Move summations inwards as far as possible

- $\bullet P(B \mid i, m) = \alpha \sum_{e \mid a} P(B) P(e) P(a \mid B, e) P(i \mid a) P(m \mid a)$
- $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$

If evidence, start with factors that select that evidence We eliminate all vars other than query + evidence Result will be a selected joint of guery and evidence

- The size of the largest factor determines the time and space complexity of VE
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ⁺¹ vs. 2²

Does there always exist an ordering that only results in small factors?

No!

Inference in Bayes' nets is NP-hard, however in polytree:

For poly-tree BNs, the complexity of VE is *linear in the BN size* (number of CPT entries) with the following elimination ordering:

For i=1, 2, ..., n

Return (x₁, x₂, ..., x_n)

downstream evidence

Likelihood weighting still has weaknesses

Sample X from P(X, | parents(X))

Reject: Return, and no sample is generated in this cycle

The values of upstream variables are unaffected by

· mostly get samples that are inconsistent with the

 get a few lucky samples with very large weights. which dominate the result

evidence and thus have very small weights

With many downstream evidence, we may

- Convert to a factor graph
- Take Q as the root
- · Eliminate from the leaves towards the root
- For i=1, 2, ..., n (in topological order)
- Sample X, from P(X, | parents(X))
- Return (x₁, x₂, ..., x_n) Prior Sampling
- Input: evidence e₁,..,e_k w = 1.0
- Likelihood for i=1, 2, ..., n
- if X is an evidence variable
- x_i = observed value, for X_i
- Set w = w * P(x_i | Parents(X_i))
- Sample x. from P(X, | Parents(X,))
- return (x₁, x₂, ..., x_n), w
 - Gibbs Sampling Example: $P(S \mid r)$

Step 2: Initialize other variables

- Step 3: Repeat
- Choose an arbitrary non-evidence variable >

Filtering: $P(X_t | e_{1:t})$

belief state — posterior distribution over the most recent state given all evidence

Most likely explanation: arg $\max_{x_{0:t}} P(x_{0:t} \mid e_{1:t})$

Ex: speech recognition, decoding with a noisy channel

 $P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$ $= \alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$ $= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$

 $= \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_t | e_{1:t}) P(X_{t+1}| X_t, e_{1:t})$ $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$

Cost per time step: $O(|X|^2)$ where |X| is the number of states

 $m_{1:t+1} = P(e_{t+1}|X_{t+1}) \max_{x_t} P(X_{t+1}|x_t) m_{1:t}[x_t]$

Every HMM is a DBN

Every discrete DBN can be represented by a HMM

- Each HMM state is Cartesian product of DBN state variables
 - E.g., 3 binary state variables => one state variable with 2³ possible values
- Advantage of DBN vs. HMM?
 - Sparse dependencies => exponentially fewer parameters
 - E.g., 20 binary state variables, 2 parents each; DBN has $20 \times 2^{2+1} = 160$ parameters, HMM has $2^{20} \times 2^{20} = 10^{12}$ parameters
- · Similar to likelihood weighting, weight samples based on the evidence
- $W = P(e, | x_i)$
- · Particles that fit the evidence better get higher weights, others get lower weights
- What happens if we repeat the Propagate-Observe procedure over
- It is exactly likelihood weighting (if we multiply the weights)
- Weights drop quickly... Observe
- Rather than tracking weighted samples, we resample
- Generate N new samples from our weighted
- · Each new sample is selected from the current population of samples; the probability is proportional to its weight.
- The new samples have weight of 1
- Now the undate is complete for this time. step, continue with the next one

. : :

 ∇

, : :

• 🔩

: :

• 🚜

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon

For MDPs, we want an optimal policy $\pi^*: S \to A$

- A policy π gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- How to discount?
 - Fach time we descend a level, we multiply in the discount once

Discounting

- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

Recursive definition of value:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max \sum T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Problem 1: States are repeated

- Idea: Only compute needed quantities once
- Problem 2: Tree goes on
- forever

Define $V_{\nu}(s)$ to be the optimal value of s if the game ends in k more time steps

- Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Equivalently, it's what a depth-k expectimax would give from s

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state

 $V_{k+1}(s) \leftarrow \max_{a} \sum_{s} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

Repeat until convergence Value Iteration

Complexity of each iteration: O(S2A) Theorem: will converge to unique optimal values

s, π(s

Problem 1: It's slow – O(S²A) per iteration

Problem with Value Iteration

Problem 2: The "max" at each state rarely changes

■ The policy often converges long before the values

We need to do a mini-expectimax (one step)

This is called policy extraction, since it gets the policy implied by the values

- Value iteration: find successive (depth-limited) values
- Start with V_o(s) = 0
- Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Q-value iteration

- But Q-values are more useful, so compute them instead
- Start with O_−(s a) = 0

It's still optimal!

Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Policy iteration: an alternative approach for value iteration
- Step 1: Policy evaluation: calculate utilities for some fixed (not optimal) policy
- Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
- · Repeat steps until policy converges
 - Policy Iteration
- · Can converge (much) faster under some conditions

Idea 1: Iterative updates (like value iteration)

- Start with $V_0^{\pi}(s) = 0$
- \bullet Given V_k^π , calculate the depth k+1 values for all states: $V_{k+1}^{\pi}(s) \leftarrow \sum T(s,\pi(s),s')[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')]$
- Repeat until convergence Efficiency: O(S²) per iteration
 - Policy Evaluation

Idea 2: Without the maxes, the Bellman equations are just a linear system $V^{\pi}(s) = \sum T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Solvable with a linear system solver

$\pi_{i+1}(s) = \arg\max_{a} \sum_{\cdot} T(s,a,s') \left[R(s,a,s') + \gamma V^{\pi_i}(s') \right]$

Both value iteration and policy iteration compute the same thing (all optimal values)

- · Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- May converge faster

Both are dynamic programs for solving MDPs

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model was correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

• For example, use value iteration, as before

Passive RL: Model Free

- Act according to π **Direct Evaluation**
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

It wastes information about state connections Each state must be learned separately So, it takes a long time to learn

We can't use policy eval don't know T R.

Temporal difference learning of values

 (Policy still fixed, still doing evaluation!) Move the value towards the sample

> Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$ TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy... Don't know T R!

Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning: learn Q(s,a) values as you go

- Receive a sample (s,a,s',r)
- Consider your old estimate: Q(s,a)
- Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

This is called off-policy learning

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ε over time
- Another solution: exploration functions
- When to explore?
 - Explore states that haven't been sufficiently explored
- Eventually stop exploring
- Idea: select actions based on modified Q-value
- Exploration function: takes a Q-value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n) = u + k/n

Exploration Functions

Regular Undate: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{s} Q(s',a')$ Modified Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a} f(Q(s',a'), N(s',a'))$

This propagates the "bonus" back to states that lead to

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards

Minimizing regret goes beyond learning to be optimal - it requires optimally learning to be optimal

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Disadvantage: states may share features but actually be very different in value!

Q-learning with linear Q-functions:

transition =(s, a, r, s')

difference = $r + \gamma \max_{a} Q(s', a') - Q(s, a)$

$$Q(s, a) \leftarrow Q(s, a) + \alpha$$
 [difference]

Exact O's

$$Q(s,a) \leftarrow Q(s,a) + \alpha$$
 [difference]
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s,a)$

Approximate Q's (based on online least squares

Intuitive interpretation:

- Adjust weights of active features
- . E.g., if something unexpectedly bad happens, blame the features that were on:

Idea: learn policies that maximize rewards, not the values that predict Policy Search

Policy search: start with an OK solution (e.g., approximate Q-learning) then fine-tune feature weights to find a better policy

Using empirical rate will overfit the training data!

Why does overfitting occur?

- Training data is not representative of the true data distribution
 - Too few training samples
 - Training data is noisy
- Too many attributes, some of them irrelevant to the classification task
- The model is too expressive
 - Ex: the model is capable of memorizing all the spam emails in the training set

Avoid overfitting

- Acquire more training data (not always possible)
- Remove irrelevant attributes (not always possible)
- Limit the model expressiveness by regularization, early stopping, pruning, etc.

Lanlace's estimate (extended): Laplace for conditionals:

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

k is the strength of the prior

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

In practice, Laplace often performs poorly for P(X|Y):

- When |X| is very large
- When |Y| is very large
- Classify with current weights

If wrong: adjust the weight vector by $y = \begin{cases} +1 & \text{if } w \cdot f(x) \geq 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases} \text{ adding or subtracting the feature}$

■ If correct (i.e., y=y*), no change!

$$w = w + y^* \cdot f$$

Convergence: if the training is separable, perceptron will eventually converge (binary case)

Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

$$L(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T x_i)^2 + \lambda \sum_{k} |w_k|$$

$$L(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{i} w_k^2$$

"Ockham's razor": prefer the simplest hypothesis consistent with the data

$$w=rac{n\sum_{i=1}^{n}x_{i}y_{i}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}y_{i}}{n\sum_{i=1}^{n}x_{i}^{2}-(\sum_{i=1}^{n}x_{i})^{2}}\ b=rac{\sum_{i=1}^{n}y_{i}\sum_{i=1}^{n}x_{i}^{2}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}x_{i}y_{i}}{n\sum_{i=1}^{n}x_{i}^{2}-(\sum_{i=1}^{n}x_{i})^{2}}$$

What could "similar" mean?

One option: small (squared) Euclidean distance

$$dist(x,y) = (x-y)^{T}(x-y) = \sum_{i} (x_i - y_i)^2$$

Many other options, often domain specific

For each point, re-assign to Move each mean to the average of its assigned points: closest mean:

$$c_k = \operatorname*{argmin}_k \operatorname{dist}(x_i, c_k) \qquad c_k = \frac{1}{|\{i: a_i = k\}|} \sum_{i: a_i = k} x_i$$

两步都不能使得总距离 phi 函数增加

Objective: $argmax_{\theta} \prod_{i} \sum_{i=1}^{k} P(y_i = i, x_i \mid \theta) = \sum_{i} \log \sum_{j=1}^{k} P(y_j = i, x_j \mid \theta)$

Data: $\{x_i | j=1 ... n\}$

inconsistent

- E-step: Compute expectations to "fill in" missing y values according to current parameters, θ
- For all examples j and values i for y, compute: P(y_i=i | x_i θ)
- M-step: Re-estimate the parameters with "weighted" MLE estimates
 - Set $\theta = \operatorname{argmax}_{\theta} \sum_{i=1}^{k} P(y_i = i \mid x_i, \theta) \log P(y_i = i, x_i \mid \theta)$

Iterate: On the t'th iteration let our estimates be

$$\theta^{(t)} = \{\, \mu_1{}^{(t)}, \, \mu_2{}^{(t)} \ldots \, \mu_k{}^{(t)}, \, \sum_1{}^{(t)}, \, \sum_2{}^{(t)} \ldots \, \sum_k{}^{(t)}, \, \pi_1{}^{(t)}, \, \pi_2{}^{(t)} \ldots \, \pi_k{}^{(t)} \,\}$$

E-step

Compute label distribution of each data point

$$P(y_j = i | x_j, \theta^{(t)}) \propto \pi_i^{(t)} N(x_j | \mu_i^{(t)}, \Sigma_i^{(t)})$$

M-step

Compute weighted MLE of parameters given label distributions

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P\left(y_{j} = i \mid x_{j}, \theta^{(t)}\right) x_{j}}{\sum_{j'} P\left(y_{j'} = i \mid x_{j'}, \theta^{(t)}\right)} \qquad \Sigma_{i}^{(t+1)} = \frac{\sum_{j} P\left(y_{j} = i \mid x_{j'}, \theta^{(t)}\right) \left[x_{j} - \mu_{i}^{(t+1)}\right] \left[x_{j'} - \mu_{i}^{(t+1)}\right]^{2}}{\sum_{j'} P\left(y_{j'} = i \mid x_{j'}, \theta^{(t)}\right)}$$

$$\pi_i^{(t+1)} = \frac{\sum_j P\left(y_j = i \mid x_j, \theta^{(t)}\right)}{m}$$

EM degrades to k-means if we assume

- All the Gaussians are spherical and have identical weights and covariances
- i.e., the only parameters are the means
- The label distributions computed at E-step are point-estimations
 - . i.e., hard-assignments of data points to Gaussians
- Alternatively, assume the variances are close to zero

Can be used to learn any model with hidden variables (missing data)

Alternate:

FM in General

- Compute distributions over hidden variables based on current narameter values
- Compute new parameter values to maximize expected log likelihood based on distributions over hidden variables

$$\min_{\mathbf{y}} \frac{\mathbf{y}^{T}(D-W)\mathbf{y}}{\mathbf{y}^{T}D\mathbf{y}}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{y}^{T}D\mathbf{1} = 0$$

$$(D-W)\mathbf{y} = \lambda D\mathbf{y}$$

$$k = \frac{\sum_{x_{i}} d_{i}}{\sum_{i} d_{i}}$$

$$\begin{array}{l} (D-W)\mathbf{y} = \lambda D^{\frac{1}{2}}D^{\frac{1}{2}}\mathbf{y} \\ D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}D^{\frac{1}{2}}\mathbf{y} = \lambda D^{\frac{1}{2}}\mathbf{y} \\ D^{-\frac{1}{2}}(D-W)D^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z} \end{array} \qquad \mathbf{x} \in [1,-1]^n, x_i = \begin{cases} 1 & i \in A \\ -1 & i \in B \end{cases}$$

$$\mathbf{x} \in [1, -1]^n, x_i = \begin{cases} 1 & i \in A \\ -1 & i \in B \end{cases}$$

$$y = (1 + x) - b(1 - x)$$
 $b = \frac{k}{1 - x}$

Output: weighted sum of the values, dependent on each query . The weight is computed via the dot-product.

$$A(q, K, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{i} e^{q \cdot k_j}} v_i$$

LayerNorm(x + Sublayer(x))

$$A(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \quad output = \frac{x - \mu}{\sqrt{\sigma + \epsilon}} \times \gamma + \beta$$

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^{O}$

where:
$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

$$\begin{split} PE_{(pos,2i)} &= \sin(pos/10000^{2i/d_{model}}) &\quad PE = [0,1,2,...,T-1] \\ PE_{(pos,2i+1)} &= \cos(pos/10000^{2i/d_{model}}) &\quad PE = \begin{bmatrix} 0 & 1 & 2 \\ \overline{x_1}, \overline{x_2}, \overline{x_3}, ..., \overline{x_m} \end{bmatrix} \end{split}$$