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 Pre-knowledge
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Motivation
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 Importance

 Confidence

Math is important but not everything

 Focus on big pictures

 GPA and real knowledge

Laurent Simons

Rik Vullings

Course Introduction
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Global content

 Overview of Signals and Systems

 Linear-Time-Invariant Systems

 Fourier Series Representation of Periodic Signals

 The Continues-Time Fourier Transform

 The Discrete-Time Fourier Transform

 Time and Frequency Characterization of Signals and Systems

 Sampling

 The Laplace Transform

 The Z-Transform

System
Signal (input) Signal (output)

Course Introduction



Exams and Grades
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 Homework: 15% (delay <= 2 days, *0.8; >2days, *0)
Mid-term (written, close-book): 30%
 Final Exam (written, close-book): 50%
 Attendance: 5% (-1 point per absence, no late than 5 mins)
 All in English, otherwise *0.8.
 Plagiarism: 

Course Introduction

First time: this assignment zero score.
Second time: this assignment zero score + final score *0.8;
Third time: Final score zero.



Text book and materials
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 Book
Signals and Systems (2nd Edition), by A. V. 

Oppenheim, A. S. Willsky, and S. Hamid. 
ISBN: 978-0138147570.
Signals and Systems using Matlab (2nd 

Edition), by Luis Chaparro. ISBN: 978-
0123948120.
 These slides
 All materials bill be available in the BB 

system

Course Introduction



Organization
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 Lecture: week 1-16; teaching center 301; Tue. and Thu. 08:15-10:00 
 Exercise: time and location TBD
 Office hour: make appointment by email
 Experiment: by Dr. Linyan Lu, start from the 3rd week 
 BB system: Slides and text book, homework release 
 Gradescope: homework submission and grading
Midterm Exam: week 9
 Final Exam: week 17-18

Course Introduction
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 TAs:  

Course Introduction

李嘉其: lijq12024@shanghaitech.edu.cn
王兴蓓: wangxb2024@shanghaitech.edu.cn 
霍旋: huoxuan2024@shanghaitech.edu.cn

 QQ group



Pre-knowledge: Complex numbers 
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Course Introduction



Pre-knowledge: Important geometric series 
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Course Introduction

Let 𝑛 = 𝑀 + 𝑝



Pre-knowledge: Zeros of a complex equation
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Course Introduction



Signals and Systems: An overview (ch.1)

 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties



Continuous-Time and Discrete-Time Signals
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 Signals describe a wide variety of physical phenomena

The voltage 𝑣𝑠 and 𝑣𝑐 are examples 
of signals.

The force f and velocity v are 
signals.



Continuous-Time and Discrete-Time Signals
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 Mathematically, signals are represented as functions of one or more 
independent variables.

 Example of typical signals

 Sound

 Image 

 Video 



Continuous-Time and Discrete-Time Signals
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 Sound: represents acoustic pressure as a function of time

𝑓(𝑡)



Continuous-Time and Discrete-Time Signals
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 Picture: represents brightness as a function of two spatial variables

𝑓(𝑥, 𝑦)



Continuous-Time and Discrete-Time Signals
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 Video: consists of a sequence of images, called frames, and is a function of 
3 variables: 2 spatial coordinates and time

𝑓(𝑥, 𝑦, 𝑡)



Continuous-Time and Discrete-Time Signals
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 Independent variables can be one or more

 Focus on signals involving a single independent variable

 Generally refer to the independent variable as time, although it 
may not in fact represent time in specific applications

 Continues-time and discrete-time signal



Continuous-Time and Discrete-Time Signals
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 Continues-time signals: the independent variable is continuous, and 
signals are defined for a continuum of values



Continuous-Time and Discrete-Time Signals
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 Discrete-time signals: defined only at discrete times, and the independent 
variable takes on only a discrete set of values



Continuous-Time and Discrete-Time Signals
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 Continuous-time signals: 𝑡 denote the independent variable, enclosed in (∙)

 Discrete-time signals: 𝑛 denote the independent variable, enclosed in [∙]

 𝑥 𝑛

𝑥(𝑡)
𝑥[𝑛]

 discrete in nature; or sampling of continuous-time signal
 Focus mainly on the second case, defined only for integer values of 𝑛

𝑡 𝑛



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 𝑣(𝑡) and 𝑖(𝑡) are voltage and current across a resistor R, the instantaneous
power is

 The total energy over the time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2 is  

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡 =
1

𝑅
𝑣2(𝑡)

𝐸𝑅 = 𝑡1׬
𝑡2 𝑝 𝑡 𝑑𝑡 = 𝑡1׬

𝑡2 1

𝑅
𝑣2(𝑡) 𝑑𝑡

 The average power over the time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2 is  

𝑃𝑅 =
1

𝑡2−𝑡1
𝑡1׬
𝑡2 𝑝 𝑡 𝑑𝑡 =

1

𝑡2−𝑡1
𝑡1׬
𝑡2 1

𝑅
𝑣2(𝑡) 𝑑𝑡



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Similarly, for any signal 𝑥(𝑡) or 𝑥[𝑛], the total energy is defined as

 The average power is defined as

𝑃 =
𝐸

𝑡2 − 𝑡1

𝐸 = න
𝑡1

𝑡2

|𝑥 𝑡 |2 𝑑𝑡 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝐸 = ෍

𝑛=𝑛1

𝑛2

|𝑥[𝑛]|2 𝑛1 ≤ 𝑛 ≤ 𝑛2

𝑃 =
𝐸

𝑛2 − 𝑛1 + 1

Continuous-time signal

Discrete-time signal

Continuous Discrete



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Over infinite time interval −∞ ≤ 𝑡 ≤ ∞ or −∞ ≤ 𝑛 ≤ ∞

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑇→∞

න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 = න
−∞

∞

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑁→∞

෍

𝑛=−𝑁

𝑁

|𝑥[𝑛]|2 = ෍

𝑛=−∞

∞

|𝑥[𝑛]|2

𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1
෍

𝑛=−𝑁

𝑁

|𝑥[𝑛]|2

𝐸∞ ≜ lim
𝑇→∞

න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 = න
−∞

∞

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑁→∞

෍

𝑛=−𝑁

𝑁

|𝑥[𝑛]|2 = ෍

𝑛=−∞

∞

|𝑥[𝑛]|2

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1
෍

𝑛=−𝑁

𝑁

|𝑥[𝑛]|2

Continuous

Discrete

Continuous Discrete



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Finite-energy signal: 𝐸∞ < ∞

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

𝑥 𝑡 2 𝑑𝑡 = 0

 Finite-power signal: 𝑃∞ < ∞, 𝐸∞ = ∞

𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1
෍

𝑛=−𝑁

𝑁

𝑥 𝑛 2 = 0

 Infinite energy & power signal 𝑃∞ → ∞, 𝐸∞ → ∞



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Examples:

𝑃∞ < ∞, 𝐸∞ = ∞

𝑃∞ → ∞, 𝐸∞ → ∞

(1) 𝑥 𝑡 = ቐ
0, 𝑡 < 0

1, 0 ≤ 𝑡 ≤ 1
0, 𝑡 > 1

(3) 𝑥 𝑡 = 𝑡

(2) 𝑥[𝑛] = 4

𝐸∞ < ∞, 𝑃∞ = 0
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

Signals and Systems: An overview (ch.1)



Transformation of the independent variable
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Time shift

𝑥 𝑡 𝑥 𝑡 − 𝑡0

𝑥[𝑛] 𝑥[𝑛 − 𝑛0]

𝑡0 > 0

𝑛0 < 0

𝑥 𝑡 : 𝑥 𝑎 → 𝑡 = 𝑎
𝑥 𝑡 − 𝑡0 : 𝑥 𝑎 → 𝑡 − 𝑡0 = 𝑎

∙∙
𝑎

𝑥 𝑎 𝑥 𝑎

𝑎 + 𝑡0



Transformation of the independent variable

28

Time reversal

𝑥[𝑛] 𝑥[−𝑛]

𝑥 𝑡 𝑥 −𝑡 𝑥 1 − 𝑡



Transformation of the independent variable

29

Time scaling

𝑥 𝑡 𝑥 2𝑡 𝑥 𝑡/2

𝑥 𝑡 𝑥 2𝑡

𝑥 𝑡 𝑥 𝑡/2

Compressed

Stretched



Transformation of the independent variable
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 if 𝛼 > 1, compressed

 if 𝛼 < 1, stretched

 if 𝛼 < 0, reversed

 if 𝛽 ≠ 0, shifted

General: Let 𝑥(𝑡) → 𝑥(𝛼𝑡 + 𝛽)

Example1: Given the signal 𝑥(𝑡), to illustrate

 𝑥(𝑡 + 1)

 𝑥(−𝑡 + 1)

 𝑥(3𝑡/2)

 𝑥(
3𝑡

2
+ 1)



Transformation of the independent variable
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 𝑥(𝑡 + 1) 𝑥(−𝑡 + 1) 𝑥(3𝑡/2) 𝑥(
3𝑡

2
+ 1)



Transformation of the independent variable
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 Example2: A discrete signal x[n] is shown below, sketch and label 
following signals:

 x[2n]
 x[2n+1]



Transformation of the independent variable
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Transformation of the independent variable
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Periodic Signals

 Continuous-time: 𝑥 𝑡 = 𝑥(𝑡 + 𝑇) for all t 

 Fundamental period

• The smallest positive value of T for which 𝑥 𝑡 = 𝑥(𝑡 + 𝑇) holds



Transformation of the independent variable
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Periodic Signals

 Discrete-time: 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all 𝑛

 Fundamental period

• The smallest positive value of N for which 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] holds



Transformation of the independent variable
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Periodic Signals

 Example:

Not periodic



Even and Odd Signals 

 Even signal

• 𝑥 𝑡 = 𝑥(−𝑡) 𝑥[𝑛] = 𝑥[−𝑛]

 Odd signal

• 𝑥 𝑡 = −𝑥(−𝑡) 𝑥 𝑛 = −𝑥[−𝑛]

37

Transformation of the independent variable

Any signal is either even or odd. False



Even and Odd Signals 

38

Transformation of the independent variable

 Any signal can be broken into a sum of two signals

 One even and one odd

)()()( txtxtx oe 

)]()([
2

1
)}({)( txtxtxEtx ve 

)]()([
2

1
)}({)( txtxtxOtx do 



Even and Odd Signals 
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Transformation of the independent variable

)]()([
2

1
)}({)( txtxtxEtx ve 

)]()([
2

1
)}({)( txtxtxOtx do 

+



Even and Odd Signals 
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Transformation of the independent variable

+

𝑥 𝑛 = 𝑥𝑒[𝑛]+𝑥𝑜[𝑛]

𝑥𝑒[𝑛]= (𝑥 𝑛 + 𝑥 −𝑛 )/2

𝑥𝑜[𝑛]= (𝑥 𝑛 − 𝑥 −𝑛 )/2

𝑥 𝑛 𝑥𝑒[𝑛] 𝑥𝑜[𝑛]
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

Signals and Systems: An overview (ch.1)



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 General case

 Real exponential signal 

 C and a are real 

 a>0,   as  t↑,   |x(t)| ↑

 a<0,   as  t↑,   |x(t)| ↓

 a=0,   |x(t)| is constant

C and a are complex number 
a>0

a<0

t

t



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Periodic exponential signals

 c is real, specifically 1 

 a is purely imaginary

 Fundamental period 𝑇0?

 𝑇0 is undefined for 𝜔0 = 0

𝑥 𝑡 = 𝑒𝑗𝜔0𝑡

𝑒𝑗𝜔0𝑇 = 1

𝜔0𝑇 = 2𝑘𝜋, 𝑘 = ±1,±2,… 𝑇 =
2𝑘𝜋

𝜔0

𝑥 𝑡 = 𝑒𝑗𝜔0𝑡 = 𝑒𝑗𝜔0(𝑡+𝑇) = 𝑒𝑗𝜔0𝑡𝑒𝑗𝜔0𝑇

𝑇𝑜 =
2𝜋

|𝜔0|
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Exponential and Sinusoidal Signals

 Sinusoidal Signals

 Closely related to complex exponential signals

 Fundamental frequency 𝜔0

𝑒𝑗(𝜔0𝑡+∅) = cos(𝜔0𝑡 + ∅) + 𝑗 sin(𝜔0𝑡 + ∅)

𝐴cos(𝜔0𝑡 + ∅) = 𝐴 ∙ 𝑅𝑒{𝑒𝑗(𝜔0𝑡+∅)}

𝐴 sin(𝜔0𝑡 + ∅) = 𝐴 ∙ 𝐼𝑚{𝑒𝑗(𝜔0𝑡+∅)}

Continuous-Time Complex Exponential and Sinusoidal Signals

𝑥 𝑡 = 𝐴cos(𝜔0𝑡 + ∅)
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Exponential and Sinusoidal Signals

 Sinusoidal Signals

Fundamental frequency 𝜔0

Continuous-Time Complex Exponential and Sinusoidal Signals

𝜔3 < 𝜔2 < 𝜔1

𝑇3 > 𝑇2 > 𝑇1

𝑥 𝑡 = 𝐴cos(𝜔0𝑡 + ∅)



46

Exponential and Sinusoidal Signals

 𝑒𝑗𝜔0𝑡 and 𝐴cos(𝜔0𝑡 + ∅) examples of signals with infinite total energy 
but finite average power

 Total energy: infinite

 Average power: finite 

1
1

0

 periodperiod E
T

p

Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Harmonically related complex exponentials

Continuous-Time Complex Exponential and Sinusoidal Signals

 A set of periodic exponentials (with different frequencies), all of which 
are periodic with a common period 𝑇0.

𝑒𝑗𝜔𝑡 periodic

 A set of periodic exponentials with fundamental frequencies of 𝑘𝜔0:
∅𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡, 𝑘 = 0,±1,±2,…

 For any 𝑘 ≠ 0, fundamental frequency |𝑘|𝜔0; fundamental period
2𝜋

|𝑘|𝜔0
=

𝑇0

|𝑘|

𝑒𝑗𝜔𝑡 = 𝑒𝑗𝜔(𝑡+𝑇0) = 𝑒𝑗𝜔𝑡𝑒𝑗𝜔𝑇0 𝜔𝑇0 = 2𝑘𝜋, 𝑘 = 0,±1,±2,… .

Define 𝜔0 = 2𝜋/𝑇0 𝜔 = 2𝑘𝜋/𝑇0 = 𝑘𝜔0
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Exponential and Sinusoidal Signals

Aperiodic

 Examples – Periodic or not?

Continuous-Time Complex Exponential and Sinusoidal Signals



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 C and a are complex numbers

 General case 𝑅𝑒{𝑥 𝑡 } = |𝐶|𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃), 𝑟 > 0

𝑅𝑒{𝑥 𝑡 } = |𝐶|𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃), 𝑟 < 0

𝑥 𝑡 = 𝐶𝑒𝑎𝑡

𝐶 = |𝐶|𝑒𝑗𝜃, 𝑎 = 𝑟 + 𝑗𝜔0

𝐶𝑒𝑎𝑡 = 𝐶 𝑒𝑗𝜃𝑒 𝑟+𝑗𝜔0 𝑡 = 𝐶 𝑒𝑟𝑡𝑒𝑗 𝜔0𝑡+𝜃

𝐶𝑒𝑎𝑡 = 𝐶 𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃) + 𝑗 𝐶 𝑒𝑟𝑡 sin(𝜔0𝑡 + 𝜃)



Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 c and 𝛼 are complex numbers

 General case
𝑥 𝑛 = 𝐶𝛼𝑛

𝑥 𝑛 = 𝐶𝑒𝛽𝑛 𝛼 = 𝑒𝛽

 Real Exponential Signals

C and 𝛼 are real numbers

𝐶𝛼𝑛, 𝛼>1 𝐶𝛼𝑛, 0<𝛼<1 

𝐶𝛼𝑛, -1<𝛼<0 

𝐶𝛼𝑛, 𝛼<-1 



Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Sinusoidal signals

 c is real, specifically 1; 𝛽 is purely imaginary

 Infinite total energy but finite average power

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛 𝑥 𝑛 = 𝐴 cos(𝜔0𝑛 + ∅)

𝑒𝑗𝜔0𝑛 = cos𝜔0𝑛 + 𝑗 sin𝜔0𝑛

|𝑒𝑗𝜔0𝑛|2 = 1

Closely related

𝐴 cos(𝜔0𝑛 + ∅) = 𝐴 ∙ 𝑅𝑒{𝑒𝑗 𝜔0𝑛+∅ }

𝐴 sin(𝜔0𝑛 + ∅) = 𝐴 ∙ 𝐼𝑚{𝑒𝑗 𝜔0𝑛+∅ }



 General Signals

52

Exponential and Sinusoidal Signals

𝑥 𝑛 = 𝐶𝛼𝑛

𝐶 = |𝐶|𝑒𝑗𝜃, 𝛼 = |𝛼|𝑒𝑗𝜔0

𝑥 𝑛 = 𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃)

Discrete-Time Complex Exponential and Sinusoidal Signals

+𝑗 𝐶 𝛼 𝑛sin(𝜔0𝑛 + 𝜃)

𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃), 𝛼 > 1

𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃), 𝛼 < 1
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Exponential and Sinusoidal Signals

 𝜔0: same value at 𝜔0 and 𝜔0 + 2𝑘𝜋

 Only consider interval 0 ≤ 𝜔0≤ 2𝜋 or −𝜋 ≤ 𝜔0≤ 𝜋

• From 0 to 𝜋: 𝜔0 ↑, oscillation rate of 𝑒𝑗𝜔0𝑛 ↑

• From 𝜋 to 2𝜋: 𝜔0 ↑, oscillation rate of 𝑒𝑗𝜔0𝑛 ↓

• Maximum oscillation rate at 𝜔0 = 𝜋

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗(𝜔0+2𝑘𝜋)𝑛 = 𝑒𝑗2𝑘𝜋𝑛𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗𝜋𝑛 = (𝑒𝑗𝜋)𝑛 = (−1) 𝑛

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝜔0 = 0

𝜔0 = 𝜋/8

𝜔0 = 𝜋/4

𝜔0 = 𝜋

cos(𝜔0𝑛)

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals

From 0 to 𝜋: 
𝜔0 ↑, oscillation rate ↓
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Exponential and Sinusoidal Signals

𝜔0 = 2𝜋

𝜔0 = 15𝜋/8

𝜔0 = 7𝜋/4

𝜔0 = 𝜋

cos(𝜔0𝑛)

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals

From 𝜋 to 2𝜋: 
𝜔0 ↑, oscillation rate ↑
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Exponential and Sinusoidal Signals

• Q: Which one is a higher frequency signal?

𝜔0 = 𝜋 𝜔0 = 3𝜋/2

𝑁 = 2 𝑁 = 4

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗𝜔0(𝑛+𝑁) = 𝑒𝑗𝜔0𝑁𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0𝑛

• In order for   𝑒𝑗𝜔0𝑛 to be periodic with N>0, must

• 𝜔0/2𝜋: rational number

• If N and m have no factors in common:

Fundamental period: 𝑁 = 𝑚
2𝜋

𝜔0

Fundamental frequency: 
2𝜋

𝑁
=

𝜔0

𝑚

𝜔0

2𝜋
=
𝑚

𝑁

𝜔0𝑁 = 2𝜋𝑚, 𝑚 integer number

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝑥[𝑛] = cos(2𝜋𝑛/12) periodic    N=12

𝑥[𝑛] = cos(8𝜋𝑛/31) periodic    N=31

𝑥[𝑛] = cos(𝑛/6) aperiodic

𝑥 𝑛 = 𝑒
𝑗

2𝜋𝑛

3 + 𝑒𝑗(
3𝜋𝑛

4
)

periodic, N=24

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals



Periodicity properties: discrete-time vs. continuous-time
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Exponential and Sinusoidal Signals

Periodic for any 0

Only if 0=2m/N for

some integers N>0 and m

Distinct signals for

distinct 0

Identical signals for 

values of 0 separated

by multiples of 2

Fundamental 

frequency 0

0  m

Fundamental 

period 2/ 0

N=m(2/ 0)

𝑒𝑗𝜔0𝑛𝑒𝑗𝜔0𝑡
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Unit impulse (unit sample ) is defined as

 Unit step is defined as



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 The impulse is the first difference 
of the step

 Conversely, the step is the running 
sum of unit  sample

𝑛 < 0

𝑛 > 0



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Let 𝑚 = 𝑛 − 𝑘, 
𝑛 < 0

𝑛 > 0



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Sampling property

 More generally



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Unit step

 The continuous unit step u(t) is the running integral 
of unit impulse (t)

 (t) the first derivative of u(t)



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 𝑢(𝑡) is discontinuous at 𝑡 = 0, How we get δ(𝑡)?

𝑢∆(𝑡)

𝑡

𝑢 𝑡 = lim
∆→0

𝑢∆(𝑡) 𝛿∆ 𝑡 =
𝑑 𝑢∆(𝑡)

𝑑𝑡
𝛿 𝑡 = lim

∆→0
𝛿∆(𝑡)

 Consider 𝑢∆(𝑡)

arrow at 𝑡 = 0: area of the pulse is concentrated at 𝑡 = 0
arrow height and "1“: area of the impulse

𝑡 𝑡



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

𝑢 𝑡 = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏 Let 𝜎 = 𝑡 − 𝜏 𝑢 𝑡 = න
0

∞

𝛿 𝑡 − 𝜎 𝑑𝜎

𝑡 < 0

𝑡 > 0

𝑡 < 0

𝑡 > 0



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

𝑥1 𝑡 = 𝑥(𝑡)𝛿∆ 𝑡

𝑥(𝑡)𝛿 𝑡 = lim
∆→0

𝑥(𝑡)𝛿∆ 𝑡 = 𝑥(0)𝛿 𝑡

𝑥(𝑡)𝛿∆ 𝑡 ≈ 𝑥(0)𝛿∆ 𝑡

𝑥(𝑡)𝛿 𝑡 − 𝑡0 = 𝑥(𝑡0)𝛿 𝑡 − 𝑡0

 Sampling property

 More generally



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

(1) Calculate and sketch the x’(t);

(2) Recover x(t) from x’(t).





0

' )()(   )2( dttxtx

 Example: 

 Solutions: 
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties
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Continuous-Time and Discrete-Time Systems

 Continuous-Time Systems: Input and output are continuous

 Discrete-Time Systems: Input and output are discrete
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Continuous-Time and Discrete-Time Systems

Examples of systems

 RC circuit
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Continuous-Time and Discrete-Time Systems

Examples of systems

In general:

 Moving car



74

Continuous-Time and Discrete-Time Systems

Examples of systems

 Balance in a bank account:

𝑦[𝑛]: balance at the end of the nth month; 𝑥[𝑛]: net deposit; Interest rate: 1%
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Continuous-Time and Discrete-Time Systems

Examples of systems

 Digital simulation a differential equation

• Approximate 𝑑𝑣(𝑡)/𝑑𝑡 at 𝑡 = 𝑛∆ by   
𝑣 𝑛∆ −𝑣((𝑛−1)∆)

∆

𝑣 𝑛∆ − 𝑣((𝑛 − 1)∆)

∆
+
𝜌

𝑚
𝑣 𝑛∆ =

1

𝑚
𝑓(𝑛∆)

𝑣 𝑛 −
𝑚

𝑚 + 𝜌∆
𝑣 𝑛 − 1 =

1

𝑚 + 𝜌∆
𝑓[𝑛]• Let 𝑣 𝑛 = 𝑣 𝑛∆

• In general 𝑦 𝑛 + 𝑎𝑦 𝑛 − 1 = 𝑏𝑥[𝑛]
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Continuous-Time and Discrete-Time Systems

 Series (or cascade)

 Parallel

 Feedback

Interconnections of systems
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties
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Basic System Properties

 System without memory: 

System with and without memory

 Output is dependent only on the current input
 Examples:



79

Basic System Properties

Memory: retaining or storing information about input values at times

 Physical systems, memory is associated with the storage of energy

System with and without memory

 System with memory: 

 Output is dependent on the current and previous inputs
 Examples:
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Basic System Properties

 Invertible 

Invertibility and inverse system

 Distinct inputs lead to distinct outputs.
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Basic System Properties

Invertibility and inverse system

 Invertible 

 Examples: Accumulator

 The difference between two successive outputs is precisely the 
inputs



82

Basic System Properties

 Noninvertible

Invertibility and inverse system

All x[n] leads to the same y[n] 

Cannot determine the sign of the inputs
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Basic System Properties

 Causal: the output at any time depends only on the inputs at the 
present time and in the past

Causality

Non-causal

Causal

Causal

Causal

Non-causal
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Basic System Properties

 Examples

Causality

𝑦[𝑛] = 𝑥[−𝑛]

𝑦 𝑡 = 𝑥 𝑡 cos(𝑡 + 1) Causal

Non-causal
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Basic System Properties

 Informally: small inputs lead to responses that do not diverge.

Stability

A bank account balance

𝑦 𝑛 = 𝑥[𝑛] + (1 + 𝛼) × 𝑦 𝑛 − 1

Stable

Unstable

Unstable
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Basic System Properties

 Formally: bounded input leads to bounded output

Stability

Stable

Unstable

 Bounded: 𝑦 𝑡 < 𝐵
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Basic System Properties

• Examples

Stability

𝑆1: 𝑦(𝑡) = 𝑡𝑥 𝑡

𝑆2: 𝑦(𝑡) = 𝑒𝑥 𝑡 Stable

Unstable

𝑥 𝑡 < 𝐵 → −𝐵 < 𝑥 𝑡 < 𝐵 → 𝑒−𝐵 < 𝑦 𝑡 < 𝑒𝐵
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Basic System Properties

 Time invariant: a time shift in the input signal results in an identical 
time shift in the output signal

Time Invariance

)( 0ttx  )( 0tty 

][nx ][ny

)(tx )(tyIf 

Then

Then

If
𝑥1 (𝑡) 𝑦1 (𝑡)System

𝑦2 (𝑡)System𝑥2 𝑡

𝑦2 𝑡 = 𝑦2
′ 𝑡 ?

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0

If 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)
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Basic System Properties

 Examples: 𝑦 𝑡 = sin[𝑥(𝑡)]

Time Invariance

𝑥1 (𝑡) 𝑦1 (𝑡)sin[𝑥(𝑡)]

𝑥2 (𝑡) 𝑦2 (𝑡)sin[𝑥(𝑡)]

∴ 𝑦2 𝑡 = 𝑦2
′ (𝑡)

𝑦1 𝑡 = sin[𝑥1(𝑡)]

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

If 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)

𝑦2 𝑡 = sin[𝑥1 𝑡 − 𝑡0 ]

𝑦2
′ (𝑡) = sin[𝑥1 𝑡 − 𝑡0 ]

𝑓 ∙ = sin{∙}

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0
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Basic System Properties

 Examples: 𝑦 𝑛 = 𝑛𝑥[𝑛]

Time Invariance

𝑥1 [𝑛] 𝑦1 [𝑛]𝑛𝑥[𝑛]

𝑥2 [𝑛] 𝑦2 [𝑛]𝑛𝑥[𝑛]

∴ 𝑦2 [𝑛] ≠ 𝑦2
′ 𝑛

𝑦1 [𝑛] = 𝑛 ∙ 𝑥1 [𝑛]

If 𝑥2 𝑛 = 𝑥1 [𝑛 − 𝑛0]

= 𝑛 ∙ 𝑥1 [𝑛 − 𝑛0]

𝑦2
′ 𝑛 = (𝑛 − 𝑛0) ∙ 𝑥1 [𝑛−𝑛0]

𝑦2 [𝑛] = 𝑓 𝑥2[𝑛]

𝑦2
′ 𝑛 = 𝑦1 [𝑛 − 𝑛0]



91

Basic System Properties

 Examples: 𝑦 𝑡 = 𝑥(2𝑡)

Time Invariance

𝑥1 (𝑡) 𝑦1 (𝑡)𝑥(2𝑡)

𝑥2 (𝑡) 𝑦2 (𝑡)𝑥(2𝑡)

∴ 𝑦2 𝑡 ≠ 𝑦2
′ (𝑡)

𝑦1 𝑡 = 𝑥1(2𝑡)

𝐼𝑓 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)

= 𝑥1 (2𝑡 − 𝑡0)

𝑦2
′ (𝑡) = 𝑥1[2 𝑡 − 𝑡0 ]

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0
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Basic System Properties

 Linear

Linearity

𝑥1 (𝑡) 𝑦1 (𝑡)

𝑥2 (𝑡) 𝑦2 (𝑡)

𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 → 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡

𝑥1 𝑡 → 𝑦1 𝑡 , 𝑥2 𝑡 → 𝑦2 𝑡

𝑥3 (𝑡) 𝑦3 (𝑡)

System

System

System

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

Superposition property 
(additivity and homogeneity)

𝑦3 𝑡 = 𝑦3
′ 𝑡 ?

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡



93

Basic System Properties

 Examples

Linearity

𝑥1 (𝑡) 𝑦1 𝑡 = 𝑡𝑥1(𝑡)

𝑥2 (𝑡)

𝑦 𝑡 = 𝑡𝑥(𝑡)

𝑥3 (𝑡)

𝑡𝑥(𝑡)

𝑡𝑥(𝑡)

𝑡𝑥(𝑡)

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

= 𝑡[𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 ]

𝑦2 𝑡 = 𝑡𝑥2(𝑡)

𝑦3 𝑡 = 𝑡𝑥3(𝑡)
𝑦3
′ (𝑡) = 𝑎𝑡𝑥1 𝑡 + 𝑏𝑡𝑥1 𝑡

𝑦3 𝑡 = 𝑦3
′ (𝑡)

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡
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Basic System Properties

 Examples

Linearity

𝑥1 (𝑡) 𝑦1 𝑡 = 𝑥1
2(𝑡)

𝑥2 (𝑡)

𝑦 𝑡 = 𝑥2(𝑡)

𝑥3 (𝑡)

𝑥2(𝑡)

𝑥2(𝑡)

𝑥2(𝑡)

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

= [𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 ] 2

𝑦2 𝑡 = 𝑥2
2(𝑡)

𝑦3 𝑡 = 𝑥3
2(𝑡)

= 𝑎𝑥1
2 𝑡 + b𝑥2

2(𝑡)

𝑦3 𝑡 ≠ 𝑦3
′ (𝑡)

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡
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Basic System Properties

 Examples

Linearity

𝑥1[𝑛] 𝑦1[𝑛] = 𝑅𝑒{𝑥1[𝑛]}

𝑥2[𝑛]

𝑦[𝑛] = 𝑅𝑒{𝑥[𝑛]}

𝑥3[𝑛]

𝑅𝑒{𝑥[𝑛]}

If 𝑥3 𝑛 = 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛

𝑦3 𝑛 = 𝑓 𝑥3[𝑛]

𝑦3
′ [𝑛] = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

If a and b are complex numbers
𝑦3[𝑛] ≠ 𝑦3

′ [𝑛]

𝑅𝑒{𝑥[𝑛]}

𝑅𝑒{𝑥[𝑛]}

𝑦2[𝑛] = 𝑅𝑒{𝑥2[𝑛]}

𝑦3[𝑛] = 𝑅𝑒{𝑥3[𝑛]}

= 𝑅𝑒{𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 }

= 𝑎𝑅𝑒{𝑥1[𝑛]} + 𝑏𝑅𝑒{𝑥2[𝑛]}
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Basic System Properties

 Examples

Linearity

𝑥1[𝑛] 𝑦1[𝑛] = 2𝑥1 𝑛 + 3

𝑥2[𝑛]

𝑦 𝑛 = 2𝑥 𝑛 + 3

𝑥3[𝑛]

If 𝑥3 𝑛 = 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛

= 2 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 + 3

𝑦3
′ [𝑛] = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

𝑦3[𝑛] ≠ 𝑦3
′ [𝑛]

2𝑥 𝑛 + 3

2𝑥 𝑛 + 3

2𝑥 𝑛 + 3

𝑦2[𝑛] = 2𝑥2 𝑛 + 3

𝑦3[𝑛] = 2𝑥3 𝑛 + 3

𝑦3 𝑛 = 𝑓 𝑥3[𝑛]

= 𝑎(2𝑥1 𝑛 + 3) + 𝑏(2𝑥1 𝑛 + 3)


