most pole. If $x[n]$ is causal, the ROC also includes $z = \infty$.
- \Box If the z-transform $X(z)$ of $x[n]$ is rational, then if $x[n]$ is left-sided, the ROC is the region in the z-plane inside the inner-most nonzero pole. If $x[n]$ is anti-causal, the ROC also includes $z = 0$.

Examples

$$
X(z) = \frac{1}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - 2z^{-1}\right)}
$$
olution

Solution

ROC ?

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms

\square The inverse z-transform

- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \square System function algebra and block diagram representations
- \square The unilateral z-transform

$$
X(re^{j\omega}) = \mathcal{F}\{x[n]r^{-n}\}\
$$

$$
x[n]r^{-n} = \mathcal{F}^{-1}\left\{X(re^{j\omega})\right\} = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega})e^{j\omega n} d\omega
$$

$$
x[n] = r^n \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega}) (re^{j\omega})^n d\omega
$$

$$
[x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz]
$$

$$
x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz
$$

19

Examples

$$
X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad |z| > \frac{1}{3}
$$

Solution

$$
X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}
$$

$$
x[n] = x_1[n] + x_2[n]
$$

$$
x_1[n] \longleftrightarrow \frac{z}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}
$$
\n
$$
x_2[n] \longleftrightarrow \frac{z}{1 - \frac{1}{3}z^{-1}} \quad |z| > \frac{1}{3}
$$
\n
$$
\Rightarrow \quad x[n] = \left(\frac{1}{4}\right)^n u[n] + 2\left(\frac{1}{3}\right)^n u[n]
$$

 $x[n] = ?$

Examples

$$
X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad \frac{1}{4} < |z| < \frac{1}{3}
$$

Solution

$$
X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}
$$

$$
x[n] = x_1[n] + x_2[n]
$$

$$
x_1[n] \longleftrightarrow \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}
$$
\n
$$
x_2[n] \longleftrightarrow \frac{z}{1 - \frac{1}{3}z^{-1}} \quad |z| < \frac{1}{3}
$$
\n
$$
\implies x[n] = \left(\frac{1}{4}\right)^n u[n] - 2\left(\frac{1}{3}\right)^n u[-n-1]
$$

 $x[n] = ?$

Examples

$$
X(z) = \frac{3 - \frac{5}{6}z^{-1}}{\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}, \qquad |z| < \frac{1}{4}
$$

Solution

$$
X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}
$$

$$
x[n] = x_1[n] + x_2[n]
$$

 $x[n] = ?$

$$
x_1[n] \longleftrightarrow \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| < \frac{1}{4}
$$
\n
$$
x_2[n] \longleftrightarrow \frac{z}{1 - \frac{1}{3}z^{-1}} \quad |z| < \frac{1}{3}
$$
\n
$$
|z| < \frac{1}{3}
$$
\n
$$
\implies x[n] = -\left(\frac{1}{4}\right)^n u[-n-1] - 2\left(\frac{1}{3}\right)^n u[-n-1]
$$

Examples

$$
X(z) = 4z^2 + 2 + 3z^{-1}, \qquad 0 < |z| < \infty \qquad x[n] = ?
$$

Solution 1

$$
x[n] = \begin{cases} 4, & n = -2 \\ 2, & n = 0 \\ 3, & n = 1 \\ 0, & otherwise \end{cases}
$$

Solution 2

$$
\delta[n+n_0] \longleftrightarrow Z^{n_0}
$$

 $x[n] = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$

 $x[n] = 4\delta[n+2] + 2\delta[n] + 3\delta[n-1]$

Examples

If $|z| < |a|$, $\frac{1}{1 - az^{-1}} = -a^{-1}z - a^{-2}z^2 + \cdots$ $x[n] = -a^n u[-n-1]$

$$
-az^{-1} + 1 \overline{\smash)1} \frac{-a^{-1}z - a^{-2}z^2 - \cdots}{1 - a^{-1}z}
$$

Examples

$$
X(z) = \log(1 + az^{-1}),
$$
 $|z| > |a|$ $x[n] = ?$

Solution

$$
\log(1 + v) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} v^n}{n}, \qquad |v| < 1
$$
\n
$$
X(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^{-n}}{n}
$$
\n
$$
x[n] = \begin{cases} (-1)^{n+1} a^n / n & n \ge 1\\ 0 & n \le 0 \end{cases}
$$
\n
$$
= -\frac{(-a)^n}{n} u[n-1]
$$

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform

\Box Geometric evaluation of the Fourier transform from the pole-zero plot

- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \Box System function algebra and block diagram representations
- \square The unilateral z-transform

First-order systems

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \square System function algebra and block diagram representations
- \square The unilateral z-transform

Linearity

$$
x_1[n] \longleftrightarrow X_1(z) \quad \text{ROC} = R1
$$
\n
$$
\Rightarrow \begin{bmatrix} ax_1[n] + bx_2[n] \longleftrightarrow aX_1(z) + bX_2(z) \\ ax_1[n] + bx_2[n] \longleftrightarrow aX_1(z) + bX_2(z) \end{bmatrix}
$$
\nwith ROC containing $R_1 \cap R_2$

Time shifting

$$
x[n] \longleftrightarrow^{Z} X(z) \quad \text{ROC} = R
$$
\n
$$
x[n - n_0] \longleftrightarrow^{Z} z^{-n_0} X(z) \quad \text{ROC} = R \text{ except for the possible addition}
$$
\nor deletion of the origin or infinity

z-plane

Im

Unit circle

Time reversal

$$
x[n] \longleftrightarrow \begin{array}{c} Z \\ X[-1] \end{array} \quad \text{ROC} = R
$$

$$
x[-n] \longleftrightarrow \begin{array}{c} Z \\ Z \end{array} \quad \text{ROC} = \frac{1}{R}
$$

Time expansion

 $\mathbb U$ $x[n] \longleftrightarrow X(z)$ \mathcal{Z} $ROC = R$ $x_{(k)}[n] \longleftrightarrow \begin{array}{c} Z \\ X(Z^k) \end{array} \quad \text{ROC} = R$ $1/k$ $x_{(k)}[n] = \{$ $x[n/k]$ if *n* is a multiple of k 0 if *n* is not a multiple of k

$$
X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}
$$

$$
X(z^k) = \sum_{n=-\infty}^{+\infty} x[n]z^{-kn}
$$

Conjugation

$$
x[n] \longleftrightarrow \begin{array}{c} Z \\ X(z) \\ \downarrow \end{array} \quad \text{ROC} = R
$$

$$
x^*[n] \longleftrightarrow \begin{array}{c} X^*(z^*) \\ \downarrow \end{array} \quad \text{ROC} = R
$$

Convolution

$$
x_1[n] \longleftrightarrow X_1(z) \quad \text{ROC} = R_1
$$

\n
$$
x_2[n] \longleftrightarrow X_2(z) \quad \text{ROC} = R_2
$$

\n
$$
x_1[n]^* x_2[n] \longleftrightarrow X_1(z)X_2(z)
$$

\n
$$
x_2[n] \longleftrightarrow X_1(z)X_2(z)
$$

\n
$$
x_1[n]^* x_2[n] \longleftrightarrow X_1(z)X_2(z)
$$

32

Properties of the z-transform

First-difference

$$
x[n] \longleftrightarrow \begin{array}{c} Z \\ X(z) \end{array} \quad \text{ROC} = R
$$

$$
x[n] - x[n-1] \longleftrightarrow \begin{array}{c} Z \\ (1 - z^{-1})X(z) \end{array}
$$

 $ROC = R$, possible deletion of $z = 0$ and/or addition of $z = 1$

Accumulation

$$
x[n] \longleftrightarrow \begin{array}{ccc} X(z) & \text{ROC} = R \\ w[n] = \sum_{k=-\infty}^{n} x[k] & \longleftrightarrow & \frac{1}{(1-z^{-1})} X(z) & \text{ROC contains } R \cap \{|z| > 1 \end{array}
$$

Differentiation in the z-domain

$$
x[n] \longleftrightarrow \begin{array}{ccc} Z & X(z) & \text{ROC} = R \\ \downarrow & & \downarrow \\ nx[n] \longleftrightarrow \begin{array}{ccc} Z & dX(z) \\ -z & dz \end{array} & \text{ROC} = R \end{array}
$$

Examples

$$
X(z) = \log(1 + az^{-1}) \qquad |z| > |a| \qquad x[n] = ?
$$

 $-z$ $dX(z)$ $\, dz$ = az^{-1} $\frac{1}{1 + az^{-1}}$ $|z| > |a|$ $a(-a)^n u[n]$ \overline{a} $1 + az^{-1}$ \mathcal{Z} $|z|>|a|$ $a(-a)^{n-1}u[n-1]$ az^{-1} $1 + az^{-1}$ \mathcal{Z} $|z|>|a|$ $x[n] = (a-a)^n$ \overline{n} $u[n-1]$ Solution $nx[n] \longleftrightarrow -z$ $dX(z)$ \overline{dz} $\frac{Z}{Z}$ $-z \frac{dX(Z)}{dz}$ $|z| > |a|$ =

Examples

$$
X(z) = \frac{az^{-1}}{(1 - az^{-1})^2} \qquad |z| > |a| \qquad x[n] = ?
$$

Solution

$$
\frac{az^{-1}}{(1 - az^{-1})^2} = -z \frac{d}{dz} \left(\frac{1}{1 - az^{-1}} \right) = |z| > |a|
$$

$$
a^n u[n] \xrightarrow{z} \frac{1}{1 - az^{-1}} \qquad |z| > |a|
$$

$$
na^n u[n] \longleftrightarrow \frac{az^{-1}}{(1 - az^{-1})^2} \qquad |z| > |a|
$$

The initial-value theorem

 $x[0] = \lim$ $X(\overline{z}$ $x[n] = 0$ for $n < 0$, Then,

→∞

$$
X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}
$$

For $n > 0$, $z \to \infty \implies z^{-n} \to 0$
For $n = 0$, $z^{-n} = 1$

Examples

If

$$
x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{2}\right)^n u[n]
$$

$$
X(z) = \frac{7}{1 - \frac{1}{3}z^{-1}} - \frac{6}{1 - \frac{1}{2}z^{-1}}
$$

 $x[0] = 1$ lim →∞ $X(z) = 1$

 \implies

Summary

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform

\square Some common z-transform pairs

■ Analysis and characterization of LTI systems using z-transforms \square System function algebra and block diagram representations \square The unilateral z-transform

Some z-transform pairs

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \Box System function algebra and block diagram representations
- \square The unilateral z-transform

Causality

Causal \iff ROC of $H(z)$ is the exterior of a circle, including infinity

A system with rational \iff $H(z)$ is causal

- ROC is the exterior of a circle outside the outermost pole;
- With $H(z)$ expressed as a ratio of polynomials in z, the order of the numerator cannot be greater than the order of the denominator.

$$
H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 - 2z^{-1}} \qquad |z| > 2
$$

Solution 1

 $|z| > 2$: ROC is the exterior of a circle outside the outermost pole.

$$
H(z) = \frac{2 - \frac{5}{2}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - 2z^{-1}\right)} = \frac{2z^2 - \frac{5}{2}z}{z^2 - \frac{5}{2}z + 1}
$$
 Gaussal

Solution 2

 $h[n] = [(1/2)^n + 2^n]u[n] \implies h[n] = 0$ for $n < 0 \implies$ Causal

Stability

For an LTI system,

Stable \iff The ROC of $H(z)$ includes the unit circle, $|z| = 1$

Stability

For a causal LTI system with rational system function $H(z)$,

Stable \iff All of the poles of $H(z)$ lie inside the unit circle. (magnitude smaller than 1)

Examples (causal LTI)

$$
H(z) = \frac{1}{1 - az^{-1}}
$$
 is stable \implies $|a| < 1$

Examples (causal LTI)

$$
H(z) = \frac{1}{1 - (2r\cos\theta)z^{-1} + r^2z^{-2}}
$$

Poles: $z_1 = re^{j\theta}$ $z_2 = re^{-j\theta}$
Stable $\implies r < 1$

LTI systems characterized by linear constant-coefficient difference equations

Examples

$$
y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]
$$

\n
$$
Y(z) - \frac{1}{2}z^{-1}Y(z) = X(z) + \frac{1}{3}z^{-1}X(z)
$$

\n
$$
Y(z) = X(z) \left[\frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \right]
$$

\n
$$
H(z) = \frac{Y(z)}{X(z)} = \left[\frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \right] \implies \left\{ \begin{array}{l} |z| > \frac{1}{2} & h[n] = \left(\frac{1}{2}\right)^n u[n] + \frac{1}{3}\left(\frac{1}{2}\right)^{n-1} u[n-1] \\ |z| < \frac{1}{2} & h[n] = -\left(\frac{1}{2}\right)^n u[-n-1] - \frac{1}{3}\left(\frac{1}{2}\right)^{n-1} u[-n] \end{array} \right\}
$$

LTI systems characterized by linear constant-coefficient difference equations

$$
\begin{aligned}\n\Box \text{ In general} \\
\sum_{k=0}^{N} a_k y[n-k] &= \sum_{k=0}^{M} b_k x[n-k] \\
Y(z) \sum_{k=0}^{N} a_k z^{-k} &= X(s) \sum_{k=0}^{M} b_k z^{-k} \\
H(z) &= \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}} \quad \Longrightarrow \quad \left\{\n\begin{array}{c}\nP^{\text{O}} \\
\vdots \\
P^{\text{O}}\n\end{array}\n\right.
$$

46 Poles at the solution of \quad Zeros at the solution of \quad $\big\}$ $k=0$ \boldsymbol{M} $b_k z^{-k} = 0$ $k=0$ \boldsymbol{N} $a_k z^{-k} = 0$

Examples relating system behavior to the system function

Given the following information about an LTI system, $H(z) = ?$ $h[n] = ?$

- If $x_1[n] = (1/6)^n u[n]$, then $y_1[n] = \left[a \left(\frac{1}{2}\right)\right]$ 2 $n + 10 \left(\frac{1}{2} \right)$ 3 \boldsymbol{n} $u[n]$
- If $x_2[n] = (-1)^n$, then $y_2[n] =$ 7 4 $(-1)^n$

Solution

47

Examples relating system behavior to the system function

Solution continue

$$
\frac{7}{4} = H(-1) = \frac{\left[(a+10) + \left(5 + \frac{a}{3}\right) \right] \left(\frac{7}{6}\right)}{\left(\frac{3}{2}\right)\left(\frac{4}{3}\right)} \quad \Rightarrow \quad a = -9
$$

$$
H(z) = \frac{(1 - 2z^{-1})\left(1 - \frac{1}{6}z^{-1}\right)}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{3}z^{-1}\right)}
$$

ROC of $X_1(z)$: $|z| >$ 1 6 ROC of $H(z)$: $|z| >$ 1 \implies 2

Examples relating system behavior to the system function

Consider a stable and causal system with impulse response $h[n]$ and rational system function $H(z)$, which contains a pole at $z = 1/2$ and a zero somewhere on the unit circle.

- \Box $\mathcal{F}\{(1/2)^n h[n]\}$ converges. **True**
- \Box $H(e^{j\omega}) = 0$ for some ω True
- \Box $h[n]$ has finite duration False
- \Box $h[n]$ is real lnsufficient information
- $\Box g[n] = n[h[n] * h[n]]$ is the impulse response of a stable system **True**

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \square System function algebra and block diagram representations
- \square The unilateral z-transform

System functions for interconnections of LTI systems

$$
\frac{Y(z)}{X(z)} = H(z) = \frac{H_1(z)}{1 + H_1(z)H_2(z)}
$$

Block diagram representations for causal LTI systems

$$
H(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}
$$

$$
y[n] - \frac{1}{4}y[n-1] = x[n]
$$

$$
w[n] = y[n-1]
$$

Examples: block diagram representations for causal LTI systems

$$
H(z) = \frac{1 - 2z^{-1}}{1 - \frac{1}{4}z^{-1}} = \left(\frac{1}{1 - \frac{1}{4}z^{-1}}\right)(1 - 2z^{-1})
$$

$$
y[n] = v[n] - 2v[n-1]
$$

$$
w[n] = s[n] = v[n-1]
$$

Or equivalently

Examples: block diagram representations for causal LTI systems

Examples: block diagram representations for causal LTI systems

The z-Transform (ch.10)

- \Box The z-transform
- \Box The region of convergence for the z-transforms
- \square The inverse z-transform
- \Box Geometric evaluation of the Fourier transform from the pole-zero plot
- \Box Properties of the z-transform
- \square Some common z-transform pairs
- Analysis and characterization of LTI systems using z-transforms
- \Box System function algebra and block diagram representations
- The unilateral z-transform

 \mathcal{E}

$$
x[n] \xleftarrow{UZ} \mathcal{X}(z) = U\mathfrak{L}\{x[n]
$$

$$
\mathcal{X}(z) \triangleq \sum_{n=0}^{\infty} x[n]z^{-n}
$$

Examples

$$
x[n] = a^n u[n]
$$

\n
$$
x(z) = \frac{1}{1 - az^{-1}}, \qquad |z| > |a|
$$

Examples

$$
x[n] = a^{n+1}u[n+1]
$$

$$
X(z) = \frac{z}{1 - az^{-1}}, \qquad |z| > |a|
$$

$$
\mathcal{X}(z) = \sum_{n=0}^{\infty} a^{n+1} z^{-n} = \frac{a}{1 - az^{-1}}, \qquad |z| > |a|
$$
 Not equal
 $(x[-1] \neq 0)$

Solution

$$
\mathcal{X}(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}
$$

$$
x[n] = x_1[n] + x_2[n]
$$

$$
x_1[n] \longleftrightarrow \frac{1}{1 - \frac{1}{4}z^{-1}} \quad |z| > \frac{1}{4}
$$
\n
$$
x_2[n] \longleftrightarrow \frac{z}{1 - \frac{1}{3}z^{-1}} \quad |z| > \frac{1}{3}
$$

$$
x[n] = ?
$$

$$
c[n]=?
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

$$
(\mathcal{M}_\mathcal{A},\mathcal
$$

$$
\implies x[n] = \left(\frac{1}{4}\right)^n u[n] + 2\left(\frac{1}{3}\right)^n u[n], \quad n \ge 0
$$

59

Properties of the unilateral Laplace transform

Convolution Examples

A causal LTI system, initial rest condition

$$
y[n] + 3y[n-1] = x[n] \qquad x[n] = \alpha u[n] \qquad y[n] = ?
$$

Solution

$$
\mathcal{H}(z) = \frac{1}{1 + 3z^{-1}}
$$

$$
\mathcal{Y}(z) = \mathcal{H}(z)\mathcal{X}(z) = \frac{\alpha}{(1+3z^{-1})(1-z^{-1})} = \frac{(3/4)\alpha}{1+3z^{-1}} + \frac{(1/4)\alpha}{1-z^{-1}}
$$

$$
\mathcal{Y}[n] = \alpha \left[\frac{1}{4} + \left(\frac{3}{4}\right)(-3)^n\right]u[n]
$$

Shifting property

$$
\begin{aligned}\nx[n+1] &\xarrow{uZ} x(z) - zx[0] \\
x[n-1] &\xarrow{uZ} x^{-1}x(z) + x[-1]\n\end{aligned}
$$

$$
x[n-2] \xrightarrow{UZ} z^{-2} \mathcal{X}(z) + z^{-1} x[-1] + x[-2]
$$

Consider $y[n] = x[n-1]$:

$$
y(z) = \sum_{n=0}^{\infty} x[n-1]z^{-n}
$$

= $x[-1] + \sum_{n=1}^{\infty} x[n-1]z^{-n}$
= $x[-1] + \sum_{n=0}^{\infty} x[n]z^{-(n+1)}$
= $x[-1] + z^{-1}X(z)$

Solving differential equations using the unilateral z-transform

 $y[n] + 3y[n-1] = x[n]$ $x[n] = \alpha u[n]$ $y[-1] = \beta$ $y[n] = ?$

Solution

$$
\mathcal{Y}(z) + 3\beta + 3z^{-1}\mathcal{Y}(z) = \frac{\alpha}{1 - z^{-1}}
$$
\n
$$
\mathcal{Y}(z) = \frac{3\beta}{1 + 3z^{-1}} + \frac{\alpha}{(1 + 3z^{-1})(1 - z^{-1})}
$$
\n
$$
\frac{1}{2} + \frac{\alpha}{1 + 3z^{-1}} + \frac{\alpha}{(1 + 3z^{-1})(1 - z^{-1})}
$$
\n
$$
\frac{1}{2}
$$

If $\alpha = 8, \beta = 1, y[n] = [3(-3)^n + 2]u[n]$, for $n \ge 0$