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Motivation
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 Importance

 Confidence

Math is important but not everything

 Focus on big pictures

 GPA and real knowledge

Laurent Simons

Rik Vullings

Course Introduction



3

Global content

 Overview of Signals and Systems

 Linear-Time-Invariant Systems

 Fourier Series Representation of Periodic Signals

 The Continues-Time Fourier Transform

 The Discrete-Time Fourier Transform

 Time and Frequency Characterization of Signals and Systems

 Sampling

 The Laplace Transform

 The Z-Transform

System
Signal (input) Signal (output)

Course Introduction



Exams and Grades
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 Homework: 15% (delay <= 2 days, *0.8; >2days, *0)
Mid-term (written, close-book): 30%
 Final Exam (written, close-book): 50%
 Attendance: 5% (-1 point per absence, no late than 5 mins)
 All in English, otherwise *0.8.
 Plagiarism: 

Course Introduction

First time: this assignment zero score.
Second time: this assignment zero score + final score *0.8;
Third time: Final score zero.



Text book and materials
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 Book
Signals and Systems (2nd Edition), by A. V. 

Oppenheim, A. S. Willsky, and S. Hamid. 
ISBN: 978-0138147570.
Signals and Systems using Matlab (2nd 

Edition), by Luis Chaparro. ISBN: 978-
0123948120.
 These slides
 All materials bill be available in the BB 

system

Course Introduction



Organization
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 Lecture: week 1-16; teaching center 301; Tue. and Thu. 08:15-10:00 
 Exercise: time and location TBD
 Office hour: make appointment by email
 Experiment: by Dr. Linyan Lu, start from the 3rd week 
 BB system: Slides and text book, homework release 
 Gradescope: homework submission and grading
Midterm Exam: week 9
 Final Exam: week 17-18

Course Introduction
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 TAs:  

Course Introduction

李嘉其: lijq12024@shanghaitech.edu.cn
王兴蓓: wangxb2024@shanghaitech.edu.cn 
霍旋: huoxuan2024@shanghaitech.edu.cn

 QQ group



Pre-knowledge: Complex numbers 
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Course Introduction



Pre-knowledge: Important geometric series 
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Course Introduction

Let 𝑛 = 𝑀 + 𝑝



Pre-knowledge: Zeros of a complex equation
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Course Introduction



Signals and Systems: An overview (ch.1)

 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties



Continuous-Time and Discrete-Time Signals
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 Signals describe a wide variety of physical phenomena

The voltage 𝑣𝑠 and 𝑣𝑐 are examples 
of signals.

The force f and velocity v are 
signals.



Continuous-Time and Discrete-Time Signals
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 Mathematically, signals are represented as functions of one or more 
independent variables.

 Example of typical signals

 Sound

 Image 

 Video 



Continuous-Time and Discrete-Time Signals
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 Sound: represents acoustic pressure as a function of time

𝑓(𝑡)



Continuous-Time and Discrete-Time Signals
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 Picture: represents brightness as a function of two spatial variables

𝑓(𝑥, 𝑦)



Continuous-Time and Discrete-Time Signals
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 Video: consists of a sequence of images, called frames, and is a function of 
3 variables: 2 spatial coordinates and time

𝑓(𝑥, 𝑦, 𝑡)



Continuous-Time and Discrete-Time Signals

17

 Independent variables can be one or more

 Focus on signals involving a single independent variable

 Generally refer to the independent variable as time, although it 
may not in fact represent time in specific applications

 Continues-time and discrete-time signal



Continuous-Time and Discrete-Time Signals
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 Continues-time signals: the independent variable is continuous, and 
signals are defined for a continuum of values



Continuous-Time and Discrete-Time Signals
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 Discrete-time signals: defined only at discrete times, and the independent 
variable takes on only a discrete set of values



Continuous-Time and Discrete-Time Signals
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 Continuous-time signals: 𝑡 denote the independent variable, enclosed in (∙)

 Discrete-time signals: 𝑛 denote the independent variable, enclosed in [∙]

 𝑥 𝑛

𝑥(𝑡)
𝑥[𝑛]

 discrete in nature; or sampling of continuous-time signal
 Focus mainly on the second case, defined only for integer values of 𝑛

𝑡 𝑛



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 𝑣(𝑡) and 𝑖(𝑡) are voltage and current across a resistor R, the instantaneous
power is

 The total energy over the time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2 is  

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡 =
1

𝑅
𝑣2(𝑡)

𝐸𝑅 = 𝑡1
𝑡2 𝑝 𝑡 𝑑𝑡 = 𝑡1

𝑡2 1

𝑅
𝑣2(𝑡) 𝑑𝑡

 The average power over the time interval 𝑡1 ≤ 𝑡 ≤ 𝑡2 is  

𝑃𝑅 =
1

𝑡2−𝑡1
𝑡1
𝑡2 𝑝 𝑡 𝑑𝑡 =

1

𝑡2−𝑡1
𝑡1
𝑡2 1

𝑅
𝑣2(𝑡) 𝑑𝑡



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Similarly, for any signal 𝑥(𝑡) or 𝑥[𝑛], the total energy is defined as

 The average power is defined as

𝑃 =
𝐸

𝑡2 − 𝑡1

𝐸 = න
𝑡1

𝑡2

|𝑥 𝑡 |2 𝑑𝑡 𝑡1 ≤ 𝑡 ≤ 𝑡2

𝐸 = 

𝑛=𝑛1

𝑛2

|𝑥[𝑛]|2 𝑛1 ≤ 𝑛 ≤ 𝑛2

𝑃 =
𝐸

𝑛2 − 𝑛1 + 1

Continuous-time signal

Discrete-time signal

Continuous Discrete



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Over infinite time interval −∞ ≤ 𝑡 ≤ ∞ or −∞ ≤ 𝑛 ≤ ∞

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑇→∞

න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 = න
−∞

∞

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑁→∞



𝑛=−𝑁

𝑁

|𝑥[𝑛]|2 = 

𝑛=−∞

∞

|𝑥[𝑛]|2

𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1


𝑛=−𝑁

𝑁

|𝑥[𝑛]|2

𝐸∞ ≜ lim
𝑇→∞

න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 = න
−∞

∞

|𝑥 𝑡 |2 𝑑𝑡

𝐸∞ ≜ lim
𝑁→∞



𝑛=−𝑁

𝑁

|𝑥[𝑛]|2 = 

𝑛=−∞

∞

|𝑥[𝑛]|2

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

|𝑥 𝑡 |2 𝑑𝑡 𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1


𝑛=−𝑁

𝑁

|𝑥[𝑛]|2

Continuous

Discrete

Continuous Discrete



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Finite-energy signal: 𝐸∞ < ∞

𝑃∞ ≜ lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

𝑥 𝑡 2 𝑑𝑡 = 0

 Finite-power signal: 𝑃∞ < ∞, 𝐸∞ = ∞

𝑃∞ ≜ lim
𝑁→∞

1

2𝑁 + 1


𝑛=−𝑁

𝑁

𝑥 𝑛 2 = 0

 Infinite energy & power signal 𝑃∞ → ∞, 𝐸∞ → ∞



Continuous-Time and Discrete-Time Signals
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Signal energy and power

 Examples:

𝑃∞ < ∞, 𝐸∞ = ∞

𝑃∞ → ∞, 𝐸∞ → ∞

(1) 𝑥 𝑡 = ቐ
0, 𝑡 < 0

1, 0 ≤ 𝑡 ≤ 1
0, 𝑡 > 1

(3) 𝑥 𝑡 = 𝑡

(2) 𝑥[𝑛] = 4

𝐸∞ < ∞, 𝑃∞ = 0
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

Signals and Systems: An overview (ch.1)



Transformation of the independent variable
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Time shift

𝑥 𝑡 𝑥 𝑡 − 𝑡0

𝑥[𝑛] 𝑥[𝑛 − 𝑛0]

𝑡0 > 0

𝑛0 < 0

𝑥 𝑡 : 𝑥 𝑎 → 𝑡 = 𝑎
𝑥 𝑡 − 𝑡0 : 𝑥 𝑎 → 𝑡 − 𝑡0 = 𝑎

∙∙
𝑎

𝑥 𝑎 𝑥 𝑎

𝑎 + 𝑡0



Transformation of the independent variable
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Time reversal

𝑥[𝑛] 𝑥[−𝑛]

𝑥 𝑡 𝑥 −𝑡 𝑥 1 − 𝑡



Transformation of the independent variable
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Time scaling

𝑥 𝑡 𝑥 2𝑡 𝑥 𝑡/2

𝑥 𝑡 𝑥 2𝑡

𝑥 𝑡 𝑥 𝑡/2

Compressed

Stretched



Transformation of the independent variable
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 if 𝛼 > 1, compressed

 if 𝛼 < 1, stretched

 if 𝛼 < 0, reversed

 if 𝛽 ≠ 0, shifted

General: Let 𝑥(𝑡) → 𝑥(𝛼𝑡 + 𝛽)

Example1: Given the signal 𝑥(𝑡), to illustrate

 𝑥(𝑡 + 1)

 𝑥(−𝑡 + 1)

 𝑥(3𝑡/2)

 𝑥(
3𝑡

2
+ 1)



Transformation of the independent variable
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 𝑥(𝑡 + 1) 𝑥(−𝑡 + 1) 𝑥(3𝑡/2) 𝑥(
3𝑡

2
+ 1)



Transformation of the independent variable
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 Example2: A discrete signal x[n] is shown below, sketch and label 
following signals:

 x[2n]
 x[2n+1]



Transformation of the independent variable
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Transformation of the independent variable
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Periodic Signals

 Continuous-time: 𝑥 𝑡 = 𝑥(𝑡 + 𝑇) for all t 

 Fundamental period

• The smallest positive value of T for which 𝑥 𝑡 = 𝑥(𝑡 + 𝑇) holds



Transformation of the independent variable
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Periodic Signals

 Discrete-time: 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] for all 𝑛

 Fundamental period

• The smallest positive value of N for which 𝑥[𝑛] = 𝑥[𝑛 + 𝑁] holds



Transformation of the independent variable
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Periodic Signals

 Example:

Not periodic



Even and Odd Signals 

 Even signal

• 𝑥 𝑡 = 𝑥(−𝑡) 𝑥[𝑛] = 𝑥[−𝑛]

 Odd signal

• 𝑥 𝑡 = −𝑥(−𝑡) 𝑥 𝑛 = −𝑥[−𝑛]

37

Transformation of the independent variable

Any signal is either even or odd. False



Even and Odd Signals 
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Transformation of the independent variable

 Any signal can be broken into a sum of two signals

 One even and one odd

)()()( txtxtx oe 

)]()([
2

1
)}({)( txtxtxEtx ve 

)]()([
2

1
)}({)( txtxtxOtx do 



Even and Odd Signals 
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Transformation of the independent variable

)]()([
2

1
)}({)( txtxtxEtx ve 

)]()([
2

1
)}({)( txtxtxOtx do 

+



Even and Odd Signals 
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Transformation of the independent variable

+

𝑥 𝑛 = 𝑥𝑒[𝑛]+𝑥𝑜[𝑛]

𝑥𝑒[𝑛]= (𝑥 𝑛 + 𝑥 −𝑛 )/2

𝑥𝑜[𝑛]= (𝑥 𝑛 − 𝑥 −𝑛 )/2

𝑥 𝑛 𝑥𝑒[𝑛] 𝑥𝑜[𝑛]
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties

Signals and Systems: An overview (ch.1)



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 General case

 Real exponential signal 

 C and a are real 

 a>0,   as  t↑,   |x(t)| ↑

 a<0,   as  t↑,   |x(t)| ↓

 a=0,   |x(t)| is constant

C and a are complex number 
a>0

a<0

t

t



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Periodic exponential signals

 c is real, specifically 1 

 a is purely imaginary

 Fundamental period 𝑇0?

 𝑇0 is undefined for 𝜔0 = 0

𝑥 𝑡 = 𝑒𝑗𝜔0𝑡

𝑒𝑗𝜔0𝑇 = 1

𝜔0𝑇 = 2𝑘𝜋, 𝑘 = ±1,±2,… 𝑇 =
2𝑘𝜋

𝜔0

𝑥 𝑡 = 𝑒𝑗𝜔0𝑡 = 𝑒𝑗𝜔0(𝑡+𝑇) = 𝑒𝑗𝜔0𝑡𝑒𝑗𝜔0𝑇

𝑇𝑜 =
2𝜋

|𝜔0|
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Exponential and Sinusoidal Signals

 Sinusoidal Signals

 Closely related to complex exponential signals

 Fundamental frequency 𝜔0

𝑒𝑗(𝜔0𝑡+∅) = cos(𝜔0𝑡 + ∅) + 𝑗 sin(𝜔0𝑡 + ∅)

𝐴cos(𝜔0𝑡 + ∅) = 𝐴 ∙ 𝑅𝑒{𝑒𝑗(𝜔0𝑡+∅)}

𝐴 sin(𝜔0𝑡 + ∅) = 𝐴 ∙ 𝐼𝑚{𝑒𝑗(𝜔0𝑡+∅)}

Continuous-Time Complex Exponential and Sinusoidal Signals

𝑥 𝑡 = 𝐴cos(𝜔0𝑡 + ∅)
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Exponential and Sinusoidal Signals

 Sinusoidal Signals

Fundamental frequency 𝜔0

Continuous-Time Complex Exponential and Sinusoidal Signals

𝜔3 < 𝜔2 < 𝜔1

𝑇3 > 𝑇2 > 𝑇1

𝑥 𝑡 = 𝐴cos(𝜔0𝑡 + ∅)
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Exponential and Sinusoidal Signals

 𝑒𝑗𝜔0𝑡 and 𝐴cos(𝜔0𝑡 + ∅) examples of signals with infinite total energy 
but finite average power

 Total energy: infinite

 Average power: finite 

1
1

0

 periodperiod E
T

p

Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Harmonically related complex exponentials

Continuous-Time Complex Exponential and Sinusoidal Signals

 A set of periodic exponentials (with different frequencies), all of which 
are periodic with a common period 𝑇0.

𝑒𝑗𝜔𝑡 periodic

 A set of periodic exponentials with fundamental frequencies of 𝑘𝜔0:
∅𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡, 𝑘 = 0,±1,±2,…

 For any 𝑘 ≠ 0, fundamental frequency |𝑘|𝜔0; fundamental period
2𝜋

|𝑘|𝜔0
=

𝑇0

|𝑘|

𝑒𝑗𝜔𝑡 = 𝑒𝑗𝜔(𝑡+𝑇0) = 𝑒𝑗𝜔𝑡𝑒𝑗𝜔𝑇0 𝜔𝑇0 = 2𝑘𝜋, 𝑘 = 0,±1,±2,… .

Define 𝜔0 = 2𝜋/𝑇0 𝜔 = 2𝑘𝜋/𝑇0 = 𝑘𝜔0
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Exponential and Sinusoidal Signals

Aperiodic

 Examples – Periodic or not?

Continuous-Time Complex Exponential and Sinusoidal Signals



Continuous-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 C and a are complex numbers

 General case 𝑅𝑒{𝑥 𝑡 } = |𝐶|𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃), 𝑟 > 0

𝑅𝑒{𝑥 𝑡 } = |𝐶|𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃), 𝑟 < 0

𝑥 𝑡 = 𝐶𝑒𝑎𝑡

𝐶 = |𝐶|𝑒𝑗𝜃, 𝑎 = 𝑟 + 𝑗𝜔0

𝐶𝑒𝑎𝑡 = 𝐶 𝑒𝑗𝜃𝑒 𝑟+𝑗𝜔0 𝑡 = 𝐶 𝑒𝑟𝑡𝑒𝑗 𝜔0𝑡+𝜃

𝐶𝑒𝑎𝑡 = 𝐶 𝑒𝑟𝑡 cos(𝜔0𝑡 + 𝜃) + 𝑗 𝐶 𝑒𝑟𝑡 sin(𝜔0𝑡 + 𝜃)



Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 c and 𝛼 are complex numbers

 General case
𝑥 𝑛 = 𝐶𝛼𝑛

𝑥 𝑛 = 𝐶𝑒𝛽𝑛 𝛼 = 𝑒𝛽

 Real Exponential Signals

C and 𝛼 are real numbers

𝐶𝛼𝑛, 𝛼>1 𝐶𝛼𝑛, 0<𝛼<1 

𝐶𝛼𝑛, -1<𝛼<0 

𝐶𝛼𝑛, 𝛼<-1 



Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

 Sinusoidal signals

 c is real, specifically 1; 𝛽 is purely imaginary

 Infinite total energy but finite average power

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛 𝑥 𝑛 = 𝐴 cos(𝜔0𝑛 + ∅)

𝑒𝑗𝜔0𝑛 = cos𝜔0𝑛 + 𝑗 sin𝜔0𝑛

|𝑒𝑗𝜔0𝑛|2 = 1

Closely related

𝐴 cos(𝜔0𝑛 + ∅) = 𝐴 ∙ 𝑅𝑒{𝑒𝑗 𝜔0𝑛+∅ }

𝐴 sin(𝜔0𝑛 + ∅) = 𝐴 ∙ 𝐼𝑚{𝑒𝑗 𝜔0𝑛+∅ }



 General Signals

52

Exponential and Sinusoidal Signals

𝑥 𝑛 = 𝐶𝛼𝑛

𝐶 = |𝐶|𝑒𝑗𝜃, 𝛼 = |𝛼|𝑒𝑗𝜔0

𝑥 𝑛 = 𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃)

Discrete-Time Complex Exponential and Sinusoidal Signals

+𝑗 𝐶 𝛼 𝑛sin(𝜔0𝑛 + 𝜃)

𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃), 𝛼 > 1

𝐶 𝛼 𝑛 cos(𝜔0𝑛 + 𝜃), 𝛼 < 1
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Exponential and Sinusoidal Signals

 𝜔0: same value at 𝜔0 and 𝜔0 + 2𝑘𝜋

 Only consider interval 0 ≤ 𝜔0≤ 2𝜋 or −𝜋 ≤ 𝜔0≤ 𝜋

• From 0 to 𝜋: 𝜔0 ↑, oscillation rate of 𝑒𝑗𝜔0𝑛 ↑

• From 𝜋 to 2𝜋: 𝜔0 ↑, oscillation rate of 𝑒𝑗𝜔0𝑛 ↓

• Maximum oscillation rate at 𝜔0 = 𝜋

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗(𝜔0+2𝑘𝜋)𝑛 = 𝑒𝑗2𝑘𝜋𝑛𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗𝜋𝑛 = (𝑒𝑗𝜋)𝑛 = (−1) 𝑛

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝜔0 = 0

𝜔0 = 𝜋/8

𝜔0 = 𝜋/4

𝜔0 = 𝜋

cos(𝜔0𝑛)

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals

From 0 to 𝜋: 
𝜔0 ↑, oscillation rate ↓
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Exponential and Sinusoidal Signals

𝜔0 = 2𝜋

𝜔0 = 15𝜋/8

𝜔0 = 7𝜋/4

𝜔0 = 𝜋

cos(𝜔0𝑛)

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals

From 𝜋 to 2𝜋: 
𝜔0 ↑, oscillation rate ↑
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Exponential and Sinusoidal Signals

• Q: Which one is a higher frequency signal?

𝜔0 = 𝜋 𝜔0 = 3𝜋/2

𝑁 = 2 𝑁 = 4

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛

𝑒𝑗𝜔0(𝑛+𝑁) = 𝑒𝑗𝜔0𝑁𝑒𝑗𝜔0𝑛 = 𝑒𝑗𝜔0𝑛

• In order for   𝑒𝑗𝜔0𝑛 to be periodic with N>0, must

• 𝜔0/2𝜋: rational number

• If N and m have no factors in common:

Fundamental period: 𝑁 = 𝑚
2𝜋

𝜔0

Fundamental frequency: 
2𝜋

𝑁
=

𝜔0

𝑚

𝜔0

2𝜋
=
𝑚

𝑁

𝜔0𝑁 = 2𝜋𝑚, 𝑚 integer number

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

𝑥[𝑛] = cos(2𝜋𝑛/12) periodic    N=12

𝑥[𝑛] = cos(8𝜋𝑛/31) periodic    N=31

𝑥[𝑛] = cos(𝑛/6) aperiodic

𝑥 𝑛 = 𝑒
𝑗

2𝜋𝑛

3 + 𝑒𝑗(
3𝜋𝑛

4
)

periodic, N=24

 Periodicity properties

Discrete-Time Complex Exponential and Sinusoidal Signals
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Exponential and Sinusoidal Signals

Periodic for any 0

Only if 0=2m/N for

some integers N>0 and m

Distinct signals for

distinct 0

Identical signals for 

values of 0 separated

by multiples of 2

Fundamental 

frequency 0

0  m

Fundamental 

period 2/ 0

N=m(2/ 0)

𝑒𝑗𝜔0𝑛𝑒𝑗𝜔0𝑡
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties
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The Unit Impulse and Unit Step Functions

 Unit impulse (unit sample ) is defined as

 Unit step is defined as



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 The impulse is the first difference 
of the step

 Conversely, the step is the running 
sum of unit  sample

𝑛 < 0

𝑛 > 0



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Let 𝑚 = 𝑛 − 𝑘, 
𝑛 < 0

𝑛 > 0



Discrete-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 Sampling property

 More generally



Continuous-time unit impulse and unit step sequences

65

The Unit Impulse and Unit Step Functions

 Unit step

 The continuous unit step u(t) is the running integral 
of unit impulse (t)

 (t) the first derivative of u(t)



Continuous-time unit impulse and unit step sequences
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The Unit Impulse and Unit Step Functions

 𝑢(𝑡) is discontinuous at 𝑡 = 0, How we get δ(𝑡)?

𝑢∆(𝑡)

𝑡

𝑢 𝑡 = lim
∆→0

𝑢∆(𝑡) 𝛿∆ 𝑡 =
𝑑 𝑢∆(𝑡)

𝑑𝑡
𝛿 𝑡 = lim

∆→0
𝛿∆(𝑡)

 Consider 𝑢∆(𝑡)

arrow at 𝑡 = 0: area of the pulse is concentrated at 𝑡 = 0
arrow height and "1“: area of the impulse

𝑡 𝑡
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The Unit Impulse and Unit Step Functions

𝑢 𝑡 = න
−∞

𝑡

𝛿 𝜏 𝑑𝜏 Let 𝜎 = 𝑡 − 𝜏 𝑢 𝑡 = න
0

∞

𝛿 𝑡 − 𝜎 𝑑𝜎

𝑡 < 0

𝑡 > 0

𝑡 < 0

𝑡 > 0
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The Unit Impulse and Unit Step Functions

𝑥1 𝑡 = 𝑥(𝑡)𝛿∆ 𝑡

𝑥(𝑡)𝛿 𝑡 = lim
∆→0

𝑥(𝑡)𝛿∆ 𝑡 = 𝑥(0)𝛿 𝑡

𝑥(𝑡)𝛿∆ 𝑡 ≈ 𝑥(0)𝛿∆ 𝑡

𝑥(𝑡)𝛿 𝑡 − 𝑡0 = 𝑥(𝑡0)𝛿 𝑡 − 𝑡0

 Sampling property

 More generally
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The Unit Impulse and Unit Step Functions

(1) Calculate and sketch the x’(t);

(2) Recover x(t) from x’(t).





0

' )()(   )2( dttxtx

 Example: 

 Solutions: 
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties
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Continuous-Time and Discrete-Time Systems

 Continuous-Time Systems: Input and output are continuous

 Discrete-Time Systems: Input and output are discrete
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Continuous-Time and Discrete-Time Systems

Examples of systems

 RC circuit
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Continuous-Time and Discrete-Time Systems

Examples of systems

In general:

 Moving car
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Continuous-Time and Discrete-Time Systems

Examples of systems

 Balance in a bank account:

𝑦[𝑛]: balance at the end of the nth month; 𝑥[𝑛]: net deposit; Interest rate: 1%
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Continuous-Time and Discrete-Time Systems

Examples of systems

 Digital simulation a differential equation

• Approximate 𝑑𝑣(𝑡)/𝑑𝑡 at 𝑡 = 𝑛∆ by   
𝑣 𝑛∆ −𝑣((𝑛−1)∆)

∆

𝑣 𝑛∆ − 𝑣((𝑛 − 1)∆)

∆
+
𝜌

𝑚
𝑣 𝑛∆ =

1

𝑚
𝑓(𝑛∆)

𝑣 𝑛 −
𝑚

𝑚 + 𝜌∆
𝑣 𝑛 − 1 =

1

𝑚 + 𝜌∆
𝑓[𝑛]• Let 𝑣 𝑛 = 𝑣 𝑛∆

• In general 𝑦 𝑛 + 𝑎𝑦 𝑛 − 1 = 𝑏𝑥[𝑛]
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Continuous-Time and Discrete-Time Systems

 Series (or cascade)

 Parallel

 Feedback

Interconnections of systems
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 Continuous-Time and Discrete-Time Signals

 Transformations of the Independent Variable

 Exponential and Sinusoidal Signals

 The Unit Impulse and Unit Step Functions

 Continuous-Time and Discrete-Time Systems

 Basic System Properties
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Basic System Properties

 System without memory: 

System with and without memory

 Output is dependent only on the current input
 Examples:



79

Basic System Properties

Memory: retaining or storing information about input values at times

 Physical systems, memory is associated with the storage of energy

System with and without memory

 System with memory: 

 Output is dependent on the current and previous inputs
 Examples:
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Basic System Properties

 Invertible 

Invertibility and inverse system

 Distinct inputs lead to distinct outputs.
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Basic System Properties

Invertibility and inverse system

 Invertible 

 Examples: Accumulator

 The difference between two successive outputs is precisely the 
inputs
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Basic System Properties

 Noninvertible

Invertibility and inverse system

All x[n] leads to the same y[n] 

Cannot determine the sign of the inputs
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Basic System Properties

 Causal: the output at any time depends only on the inputs at the 
present time and in the past

Causality

Non-causal

Causal

Causal

Causal

Non-causal
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Basic System Properties

 Examples

Causality

𝑦[𝑛] = 𝑥[−𝑛]

𝑦 𝑡 = 𝑥 𝑡 cos(𝑡 + 1) Causal

Non-causal
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Basic System Properties

 Informally: small inputs lead to responses that do not diverge.

Stability

A bank account balance

𝑦 𝑛 = 𝑥[𝑛] + (1 + 𝛼) × 𝑦 𝑛 − 1

Stable

Unstable

Unstable
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Basic System Properties

 Formally: bounded input leads to bounded output

Stability

Stable

Unstable

 Bounded: 𝑦 𝑡 < 𝐵
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Basic System Properties

• Examples

Stability

𝑆1: 𝑦(𝑡) = 𝑡𝑥 𝑡

𝑆2: 𝑦(𝑡) = 𝑒𝑥 𝑡 Stable

Unstable

𝑥 𝑡 < 𝐵 → −𝐵 < 𝑥 𝑡 < 𝐵 → 𝑒−𝐵 < 𝑦 𝑡 < 𝑒𝐵
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Basic System Properties

 Time invariant: a time shift in the input signal results in an identical 
time shift in the output signal

Time Invariance

)( 0ttx  )( 0tty 

][nx ][ny

)(tx )(tyIf 

Then

Then

If
𝑥1 (𝑡) 𝑦1 (𝑡)System

𝑦2 (𝑡)System𝑥2 𝑡

𝑦2 𝑡 = 𝑦2
′ 𝑡 ?

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0

If 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)
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Basic System Properties

 Examples: 𝑦 𝑡 = sin[𝑥(𝑡)]

Time Invariance

𝑥1 (𝑡) 𝑦1 (𝑡)sin[𝑥(𝑡)]

𝑥2 (𝑡) 𝑦2 (𝑡)sin[𝑥(𝑡)]

∴ 𝑦2 𝑡 = 𝑦2
′ (𝑡)

𝑦1 𝑡 = sin[𝑥1(𝑡)]

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

If 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)

𝑦2 𝑡 = sin[𝑥1 𝑡 − 𝑡0 ]

𝑦2
′ (𝑡) = sin[𝑥1 𝑡 − 𝑡0 ]

𝑓 ∙ = sin{∙}

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0
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Basic System Properties

 Examples: 𝑦 𝑛 = 𝑛𝑥[𝑛]

Time Invariance

𝑥1 [𝑛] 𝑦1 [𝑛]𝑛𝑥[𝑛]

𝑥2 [𝑛] 𝑦2 [𝑛]𝑛𝑥[𝑛]

∴ 𝑦2 [𝑛] ≠ 𝑦2
′ 𝑛

𝑦1 [𝑛] = 𝑛 ∙ 𝑥1 [𝑛]

If 𝑥2 𝑛 = 𝑥1 [𝑛 − 𝑛0]

= 𝑛 ∙ 𝑥1 [𝑛 − 𝑛0]

𝑦2
′ 𝑛 = (𝑛 − 𝑛0) ∙ 𝑥1 [𝑛−𝑛0]

𝑦2 [𝑛] = 𝑓 𝑥2[𝑛]

𝑦2
′ 𝑛 = 𝑦1 [𝑛 − 𝑛0]
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Basic System Properties

 Examples: 𝑦 𝑡 = 𝑥(2𝑡)

Time Invariance

𝑥1 (𝑡) 𝑦1 (𝑡)𝑥(2𝑡)

𝑥2 (𝑡) 𝑦2 (𝑡)𝑥(2𝑡)

∴ 𝑦2 𝑡 ≠ 𝑦2
′ (𝑡)

𝑦1 𝑡 = 𝑥1(2𝑡)

𝐼𝑓 𝑥2 𝑡 = 𝑥1 (𝑡 − 𝑡0)

= 𝑥1 (2𝑡 − 𝑡0)

𝑦2
′ (𝑡) = 𝑥1[2 𝑡 − 𝑡0 ]

𝑦2 𝑡 = 𝑓 𝑥2 𝑡

𝑦2
′ (𝑡) = 𝑦1 𝑡 − 𝑡0
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Basic System Properties

 Linear

Linearity

𝑥1 (𝑡) 𝑦1 (𝑡)

𝑥2 (𝑡) 𝑦2 (𝑡)

𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 → 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡

𝑥1 𝑡 → 𝑦1 𝑡 , 𝑥2 𝑡 → 𝑦2 𝑡

𝑥3 (𝑡) 𝑦3 (𝑡)

System

System

System

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

Superposition property 
(additivity and homogeneity)

𝑦3 𝑡 = 𝑦3
′ 𝑡 ?

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡
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Basic System Properties

 Examples

Linearity

𝑥1 (𝑡) 𝑦1 𝑡 = 𝑡𝑥1(𝑡)

𝑥2 (𝑡)

𝑦 𝑡 = 𝑡𝑥(𝑡)

𝑥3 (𝑡)

𝑡𝑥(𝑡)

𝑡𝑥(𝑡)

𝑡𝑥(𝑡)

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

= 𝑡[𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 ]

𝑦2 𝑡 = 𝑡𝑥2(𝑡)

𝑦3 𝑡 = 𝑡𝑥3(𝑡)
𝑦3
′ (𝑡) = 𝑎𝑡𝑥1 𝑡 + 𝑏𝑡𝑥1 𝑡

𝑦3 𝑡 = 𝑦3
′ (𝑡)

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡
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Basic System Properties

 Examples

Linearity

𝑥1 (𝑡) 𝑦1 𝑡 = 𝑥1
2(𝑡)

𝑥2 (𝑡)

𝑦 𝑡 = 𝑥2(𝑡)

𝑥3 (𝑡)

𝑥2(𝑡)

𝑥2(𝑡)

𝑥2(𝑡)

If 𝑥3 𝑡 = 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡

= [𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 ] 2

𝑦2 𝑡 = 𝑥2
2(𝑡)

𝑦3 𝑡 = 𝑥3
2(𝑡)

= 𝑎𝑥1
2 𝑡 + b𝑥2

2(𝑡)

𝑦3 𝑡 ≠ 𝑦3
′ (𝑡)

𝑦3 𝑡 = 𝑓 𝑥3 𝑡

𝑦3
′ (𝑡) = 𝑎𝑦1 𝑡 + 𝑏𝑦2 𝑡
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Basic System Properties

 Examples

Linearity

𝑥1[𝑛] 𝑦1[𝑛] = 𝑅𝑒{𝑥1[𝑛]}

𝑥2[𝑛]

𝑦[𝑛] = 𝑅𝑒{𝑥[𝑛]}

𝑥3[𝑛]

𝑅𝑒{𝑥[𝑛]}

If 𝑥3 𝑛 = 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛

𝑦3 𝑛 = 𝑓 𝑥3[𝑛]

𝑦3
′ [𝑛] = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

If a and b are complex numbers
𝑦3[𝑛] ≠ 𝑦3

′ [𝑛]

𝑅𝑒{𝑥[𝑛]}

𝑅𝑒{𝑥[𝑛]}

𝑦2[𝑛] = 𝑅𝑒{𝑥2[𝑛]}

𝑦3[𝑛] = 𝑅𝑒{𝑥3[𝑛]}

= 𝑅𝑒{𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 }

= 𝑎𝑅𝑒{𝑥1[𝑛]} + 𝑏𝑅𝑒{𝑥2[𝑛]}
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Basic System Properties

 Examples

Linearity

𝑥1[𝑛] 𝑦1[𝑛] = 2𝑥1 𝑛 + 3

𝑥2[𝑛]

𝑦 𝑛 = 2𝑥 𝑛 + 3

𝑥3[𝑛]

If 𝑥3 𝑛 = 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛

= 2 𝑎𝑥1 𝑛 + 𝑏𝑥2 𝑛 + 3

𝑦3
′ [𝑛] = 𝑎𝑦1 𝑛 + 𝑏𝑦2 𝑛

𝑦3[𝑛] ≠ 𝑦3
′ [𝑛]

2𝑥 𝑛 + 3

2𝑥 𝑛 + 3

2𝑥 𝑛 + 3

𝑦2[𝑛] = 2𝑥2 𝑛 + 3

𝑦3[𝑛] = 2𝑥3 𝑛 + 3

𝑦3 𝑛 = 𝑓 𝑥3[𝑛]

= 𝑎(2𝑥1 𝑛 + 3) + 𝑏(2𝑥1 𝑛 + 3)


