Signals and Systems

Lecturer: Dr. Lin Xu ({&£#4)
Office: 3-430, SIST
Email: xulinl@shanghaitech.edu.cn

Tel: 20684449
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Course Introduction

Motivation
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J Importance

 Confidence

d Math is important but not everything
1 Focus on big pictures

Rik Vullings
(1 GPA and real knowledge
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Global content Signal (input) Signal (output)

System

J Overview of Signals and Systems
 Linear-Time-Invariant Systems
1 Fourier Series Representation of Periodic Signals

1 The Continues-Time Fourier Transform

1 The Discrete-Time Fourier Transform

d Time and Frequency Characterization of Signals and Systems

J Sampling

 The Laplace Transform

J The Z-Transform .
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Exams and Grades

d Homework: 15% (delay <= 2 days, *0.8; >2days, *0)

d Mid-term (written, close-book): 30%

d Final Exam (written, close-book): 50%

d Attendance: 5% (-1 point per absence, no late than 5 mins)
d All in English, otherwise *0.8.

] Plagiarism:

First time: this assignment zero score.

Second time: this assignment zero score + final score *0.8;
Third time: Final score zero.



Text book and materials

J Book

»Signals and Systems (2" Edition), by A. V.
Oppenheim, A. S. Willsky, and S. Hamid.
ISBN: 978-0138147570.

»Signals and Systems using Matlab (2nd
Edition), by Luis Chaparro. ISBN: 978-
0123948120.

 These slides

. : : : OPPNHEIM
. All materials bill be available in the BB ALAN'S. WILLSKY

WITH S. HAMID NAWAB

system
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Organization

J Lecture: week 1-16; teaching center 301; Tue. and Thu. 08:15-10:00
] Exercise: time and location TBD

] Office hour: make appointment by email

 Experiment: by Dr. Linyan Lu, start from the 3™ week

J BB system: Slides and text book, homework release

] Gradescope: homework submission and grading

J Midterm Exam: week 9

 Final Exam: week 17-18




Course Introduction

] TAs:

> == H.: lijg12024@shanghaitech.edu.cn
> F X7 wangxb2024 @shanghaitech.edu.cn
> ZEFiE: huoxuan2024@shanghaitech.edu.cn

J QQ group



Course Introduction

Pre-knowledge: Complex numbers

Polar notation:

z = |z|el?

Cartesian notation:

2= Re{z}+j-Im{z}

Complex conjugation: j = -j

Euler:

Im

z = |z]|6)? = Re{z} +jIm{z}

2* = ]z]ej’g = Re{z}—jIm{z}

el — cos(6) + jsin(6)
o 4 o6
cos(f) = € e
2
jo _ oo
sin(9) = = —°

2]



Course Introduction

Pre-knowledge: Important geometric series

With z; some (possibly complex) number:

- 1
Z(Zo)n = 1 iff |Z()| <1
=0 g
’Proof’ via long tail division:
1 oo
= 1+zo—l—(zo)2—|—(zo)3+---ZZ(zo)n
0 n=0
M-1
> oy = 125
n—=y 1- <0
letn =M +p
M-1 o0

Proof: Z Z() — Z Zo)n = Z (Zo)n = 1 ZQ A[ Z

n=0 n=M p=0 9



Course Introduction

Pre-knowledge: Zeros of a complex equation

With a some (complex) number, find zeros of: N —a=0

N =qa=qel?m

= zk:a%-ejk‘% fork=0,1,--- ,N -1

A
J

)

Example:a =1, N =4

= 2 = elF 2

Example:a = -1, N =3

— (ejﬂ') . e]kz?7T

27
k2D

wl— Wl

AR

w3

10



Signals and Systems: An overview (ch.1)

1 Continuous-Time and Discrete-Time Signals

W Transformations of the Independent Variable

nit Impulse and Unit Step Functions



Continuous-Time and Discrete-Time Signals

] Signals describe a wide variety of physical phenomena

R
| +
ol ClT,c A e
O Q
- v

The voltage v and v, are examples The force f and velocity v are
of signals. signals.

12



Continuous-Time and Discrete-Time Signals

L Mathematically, signals are represented as functions of one or more
independent variables.

(J Example of typical signals

» Sound
» Image
> Video

13



Continuous-Time and Discrete-Time Signals

] Sound: represents acoustic pressure as a function of time

10

Amplitude
o

-10

t[s] % 10*

£(6) ’



f(xy)

15



Continuous-Time and Discrete-Time Signals

] Video: consists of a sequence of images, called frames, and is a function of
3 variables: 2 spatial coordinates and time

feyt)

16



Continuous-Time and Discrete-Time Signals

[ Independent variables can be one or more

[ Focus on signals involving a single independent variable

[ Generally refer to the independent variable as time, although it
may not in fact represent time in specific applications

1 Continues-time and discrete-time signal

17



Continuous-Time and Discrete-Time Signals

 Continues-time signals: the independent variable is continuous, and
signals are defined for a continuum of values

r—

Amplitude

\

o
\r_ii

18



] Discrete-time signals: defined only at discrete times, and the independent

variable takes on only a discrete set of values

400
...T.’

350 - YY1 1.1
2% P ?

300ﬂTTP..’......T.T 7.1 ?

250 | 1 11
200 |
150 |
100 |

S0

0

1\ A

Jan. 5,1929 Jan. 4,1930

An example of a discrete-time signal: The weekly Dow-Jones

stock market index from January 5, 1929, to January 4, 1930. 1



Continuous-Time and Discrete-Time Signals

1 Continuous-time signals: t denote the independent variable, enclosed in (+)

 Discrete-time signals: n denote the independent variable, enclosed in [-]
d x[n]

» discrete in nature; or sampling of continuous-time signal
» Focus mainly on the second case, defined only for integer values of n

x(t) x[n]
/ — X[0]
~— | U
987 ];5-4"3-2 RIAEETARE , 10
0 t lll—ﬁ 111—10123456?791 n

20



Continuous-Time and Discrete-Time Signals

Signal energy and power

 v(t) and i(t) are voltage and current across a resistor R, the instantaneous

power is ;
p(t) = v(t)i(t) = v (D)

[ The total energy over the time interval t; <t < t, is e
% R
Er = [,"p(®)dt = [*-v?(t) dt (—)

 The average power over the timeinterval t; <t < t, is

f p(t) dt = tzitl ftzlvz(t) dt

t1 R

tz—t1

21



Signal enerqy and power

U Similarly, for any signal x(t) or x[n], the total energy is defined as

)
E = f |x(t)|* dt thL=t=t Continuous-time signal
tq
ny
E = 2 |x[n]|? ngSn=n Discrete-time signal
n=n-q

1 The average power is defined as

E E
P = Continuous P = Discrete
t, —ty np, —ng +1

22



Continuous-Time and Discrete-Time Signals

Signal enerqy and power

[ Over infinite time interval —co <t < wor—ow <n <

T o)
E. éTlimf |x(t)|2dt=j lx(t)]? dt Continuous
—~00 J_ - o
N 0
Ee, 2 lim z x[n]|? = Z x[n]|2 Discrete
n=-—N n=-—oo
1 T
T 2
P, £ Jim ZTf x(6)|? dt P, —zmozzv 1 ZV Ix[n
L

Continuous Discrete

23



Continuous-Time and Discrete-Time Signals

Signal enerqy and power

 Finite-energy signal: £, < o

1 T
P, 2 lim — )% dt =0
lim — _Tlx()l
N
Po 2 Jim e > Jxlnll? = 0
© = % 2N + 1 A=
n=—N

 Finite-power signal: P, < o0, F,, = ©

 Infinite energy & power signal P,, —» o, E, —

24



Continuous-Time and Discrete-Time Signals

Signal enerqy and power

J Examples:
(0, t<0
(1) x(t) =<1,0<t<1 E, <o, P,=0
L 0, t>1

(2)x[n] =4 P, <o, E, =

3)x(t) =t Py > 0, Ex >

25



Signals and Systems: An overview (ch.1)

[ Transformations of the Independent Variable

26



Time shift

x(9) to >0 1 vt
X() —> x(t = t) SONMMEN B (O
. _ a "t | t
x(t): x(a) - t=a t, a+to

x(t—ty): x(a) - t—tyg=a

x;n; ny <0 +x[n+1]
x|n] — x[n —ng] + II =—> I III

01234 n -10123 n

27
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Time scaling

x(t) — x(2t) Compressed
x(t) —> x(t/2) Stretched
x“(t) —> xﬂ(Z t) —> x(za/ 2)

fﬁ’ m’ f—/ﬁt

29



Transformation of the independent variable

General: Let x(t) - x(at + B)

» if |a| > 1, compressed
» if |a| < 1, stretched

» if a <0, reversed

» if B+ 0, shifted

Examplel: Given the signal x(t), to illustrate

> x(t+1) 'x(?)

> x(—t+ 1) 1]
> x(3t/2) . \

> x(5+ 1) 01 2 ¢

30



»x(t+1) x(—t+1)

1x(?)

x(3t/2)

r

x(5+ 1)

[ x(-t)
1

210 ¢

1

/

x(-t+1)

-1 01

{

v x(3t/2)
1 —\

0 2/3 4/3 ¢
X(3t/2+1)

-2/3 0 2/3 ¢

31



J Example2: A discrete signal x[n] is shown below, sketch and label

following signals:

> x[2n]
> x[2n+1]
x[n) ; 1.5 2
4 2 T
BRMETEYEE
s

32






Transformation of the independent variable

Periodic Signals

=27

O Continuous-time: x(t) = x(t + T) for all t

J Fundamental period
* The smallest positive value of T for which x(t) = x(t + T) holds

34



Transformation of the independent variable

Periodic Signals

x[n]

]l”l ll”l[ -

[ Discrete-time: x|[n] = x[n + N] foralln

J Fundamental period
* The smallest positive value of N for which x|n] = x|[n + N] holds

35



Transformation of the independent variable

Periodic Signals

d Example:

cos(r) 1fr<Q

“”={gmn ifr =0

Not periodic

36



Even and Odd Signals

J Even signal
e x(t) = x(—t) x[n]=x[—n] [_ﬁ
J Odd signal _
* x(t) = —x(=t) x|n] =—x[-n] | /1o ¢

Any signal is either even or odd. False

37



Transformation of the independent variable

Even and Odd Signals

d Any signal can be broken into a sum of two signals
» One even and one odd

X(t) = X, () + %, (1

X, (1) = E{X(1)} = %[x(t) ()]

1

X, (1) = Oy 1X()} = 5 [x(t) = x(-t)]

38



Transformation of the independent variable

Even and Odd Signals

| x(®)

X, (t) = E{X®} = = [X() + x(-0]

2

X, (t) = 0, {X(®)} = = [X(t) - X(-)]

1/2

|x.(0)

2

| x,(2)

+ 172 N\

i x

t:
-1/2

39



Even and Odd Signals

lx[n] § Xeln] x,[n]

1900 09.. 11/2 5
LT+ a2 ]

01273 n 2-10123 ™" 4]]]0123’1

40



Signals and Systems: An overview (ch.1)

J Exponential and Sinusoidal Signals

41



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

] General case

x(1) = cet C and a are complex number (1) @50
] Real exponential signal
» Cand g are rea
» a>0, as t1, |x(t)| ™ — t
» a<0, as t1T, [x(t)| 4
» a=0, |x(t)| is constant

x(t) a<0

42



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

[ Periodic exponential signals
» cis real, specifically 1
» ais purely imaginary

x(t) = el @ot
» Fundamental period T?
x(t) = eJ@ot = @J@o(t+T) = gj@otojwoT mmmmp @J®oT = 1
2k 2T
—> —
Wy |w0|

wm) o, = 2kmn, k=+1,1+2,... == T =

» T, is undefined for wy = 0

43



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

[ Sinusoidal Signals
x(t) = Acos(wyt + ©)
» Closely related to complex exponential signals

e) (@ot*0) — cos(wot + O) + j sin(wot + @)
Acos(wot + @) = A - Re{ej(wot+®)}

A Sin((l)ot + @) — A . Im{ej(wot'l'@)}

» Fundamental frequency wy

44



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

[ Sinusoidal Signals
x(t) = Acos(wyt + 0)
»Fundamental frequency wy

x(t) = A cos (wgt + &)

Al To= g
/\ Acos ¢

v

\J o\

by
~

\WAW AR

\/T'Q\./ i I3 >T,>T;

—
w

45



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

[ e/@ot and Acos(w,t + @) examples of signals with infinite total energy
but finite average power

E i = jOT" e " dt :jOT° ldr =T,
1

pperiod - Eperiod =1

TO
» Total energy: infinite
» Average power: finite

46



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals

d Harmonically related complex exponentials
» A set of periodic exponentials (with different frequencies), all of which
are periodic with a common period Tj.

ejwt periodicq ejwt — ejw(t+TO) — ejwteijO ) (UTO — Zkﬂ, k — 0, il, iZ,
Define wy = 2 /Ty, == w = 2kn /Ty, = kw,

» A set of periodic exponentials with fundamental frequencies of kwy:
0, (t) = e/k@ot | =0,+1,42, ...

» Forany k # 0, fundamental frequency |k|w,; fundamental period
2T &

k|lwo || "




Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals
1 Examples — Periodic or not?

- ] 2 T
(1) x,(2) = je'™ @, =10, 1y = —7-=—
(2) x, (1) =" Aperiodic
(3) x3(t):2005(3t+%) w, =3, T, = 277[

(4) x(¢t) =2cos(3¢ + %) + 3 cos(2t — %)

T _ 2T

. 3 Lo =7 Iy=8CM(Ty,T,,)=2nx

2

48



Exponential and Sinusoidal Signals

Continuous-Time Complex Exponential and Sinusoidal Signals
(J General case Re{x(t)} = |C|e" cos(wot + 6), 7> 0

x(t) = Ce
C and a are complex numbers

C=|Cle’?, a=1r+jw,

. . . -
Cedl = |C|e]96(r+]wo)t — |C|erte](w0t+9) Ré{x(t)}— |Cle" cos(wot + 6),7 <0

Ce® = |Cle™ cos(wot + 0) + j|Cle™ sin(wyt + 6)




Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

] General case
x|n] = Ca™

c and a are complex numbers

Ca™, -1<a<0

x[n] = Ceb™ a = eP

1 Real Exponential Signals
C and « are real numbers

Ca™, a<-1

Ca™, a>1 1. Ca™, O<a<1

HH ”HHmlnnnnm,mﬂﬁ

_J;,....'7rrttifllllll|II

50



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

 Sinusoidal signals
» cis real, specifically 1; S is purely imaginary

x[n] = eJ@on Closely related  x[n] = A cos(won + @)
e/ @™ = cos wyn + j sin wgn
Acos(wgn+ Q) =A- Re{ef(w0"+@)}
Asin(won + @) = A - Im{e/(@on+0)
> Infinite total energy but finite average power

|eja)0n|2 -1

51



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

 General Signals )
IC||a|" cos(won + 0), |a| > 1 411,

x|n] = Ca™ l
el

= |Cle!?, a = |a|e/®o

(@) e
I |C||a|"cos(w0n+8) la| < 1

x[n] = |C||a|™ cos(wyn + 6)
+j |C||a|*sin(won + 6) |

52



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

 Periodicity properties x[n] = e/®on
» w,: same value at wy and wy + 2km

ej(a)0+2kn)n — ej2k7rneja)0n — eja)on

» Only considerinterval 0 < wog< 2mor —m < we< @
* From O to 7t: wy T, oscillation rate of e/®@o™ 1

* From 7 to 2m: w, T, oscillation rate of e/«@o™ |

* Maximum oscillation rateat wy = 7

ejnn — (ejn)n — (_1) n

53



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

= Perlodicity properties o LT T

cos(won) T”th HT”HTW “T[H_HT
FromOt(.) TL':. J H = ° : HJ w‘;_”/S »
wo T, oscillation rate | [h [M I I [h ]M




Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

= Perlodicity properties o LT T

cos(won) Sl ol ol

< G H [ e=see
From 7 to 21 S b b gl gl b
wo T, oscillation rate T AT l“ l“ T Tlee=7a/k




Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

1 Periodicity properties

* Q: Which one is a higher frequency signal?

Wog =T Wy = 37T/2
3nn B (nn)
cos(mn) Cos | —— | = cos|

000 T O T

= b T

56



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

 Periodicity properties x[n] = e/@on
* In order for e/®0™ to be periodic with N>0, must

ij(n'I'N) — eijN ijn — eja)On

e e

woN = 2mm, m integer number
wg Mm

* wo/2m: rational number 2w N

* If N and m have no factors in common:

. 2T
Fundamental period: N = m —
0
2T w
Fundamental frequency: — = ;0 -



Exponential and Sinusoidal Signals

Discrete-Time Complex Exponential and Sinusoidal Signals

1 Periodicity properties

x[n] = cos(2mn/12) periodic N=12
x[n] = cos(8mn/31) periodic N=31
x|n] = cos(n/6) aperiodic

.[(2TTNn 3mTn

x[n] = eJ(T) +e/ ) periodic, N=24

58



Exponential and Sinusoidal Signals

Periodicity properties: discrete-time vs. continuous-time

el @ot pJwon
Identical signals for
Distinct signals for values of o, separated
distinct o, by multiples of 2x

Only if @y=2nm/N for

Periodic for any w, some integers N>0 and m

Fundamental y
frequency o, ®o/ M
Fundamental N=m(2n/ o)

period 27t/ m,

59



Signals and Systems: An overview (ch.1)

d The Unit Impulse and Unit Step Functions

60



Discrete-time unit impulse and unit step sequences

d Unit impulse (unit sample ) is defined as

0.n#0 1
S[n] =+
1,n=0

d Unit step is defined as

uln]

T O 111111 B

61



Discrete-time unit impulse and unit step sequences

[ The impulse is the first difference interval of summation

ofthestep oo

n<o

5 [nl=u[n] - u[n-1] ]

J Conversely, the step is the running
sum of unit sample

ulnl =Y & [m] |

62



The Unit Impulse and Unit Step Functions

Discrete-time unit impulse and unit step sequences

dLletm =n—k,

7 < () Interval of summation

—

|- ——— === - =

0 ] i
uln] = Zﬁ[n — k] :
k=

63



The Unit Impulse and Unit Step Functions

Discrete-time unit impulse and unit step sequences

d Sampling property
x|nlo|n]= x|0]o|n]

d More generally

x[nlo|n-n,|=x|n,loln-n,]

64



Continuous-time unit impulse and unit step sequences

3 Unit step [ u(®)
1
U(t) — { ?’ [<o0

, >0

1 The continuous unit step u(t) is the running integral
of unit impulse J(t)

ut)=[ & (r)dr

d J(t) the first derivative of u(t)

dt 65



The Unit Impulse and Unit Step Functions

Continuous-time unit impulse and unit step sequences

 u(t) is discontinuous at t = 0, How we get 6(t)?
» Consider u,(t)

up () 8s() 3(t)
1 ~/ ) %_l =) 1
o t 0 A t 0 (
u(t) =limuy(t)  6,(6) = N t(” 5(t) = 1im 6,(¢)

» arrow at t = 0: area of the pulse is concentrated att = 0
» arrow height and "1“: area of the impulse 66



The Unit Impulse and Unit Step Functions

Continuous-time unit impulse and unit step sequences

u(t) = ft d(t)drt leto=t—1 u(t) = fOOO(S(t —o)do

— 00

interval of integration t<O0 t<o0 Interval of integration
R S(t—a) A
I

A 8(7) I

t 0 T t 0 o

-~ t>0 t>0 | Interval of integration




Continuous-time unit impulse and unit step sequences

1 Sampling property s
X, (£) = x(£)8 (t) AT
x(t)d, (t) = x(0), (t) oA :

x(t)6(t) = ki_r)r(lj x(t)6p (t) = x(0)6(t)
1 More generally

3A(t)

<O

x(t)6(t — to) = x(to)6(t — o)

(b)

68



Continuous-time unit impulse and unit step sequences

J Example: - X(0)
(1) Calculate and sketch the x’(t); 27
(2) Recover x(t) from x’(t). Ir o 3 :
1 t
1 Solutions:

(1) x(2)=2u(t—1)-3u(t—-2)+2u(t—4) ()
x ' (1)=28(t-1)-35(t-2)+25(¢-4) ?-f .
- . B

() xO)=| x @ |

69




Signals and Systems: An overview (ch.1)

d Continuous-Time and Discrete-Time Systems

70



Continuous-Time and Discrete-Time Systems

 Continuous-Time Systems: Input and output are continuous

Continuous-time
1) c— 1
x{t) system | > y()

 Discrete-Time Systems: Input and output are discrete

Discrete-time
! _’|___|_’ "

71



Examples of systems

d RC circuit
V.*.‘(t) o V::‘(I) +

i(r) = B vo (

dv (1)
dt

i(t) =C

dv.() 1 R
i T ReVW T gens®

72



Examples of systems

1 Moving car
dv(t) 1 B
prali ?—ﬂ"[f(f) pv(1)|
dv(t)
T —V(r) = —f(r)
In general:

dy(r)
dt

+ ay(t) = bx(r)

73



Continuous-Time and Discrete-Time Systems

Examples of systems

J Balance in a bank account:
yln] = 1.01y[n — 1] + x[n]

y[n]: balance at the end of the nth month; x[n]: net deposit; Interest rate: 1%

yvin] — 1.01y[n — 1] = x|n]

74



Continuous-Time and Discrete-Time Systems

Examples of systems

 Digital simulation a differential equation -%) i —v(z) = —f(r)
« Approximate dv(t)/dt att = nA by v(nA)_vA((n_l)A)
v(nd) — vA((n — 1)A) ( A) = —f(nA)
L = v(nA e 1] =—
et v[n] = v(na) v[n]—m+pAv[n— ]—m+pAf[n]

* In general y[n] + ay|n — 1] = bx|[n]

75



Continuous-Time and Discrete-Time Systems

Interconnections of systems

» Series (or cascade)

INpUt ==—1 System 1 »1 System 2 3~ QOutput

> Parallel

—3- System 1 = SyStem | [r———1 System 2
Input =——3>9 %— Output Input —$ %—. System 4 > Qutput

—1 System 2 —t —] System 3 f

Input ———»(E System 1 —t— -3 Output
System 2 |-t—

» Feedback

76




Signals and Systems: An overview (ch.1)

] Basic System Properties

77



Basic System Properties

System with and without memory

J System without memory:

» Output is dependent only on the current input
» Examples:

yin] = 2x[n] — x*[n])’
y(t) = Rx(1).

y(t) = x(1)

yln] = x[n]

78



Basic System Properties

System with and without memory

J System with memory:

» Output is dependent on the current and previous inputs
» Examples:

n 1 !
W= S ylnl = xln—11 0= |

= =0

» Memory: retaining or storing information about input values at times
» Physical systems, memory is associated with the storage of energy
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Basic System Properties

Invertibility and inverse system
 Invertible

» Distinct inputs lead to distinct outputs.

y[n] Inverse

X[N] m—t System —jre—— system - W[N] = X[N]

y(t) = 2x(t) w(t) = %y(r)

y(t)

X(1) m—t y(t) = 2X(t) pr——s-]w(t) = = y(t) p—w]t] = x(t)

no|—=
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Basic System Properties

Invertibility and inverse system

U Invertible )
> Examples: Accumulator  y|n|= Z x[k]

k=—0

» The difference between two successive outputs is precisely the

nputs ynl—y[n—1]=x[n]
x|n] ; w|n]=x|n]
——l =Y 4] LN B ) il
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Invertibility and inverse system

J Noninvertible

yln] = 0 All x[n] leads to the same y[n]

xz(l‘), Cannot determine the sign of the inputs

K,ﬁ
A
o 8
p—y
|
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Basic System Properties

Causality

) Causal: the output at any time depends only on the inputs at the
present time and in the past

yv(t) = Rx(1) Causal
vinl = > x[k] Causal
k=—w
W) = é[ x(T)dT Causal
y[n] = x[n] — x[n + 1] Non-causal

y() = x(t+ 1) Non-causal
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Basic System Properties

Causality

J Examples

y[n]| = x|—n] Non-causal

y(t) = x(t) cos(t + 1) Causal
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Basic System Properties

Stability

 Informally: small inputs lead to responses that do not diverge.

Ll

Stable
x() A bank account balance

yln] =x[n]+ (1 +a)Xy[n-1]
() Unstable

Unstable

S 85
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Basic System Properties

Stability

1 Formally: bounded input leads to bounded output

» Bounded: |y(t)| < B

] +M

yinl = oo > xln— K] Stable

N

vlnl = > ulk] = (n+ Du[n]  Unstable

k==
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Basic System Properties

Stability

* Examples

Si:y(t) = tx(t) Unstable

S, y(t) = eX®) Stable

x(t)]<B - -B<x(t)<B - e B<yl)<e’

87



L [ ] ‘,’ ‘\‘
g s R WY IR # 0
§ ST RER Y
EX NI LT Y e
£ _,|| h, ‘l
1’0 2013 '.
AT ey ONY
EcH VY

Time Invariance

d Time invariant: a time shift in the input signal results in an identical
time shift in the output signal

it x[n] — y[n]

x; (£) —— System | y1 ()

Then x[n—no] = y[n— no] x, (t)—— System |— y2 (1)

If X(t) — y(t) If x, () = x1 (t — tp)
vy (1) = fxz (1)}

Then X(t-to) — y(t—to) Y2 (1) = y1 (£ —tp)

v (t) = y,(t) 7
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Time Invariance

d Examples: y (t) = sin[x(t)] Ifxz (£) = %1 (t = to)
Y2 () = flx2(8)}
- fi:} = sin{-}
x; () — sin[x(t)] — y1 (©) Y2 (t) = sin[x; (t —to)]
X2 (&) —— sin[x(t)] |- y2 (O Y2(t) = y1 (£ — to)

y; (t) = sin[x; (t)]
y,(t) = sin[x; (t — to)]
2y (1) = ya(t)

89



° ° "’ ‘\\
g s R WY IR # 0
(s qar
EX NI LT Y e
£ _,|| I, ‘0
'LQ 2013 '-
AT ey ONY
EcHV

Time Invariance

d Examples: y [n] = nx[n] If x5, [n] = x; [n — ng]

V2 [n] = fixz[n]}

x; [n] —+ mnx[n] |—— y1ln]

X [n] —{ nx[n] L y;[n]
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Time Invariance

0 Examples: y (t) = x(2t) If x, (t) = xq (t — to)
2 \0J) = A1 TR0

vy (t) = f{x,(8)}

x (6) — x(2t) |— y1 () = x1 (2t — tp)

y2(t) = y1 (t — tp)
y1 (t) = x1(2¢)

V(1) = x1[2(t — tp)]
sy, () # ya(t)

x, () — x(2t) |— y2 (t)
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Linearity

A Linear x1(t) = y41(8), x2(t) = ¥2(t)  Superposition property

ax;(t) + bx,(t) = ay,(t) + by, (t) (additivity and homogeneity)

x; () —— System |— y; (t) If x3(t) = ax;(t) + bx,(t)

y3 (t) = fix3(t)}

y3(t) = ay;(t) + by, (t)
%5 () — System |\ ¥3 (1) ys (1) = y3(8) ?

x; (t) —{ System |— y2(t)
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Linearity
d Examples y(¢) = tx(t) If x3(t) = ax,(t) + bx,(t)
%y (t) 1 () = tx; (£) ys (t) = fixs(t)}
A = tlax; (6) + bxy(8)]
G () | ¥2(0) = txz(6) |
y3(t) = ay;(t) + by, (t)
w® [y |70 T Yi(0) = atry(6) + bty (0

y3(t) = y3(t)
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Linearity
d Examples y(t) = x%(t) If x5(t) = ax{(t) + bx,(t)
x1 (t) 3 v, () = x2(t) y3 (t) = fixs(0)}
2 = [ax, (t) + bxy(£)] ?
x5 (t) 3 y2(t) = x5 ()
—1 @O y5(t) = ay; (£) + by,(t)
B ® [ g ] 20 THO = ax?(0) + b3 (1)

y3(t) # y3(t)
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Linearity

d Examples y[n] = Re{x|[n]}

x1[n]

yi1ln] = Re{x;[n]}

S

y2|n] = Re{xz[n]}

——

= Re{x[n]}
2 Regan)y
S| perxln)

' yslnl = Refxs[n])

If x3[n] = ax{[n] + bx,[n]

y3ln] = fixz[n]}
= Re{ax{|n| + bx,[n]}

!

y3[n] = ay;[n] + by,[n]
= aRe{xq[n]} + bRe{x,[n]}

If a and b are complex numbers
vz[n] # y3[n]
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Linearity

d Examples y[n] = 2x[n] + 3
If x3[n] = ax{[n] + bx,[n]

x1[n_]_> 2x[n] + 3 yaln] = 2x1[n] + 3 y3ln] = flxs[n]}
= 2(ax{|n] + bx,[n]) + 3

x,[n] y2[n] = 2x;3[n] + 3
—|2xln]+ 3 y5[n] = ay:[n] + by,[n]

x3[n] y3[n] = 2x3[n] + 3 = a(2x,[n] + 3) + b(2x4|n] + 3)
—2x[n] + 3

y3[n] # y3[n]
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