Wi, | Tine
X B oc b°)
X 0"
st 0 (570
2| N
V] N

BrS
DES
ucs
ot
A‘l‘

Greedy worst case: badly-guided DFS

<| #|<]| < |Ew

Iterative Deepening:

Idea: get DFS’s space advantage with BFS's

time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

Pancake Heuristic: the number of the

largest pancake that is still out of place.

Graph Search: HE ! (AEEHTTN)

Idea: never expand a state twice

How to implement:
= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= If not new, skip it, if new add to closed set

BackTracking:

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
* Variable assignments are commutative, so fix ordering
= le., [WA =red then NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= |e. consider only values which do not conflict previous assignments

= Might have to do some computation to check the constraints

* “Incremental goal test”
function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

i

Depth-first search with these two improvements
is called backtracking search

WA

function RECURSIVE-BACKTRACKING (assignment, esp) returns soln /failure
if assignment is complete then return assignment

var— SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = valuc} to assignment

result «—— RECURSIVE-BACKTRACKING assignment, esp)
if vesult # foilure then return result
remove {var = value} from assignment

return failure

Filtering:(forward checking and arc)

Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: Cross off values that violate a constraint when added to the existing
assignment; whenever any variable has no value left, we backtrack

An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Important: If Y loses a value, then arc X — Y needs to be rechecked!
Arc consistency detects failure earlier than forward checking

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs; csp, a binary CSP with variables {X}. X2, ... X, }
local variables: gueue, a queue of ares, initially all the arcs in csp

while gueue is not empty do tail head
(Xi, X;) — REMOVE-FIRST(queue) &
if REMOVE-INCONSISTENT-VALUES(X . X)) then
for each X} in NEIGHBORS[X)] do
add (X3, X)) to queu

function REMOVE-INCONSISTENT-VALUES(X;, X .) returns true iff succeeds

removed — false
for each rin DoMAIN[X] do
if no value y in DOMAIN[.X] allows (1) to satisfy the constraint X, — X,
then delete » from DOMAIN[X,]; removed — true
return removed

Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

k-consistency:

As an interesting parting note about consistency, arc consistency is a subset of a more generalized notion
of consistency known as k-consistency, which when enforced guarantees that for any set of k nodes in the
CSP, a consistent assignment to any subset of k— 1 nodes guarantees that the & node will have at least
one consistent value. This idea can be further extended through the idea of strong k-consistency. A graph
that is strong k-consistent possesses the property that any subset of k nodes is not only k-consistent but
also k—1,k—2,....1 consistent as well. Not surprisingly, imposing a higher degree of consistency on a

Ordering:

Value Ordering: Least Constraining Value

= Given a choice of variable, choose the least
constraining value

Variable Ordering: Minimum remaining values (MRV):
= Choose the variable with the fewest legal left values in its domain
= Also called “most constrained variable”

Structure:

= Order: Choose a root variable, order variables so that parents precede children
DOONOBNG,
AR EBMENDMEILE
u n
HE B B B

= Remove backward: For i =n : 2, apply Removelnconsistent(Parent(X),X)
= Assign forward: For i = 1: n, assign X; consistently with Parent(X;)

i

= Cutset: a set of variables s.t. the remaining constraint graph is a tree
= Cutset conditioning: instantiate (in all ways) the cutset and solve the
remaining tree-structured CSP
= Cutset size c gives runtime O((d°) (n-c) d?), very fast for small c

Cutset Ml 22 5, FIT (2 AR AT LA
Iterative Algorithm for CSP:

Idea:
= Take a complete assignment with unsatisfied constraints
= Reassign variable values to minimize conflicts
Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints

Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

NnNumber of constraints

Faaes _
NnumMber of variables

cPuf
time

critical

Local Search: improve a single option until you
can’t make it better; Generally much faster and
more memory efficient (but incomplete and

suboptimal); Hill-Beam-Annealing-Genetic:
Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

Like greedy hill climbing search, but keep K states at all times:

Beam Search

Greedy Search
The best choice in MANY practical settings

Idea: Escape local maxima by allowing downhill moves
= Pick a random move
= Always accept an uphill move
= Accept a downhill move with probability e ~4&/T
= But make the probability smaller (by decreasing T) as time
goes on
Theoretical guarantee
= If T decreased slowly enough, will converge to optimal state!
Sounds like magic, but reality is reality:

= The more downhill steps you need to escape a local optimum,
the less likely you are to ever make them all

24748552 [32752211 [32748552 [32744F2]
[2a748552 [24752811][24752411]
20 26% ~[32752411 [32752124 |—[32fb2124]

2441541[7]

32543213 | 11 14% 24415124 24415411

Fitness Selection Pairs

Cross-Over

= Genetic algorithms use a natural selection metaphor
= Keep the best (or sample) N states at each step based on a fitness function
= Pairwise crossover operators, with optional mutation to give variety

Minimax:

defvalue(state):
if the state is a terminal state: return the state’s utility
ifthe is MAX: returt I)
if the next agent is MIN: return min-value(state)

{(defminvaluastats) B
initialize v =+
ch successor of state: for each successor of state:
v =manx(y, value(successor)) v =min(v, value{successor))
return v return v
\ \ /
b ~ - d

(‘det max-value(state)

How efficient is minimax?

= Just like (exhaustive) DFS

= Time: O(b™)

= Space: O(bm)
Ideal function: returns the actual minimax value of the position
A simple solution in practice: weighted linear sum of features:

Bval(s) = w1 f1(s) + wafa(s) + ... + wnfn(s)
Alpha-Beta Pruning:
General configuration (MIN version)

= We're computing the MIN-VALUE at some node n

= We're looping over n’s children, so n’s estimate is
decreasing

Let a be the best value that MAX can get at any choice
point along the current path from the root

= |If n becomes worse than a, then we can stop
considering n’s other children

Reason: if n is eventually chosen, then the nodes along
the path shall all have the value of n, but n is worse than
a and hence the path shall not be chosen at the MAX

Perhaps the simplest check is as follows: pruning of children of a minimizer node m is
possible (for some assignment to the terminal nodes), when both of the following conditions
are met: (i) the value of another child of m has already been determined, (i) somewhere on
the path from m to the root node, there is a maximizer node M for which an alternative
option has already been explored. The pruning will then happen if any such alternative
option for the maximizer had a higher value than the value of the "another child" of m for
which the value was already determined.

o: MAX’s best option on path to root
PB: MIN's best option on path to root

/defmin-vaiue(state .a,B)
initialize v = +0
for each successor of state:
v = min(v, value(successor, a, B))
ifvsareturnv

B = min(B, v)

K return v

{ def max-value(state, a, B)
initialize v = -0
for each successor of state:
v = maxlyv, value(successor, a, B))
if v P retun v
@ = max(a, v)

\ returnv

(et value(state}:
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

f/defmax—vdlue(slatsl i\ (-value(state): i
initialize v = - initialize v=0
for each successor of state: £ > for each successor of state:
v = max{v, value(successor]) p = probability(successer)
return v v +=p * value(successor)
returnv
o ~ L. 4
» soundness (RT&E1%): derivations produce only entailed
sentences
> completeness (52 M): derivations can produce all entailed
sentences

Forward, backward chaining are linear-time, complete for Horn
clauses
Resolution is complete for propositional logic

Propositional logic lacks expressive power

Resolution&TruthTable:
complete&sound for prop.logic

The best way to prove KB |= a ?
— Proof by contradiction, i.e., show KBa—a is unsatisfiable
1. Convert KBA—a to CNF
2. Repeatedly apply the resolution rule to add new clauses,
until one of the two things happens

a) Two clauses resolve to yield the empty clause, in which
case KB entails a

b) There is no new clause that can be added, in which case
KB does not entail a
Horn logic: only (strict) Horn clauses are allowed
— AHorn clause has the form:
P1AP2AP3...APN=Q
or alternatively
—P1v-P2v-P3..v—-PnvQ
where Ps and Q are non-negated proposition symbols
(atoms)
— ncan be zero, i.e., the clause contains a single atom

Modus Ponens premises conclusion

atl,...,an, alna...

B

Aan=f

Only compl&sound for Horn Logic
FC&BC: not com&sou for prop.logic&FOL

Inference algorithms (for Horn logic)
- Forward chaining, backward chaining
— These algorithms are very natural and run in linear time

FC is data-driven, automatic, unconscious processing,
— e.g., object recognition, routine decisions
— May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,

— e.g., Where are my keys? How do | getinto a PhD
program?

— Complexity of BC can be much less than linear in size of
KB

FOL syntax: (and every variable must be bound)

Atomic sentence = predicate (term,,...,term,)
or term, = term,

constant or variable
or function (term,,...,term,)

Term =

Complex sentences are made from atomic sentences using
connectives

Typically, A is the main connective with 3

Common mistake: using = as the main connective with
3

Ix At(x, STU) = Smart(x)

is true if there is anyone who is not at STU!

Typically, = is the main connective with ¥
Common mistake: using as the main connective with v:
vx At(x,STU) » Smart(x)

means “Everyone is at STU and everyone is smart”

(Term without variables)
For any sentence a, variable vand ground term g:
__wva
Subst({v/gh, a) «— Substitute vwith gin a

Every instantiation of a universally quantified sentence is
entailed by it
Ul can be applied multiple times to add new sentences

For any sentence a, variable v, and constant %ymbol k
that does not appear elsewhere in the knowledge base:

dva_
Subst({v/k}, a)

El can be applied once to replace an existential
sentence

Unification finds substitutions that make different
expressions identical

Resolution:

Full first-order version:
i URARLS My v Ny
(G~ N BV Ea~ N R I Y N i N iy N m)8
where Unify(§ —m) = 6,

Generalized Modus Ponens (GMP)

< Pa (P1AP2A - A Pr=0)
q6

where p;® = p; 8 for
all i

GMP: incomplete for FOL
—Not every sentence can be converted to Horn form

GMP: complete for FOL KB of definite clauses

FC and BC are complete for Horn KBs but are incomplete for
general FOL KBs:

Every variable is itic i of its
Conditional independence semantics <=> global semantics

given its parents

Avariable’s Markov blanket consists of parents, children, children’s other parents
Every variable is conditionally independent of all other variables given its Markov blanket

Inference by Enumeration

Inactive Triples

Question: X, Y, Z are non-intersecting subsets of nodes. Active Triples
Are X and Y conditionally independent given Z?

Atriple is active in the following three cases
= Causal chain A -8 — C where B is unobserved (either direction)
* Common cause A « B — C where B is unobserved
= Common effect (aka v-structure)
A~ B« Cwhere 8 or one of its descendents is observed

A path is active if each triple along the path is active
A path is blocked if it contains a single inactive triple

If all paths from X to Y are blocked, then X is said to be O\g/o

o000
oo
Oy

“d-separated” from Y by Z
If d-separated, then X and Y are conditionally
independent given Z

A directed, acyclic graph

Conditional distributions for each node
given its parent variables in the graph
= CPT: conditional probability table: each

row is a distribution for child given a
configuration of its parents

= Description of a noisy “causal” process
P(X|Ay,--+, An)

A Bayes net = Topology (graph) + Local Conditional Probabilities

General formula for sparse BNs

= General case: = We want:
+ Evidence variables: Ey...Ey=e1..¢x) x, xo.. X,
. v 1 X2, X P(Qley .. -e
Queryvariable: Q@ ST (Qlex .. ex)

= Hidden variables: Hy...Hy

= Step 1: Select the ® Step 2: Sum out H to get
entries consistent joint of Query and
with the evidence evidence 1

.-t@ XE

Z=3 P(Q.er---ex)
O

= Step 3: Normalize

P(Q.er...ep)= 2. P@Qnhi.. 1
e X P(Qler-+-ex) = ZP(Qrer - ex)

= Suppose
= nvariables
= Maximum domain size is d
= Maximum number of parents is k
= Full joint distribution has size O(d")
= Bayes net has size O(n -d**)
= Linear scaling with n as long as causal structure is local

Full joint distribution tables answer every question, but:
= Size is exponential in the number of variables
= Need gazillions of examples to learn the probabilities

= Inference by enumeration (summing out hiddens) is too
slow

Bayesian networks:

= Express all the conditional independence relationships
in a domain

= Factor the joint distribution into a product of small
conditionals

= Often reduce size from exponential to linear
= Faster learning from fewer examples
= Faster inference (linear time in some important cases)

A Bayesian network encodes a joint distribution with a directed
acyclic graph
= A CPT captures uncertainty between a node and its parents

A Markov network (or Markov random field) encodes a joint
distribution with an undirected graph
= A potential function captures uncertainty between a clique of nodes

Moralize: WP SR 1A [F] —ANT47 5, W%
AT TR I PR IAE L 1A AT LUK BN #4640
MN; RIS 281 B R 2 B RFAA I moralize
S A5 E 1 0 R] A R BN A R] 2 15 (SR A) Al
L Fo 1) B P MR SR A AT R T, G R A
ZHAAL Y Bl AR BN HTHTH 9 MN
HBEHHINF B (AT 53 A —FF)

Markov network = undirected graph + potential functions
= For each clique (or max clique), a potential function is defined
* A potential function is not locally normalized, i.e., it doesn’t encode probabilities
= A joint probability is proportional to the product of potentials

1
p(x) = z]’[w-u(n
where Yc(Xc) is the potential over clique C and
Z= ZH Yo (xe)
x C

is the normalization coefficient (aka. partition function).

= Additional links (moralization)

a1 3 xy

T

1 2 TN 1 N

= p(z, p(J

/ A

p(x) = Z ¥ 2(T1,®2) Yo,3(x2,73) - Yn—1 N(EN-1,TN)

Ty &g -1 TN

““l.ll
EIEIE=]

v 88w

¥

s b5 o I

25000

Z=7520750

Bayesian Network = Markov Network

= Steps
1. Moralization
2. Construct potential functions from CPTs
= The BN and MN encode the same distribution

An extension of MN (aka. Markov random field) where
everything is conditioned on an input

1
P(ylx) :@]:[wc(yc.x)

where ¢ (yc, x) is the potential over clique C and

2@ =Y [[#ewen

is the normalization coefficient.

12

Which logic is BN/MN more similar to: PL? FOL?
= Boolean nodes represent propositions
= No explicit representation of objects, relations, quantifiers

BN/MN can be seen as a probabilistic extension of PL
PL can be seen as BN/MN with deterministic CPTs/potentials

Generative models
= A generative model represents a joint distribution P(Xq, X5, ..., X,)
= Both BN and MN are generative models

Discriminative models
= In some scenarios, we only care about predicting queries from evidence
= A discriminative model represents a conditional distribution
P(Yy, Yy, .., Yyl X)
= It does not model P(X)

