V				
	ء	最优	Time	Space
BFS	ン	X(降非常)	0(b ⁵)	0(bs)
DFS	χ	χ	0(bm)	0(bm)
ucs	V	V(cost斯)	0 (b ^{c*/E})	O(bC*/E)
Greedy	Χ	χ	/	/
A*	V	√(consistent)	\	\

Greedy worst case: badly-guided DFS Iterative Deepening:

Idea: get DFS's space advantage with BFS's time / shallow-solution advantages

- Run a DFS with depth limit 1. If no solution...
- Run a DFS with depth limit 2. If no solution...
- Run a DFS with depth limit 3.

Pancake Heuristic: the number of the largest pancake that is still out of place. Graph Search: 重要! (不重复探节点)

Idea: never expand a state twice

How to implement:

- Tree search + set of expanded states ("closed set")
- · Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set

BackTracking:

Backtracking search is the basic uninformed algorithm for solving CSPs

ldea 1: One variable at a time

- Variable assignments are commutative, so fix ordering
- I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go

- Le. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 "Incremental goal test"

Depth-first search with these two improvements is called backtracking search

function BACKTRACKING-SEARCH(csp) returns solution/failure ${\bf return} \ {\rm Recursive-Backtracking} \big(\{ \ \}, {\it csp} \big)$

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure

if assignment is complete then return assignment $var \leftarrow \text{Select-Unassigned-Variables}[csp]$, assignment, csp) for each value in Order-Domain-Values(var, assign if value is consistent with assignment given Constraints [csp] then

add $\{var = value\}$ to assignment $result \leftarrow Recursive-Backtracking(assignment, csp)$ if result \neq failure then return result

remove $\{var = value\}$ from assignment

Filtering:(forward checking and arc)

Filtering: Keep track of domains for unassigned variables and cross off bad options Forward checking: Cross off values that violate a constraint when added to the existing assignment; whenever any variable has no value left, we backtrack

An arc $X \to Y$ is consistent iff for $\mathit{every}\, x$ in the tail there is $\mathit{some}\, y$ in the head which could be assigned without violating a constraint

Important: If Y loses a value, then arc $X \rightarrow Y$ needs to be rechecked! Arc consistency detects failure earlier than forward checking

function AC-3(csp) returns the CSP, possibly with reduced domains a binary CSP with variables $\{X_1,$ local variables: queue, a queue of arcs, initially all the arcs in csp

function REMOVE-INCONSISTENT-VALUES(Xi, Xi) returns true iff succeeds

for each x in DOMAIN[X_i] do

if no value y in DOMAIN $[X_j]$ allows (x,y) to satisfy the constraint $X_i \leftrightarrow X_j$ then delete x from DOMAIN $[X_i]$; $removed \leftarrow true$ return re

An arc $X\to Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint

k-consistency:

As an interesting parting note about consistency, arc consistency is a subset of a more generalized notion of consistency known as k-consistency, which when enforced guarantees that for any set of k nodes in the CSP, a consistent assignment to any subset of k-1 nodes guarantees that the k^n node will have at least one consistent value. This idea can be further extended through the idea of strong k-consistency. A graph that is strong k-consistent possesses the property that any subset of k nodes is not only k-consistent but also $k-1, k-2, \ldots, 1$ consistent as well. Not surprisingly, imposing a higher degree of consistency on a

Ordering:

Value Ordering: Least Constraining Value

 Given a choice of variable, choose the least constraining value

Variable Ordering: Minimum remaining values (MRV):

- Choose the variable with the fewest legal left values in its domain
- Also called "most constrained variable"

Structure:

Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)

- Cutset: a set of variables s.t. the remaining constraint graph is a tree Cutset conditioning: instantiate (in all ways) the cutset and solve the remaining tree-structured CSP
 - Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset 删去之后,剩下的是森林也可以 Iterative Algorithm for CSP:

Idea:

- Take a complete assignment with unsatisfied constraints
- Reassign variable values to minimize conflicts

Variable selection: randomly select any conflicted variable

Choose a value that violates the fewest constraints

Value selection: min-conflicts heuristic:

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP $\it except$ in a narrow range of the ratio

Local Search: improve a single option until you can't make it better; Generally much faster and more memory efficient (but incomplete and suboptimal); Hill-Beam-Annealing-Genetic: Simple, general idea:

- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

Like greedy hill climbing search, but keep K states at all times

Greedy Search
The best choice in MANY practical settings

Idea: Escape local maxima by allowing downhill moves

- Pick a random move
- Always accept an uphill move
- \blacksquare Accept a downhill move with probability e $^{-\Delta E\,/\,T}$
- But make the probability smaller (by decreasing T) as time

Theoretical guarantee

- If T decreased slowly enough, will converge to optimal state! Sounds like magic, but reality is reality:
- The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all

- Genetic algorithms use a natural selection metaphor
 - Keep the best (or sample) N states at each step based on a fitness function Pairwise crossover operators, with optional mutation to give variety

Minimax:

How efficient is minimax?

- Just like (exhaustive) DFS
- Time: O(b^m)
- Space: O(bm)

Ideal function: returns the actual minimax value of the position A simple solution in practice: weighted linear sum of features:

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$

Alpha-Beta Pruning:

General configuration (MIN version)

- We're computing the MIN-VALUE at some node n
- We're looping over n's children, so n's estimate is
- Let a be the best value that MAX can get at any choice point along the current path from the root
- If n becomes worse than a, then we can stop considering n's other children
- Reason: if n is eventually chosen, then the nodes along the path shall all have the value of n, but n is worse than a and hence the path shall not be chosen at the MAX

Perhaps the simplest check is as follows: pruning of children of a minimizer node m is possible (for some assignment to the terminal nodes), when both of the following conditions are met: (i) the value of another child of m has already been determined, (ii) somewhere the path from m to the root node, there is a maximizer node M for which an alternative option has already been explored. The pruning will then happen if any such alternative option for the maximizer had a higher value than the value of the "another child" of m for which the value was already determined.

def max-value(state, α , β): initialize $v = -\infty$ for each successor of state: v = max(v, value(s))if $v \ge \beta$ return v $\alpha = \max(\alpha, v)$ return v

def min-value(state , α , β): initialize v = +0 for each successor of state: $v = min(v, value(successor, \alpha, \beta))$ if $v \le \alpha$ return v $\beta = \min(\beta, v)$ return v

- soundness (可靠性): derivations produce only entailed
- (完备性): derivations can produce all entailed completeness

Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic Propositional logic lacks expressive power

Resolution&TruthTable: complete&sound for prop.logic

The best way to prove $KB = \alpha$?

- Proof by contradiction, i.e., show $KB \land \neg \alpha$ is unsatisfiable
- 1. Convert $KB \land \neg \alpha$ to CNF
- 2. Repeatedly apply the resolution rule to add new clauses, until one of the two things happens
 - a) Two clauses resolve to yield the empty clause, in which case KB entails α
 - There is no new clause that can be added, in which case KB does not entail α

Horn logic: only (strict) Horn clauses are allowed

- A Horn clause has the form: $P1 \wedge P2 \wedge P3 ... \wedge Pn \Rightarrow Q$ or alternatively

(atoms)

 $\neg P1 \lor \neg P2 \lor \neg P3 \dots \lor \neg Pn \lor Q$ where Ps and Q are non-negated proposition symbols

- n can be zero, i.e., the clause contains a single atom

Only compl&sound for Horn Logic FC&BC: not com&sou for prop.logic&FOL

Inference algorithms (for Horn logic)

- Forward chaining, backward chaining
- These algorithms are very natural and run in linear time

FC is data-driven, automatic, unconscious processing,

- e.a., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

- e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

FOL syntax: (and every variable must be bound)

Atomic sentence = predicate (term₁,...,term_n) or term₁ = term₂ constant or variable or function (term₁,...,term_n)

Complex sentences are made from atomic sentences using connectives

Typically, \wedge is the main connective with \exists Common mistake: using \Rightarrow as the main connective with

$\exists x \ At(x,STU) \Rightarrow Smart(x)$

is true if there is anyone who is not at STU!

Typically, \Rightarrow is the main connective with \forall Common mistake: using ∧ as the main connective with ∀: $\forall x \ At(x,STU) \land Smart(x)$

means "Everyone is at STU and everyone is smart"

(Term without variables)

For any sentence α , variable ν and ground term g:

Subst($\{v/q\}, \alpha\}$ Substitute v with q in α

Every instantiation of a universally quantified sentence is

UI can be applied multiple times to add new sentences

For any sentence α , variable ν , and constant symbol kthat does not appear elsewhere in the knowledge base:

Subst($\{v/k\}$, α)

El can be applied once to replace an existential

Unification finds substitutions that make different expressions identical

Resolution:

 $\frac{p_1', p_2', \dots, p_n', (p_1 \land p_2 \land \dots \land p_n \Rightarrow q)}{q\theta} \quad \text{where } p_i'\theta = p_i \theta \text{ for all } i$

GMP: incomplete for FOL

-Not every sentence can be converted to Horn form GMP: complete for FOL KB of definite clauses

FC and BC are complete for Horn KBs but are incomplete for general FOL KBs:

Every variable is conditionally independent of its non-descendants given its parents Conditional independence semantics <=> global semantics

A variable's Markov blanket consists of parents, children, children's other parents Every variable is conditionally independent of all other variables given its Markov blanket

Inference by Enumeration

Question: X, Y, Z are non-intersecting subsets of nodes. Are X and Y conditionally independent given Z? A triple is active in the following three cases A path is active if each triple along the path is active A path is blocked if it contains a single inactive triple If all paths from X to Y are blocked, then X is said to be "d-separated" from Y by Z If d-separated, then X and Y are conditionally independent given Z

A directed, acyclic graph

Conditional distributions for each node given its *parent variables* in the graph

- CPT: conditional probability table: each row is a distribution for child given a configuration of its parents
- Description of a noisy "causal" process

 $P(X|A_1,\cdots,A_n)$

A Bayes net = Topology (graph) + Local Conditional Probabilities

General formula for sparse BNs

- Suppose
 - n variables
 - Maximum domain size is d
 - Maximum number of parents is k
- Full joint distribution has size O(dⁿ)
- Bayes net has size $O(n \cdot d^{k+1})$
 - Linear scaling with *n* as long as causal structure is local

Full joint distribution tables answer every question, but:

- Size is exponential in the number of variables
- Need gazillions of examples to learn the probabilities
- Inference by enumeration (summing out hiddens) is too

Bavesian networks:

- Express all the conditional independence relationships in a domain
- Factor the joint distribution into a product of small conditionals
- Often reduce size from exponential to linear
- Faster learning from fewer examples
- Faster inference (linear time in some important cases)

A Bayesian network encodes a joint distribution with a directed acyclic graph

• A CPT captures uncertainty between a node and its parents

A Markov network (or Markov random field) encodes a joint distribution with an undirected graph

A potential function captures uncertainty between a clique of nodes

Moralize: 如果两个节点指向同一个子节点,那么转 化为无向图时两点间连线;这样可以将 BN 转化为 MN;同时 *挑出所有涉及变量及其祖先*并 moralize 后得到的图也可用来判断 BN 两点间是否(条件)独 立: 无向图中删除条件节点及其边, 如果两点相连, 那么就不独立! 因此: 不是所有 BN 都可转为 MN **且包含所有的(条件)独立信息**。(但编码的分布一样)

Markov network = undirected graph + potential functions

- For each clique (or max clique), a potential function is defined
- A potential function is not locally normalized, i.e., it doesn't encode probabilities
- A joint probability is proportional to the product of potentials

Additional links (moralization)

Bayesian Network → Markov Network

- Steps
 - 1. Moralization
 - 2. Construct potential functions from CPTs
- The BN and MN encode the same distribution

An extension of MN (aka. Markov random field) where everything is conditioned on an input

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(x)} \prod_C \psi_C(\mathbf{y}_C, \mathbf{x})$$
 where $\psi_C(\mathbf{y}_C, \mathbf{x})$ is the potential over clique C and
$$Z(x) = \sum \prod \psi_C(\mathbf{y}_C, \mathbf{x})$$

is the normalization coefficient.

Which logic is BN/MN more similar to: PL? FOL?

- Boolean nodes represent propositions
- No explicit representation of objects, relations, quantifiers

BN/MN can be seen as a probabilistic extension of PL PL can be seen as BN/MN with deterministic CPTs/potentials

Generative models

- A generative model represents a joint distribution $P(X_1, X_2, ..., X_n)$
- Both BN and MN are generative models

- In some scenarios, we only care about predicting queries from evidence
- A discriminative model represents a conditional distribution $P(Y_1, Y_2, \dots, Y_n | X)$
- It does not model P(X)