Move summations inwards as far as possible P(Xizl€1:01) = Pl €100 €001) Recursive definition of value:

= o ! Vil
= @ Plery| Xeus, 1) PXius | €1) V*(s) = max Q* (s, a) my1(s) =arg gnaxZT(s, a,s) [R(S, a,8) +V7(s)
= P(B] j,m)= aX,,P(B)Ple) Pla|B,e) P(i|a) P(m|a) = o Pleg | Xes) PXes | €1 ¢ ' i ¢
. = P(€441 1 Xi1) 2y P(X, | €1.) P(Xpur | X, € Q*(s,a) =Y T(s,a,5) |R(s,a,s") +V*(s"
- e P(B) Zz P(e) Za P(O | B,e) P(/ l 0) P(m | 0) - PEe{ I:X! 1; ZX' P((Xl || el r)] P((Xt lllxr)—“)‘ (s a) ; (50,5 [(5,083 + S >] Both value iteration and policy iteration compute the same thing (all optimal values)
- t+1 t+1 Xo t 6 E ¢ t+1 t
V*(s) = maXZT(& a,s") [R(e a,s') +v V*(s’)} In value iteration:
1 p o e . 2 5 » @y > Qs
If evidence, start with factors that select that evidence Cost per time step: O(|X|?) where | X| is the number of states L T] T ooy
Ren i = = We don't track the policy, but taking the max over actions implicitly recomputes it
We eliminate all vars other than query + evidence oy Tl Problem 1: States are repeated
sn| 09 | o1 = Idea: Only compute needed In policy iteration:
. it . win| 03 | o7 quantities once . ic g " "
Result will be a selected JOlnt of query a nd evidence == We qo several passes‘that update utilities with fixed policy (each pass is fast because we
A (U W) X .) consider only one action, not all of them)
= ‘;u; } ‘:‘f: :mblem 2SS EOR=00 Define Vk(s)_ to be the ?ptlmal value of s if the = After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
)) o ° Uj=true U,=false Us=true an| 05 | o1 Gl v game ends in k more time steps = May converge faster
P(B|j,m) < P(B,j,m) " Li:;zf:i::p;c;'wltheﬁcreasing = Equivalently, it’s what a depth-k expectimax would
‘ P(B) P(E) P(A|B, E) P(j|A) P(m|A) ‘ o " M = Plens Xe) maxy P |) my bl depths until change is small give froms Both are dynamic programs for solving MDPs
P(Blj,m) x P(B,j,m) 0 o . Start with Vy(s) = 0: no time steps left means an expected
= Y P(B,j,m e,a) marginal can be obtained from joint by summing out Every HMM is a DBN reward sum of zero Model-Based Idea:
= X PBIP@P(lB,)PGl)P(mia) use Bayes’ net joint distrbution expression Every discrete DBN can be represented by a HMM Given vector of V,(s) values, do one ply of expectimax = Learn an approximate model based on experiences
_ xl,(u)l,@XJ,(MU_(\),,(m),,(m‘a) Use X*(y+2) = xy + xz = Each HMM state is Cartesian product of DBN state variables from each state: = Solve for values as if the learned model was correct
= Y PBPOAB,esm) joining on a, and then summing out gives , * E.g, 3 binary state variables => one state variable with 2* possible values Vig1(s) & max Y 7(s,0,8) [R(s0,8) + 7 Vi()]
= ,:(;g)zp(g)h(n_w m) usex*(y42) = xy+xz = Advantage of DBN vs. HMM? o N
= P(B)fa(B,j,m) P " ——— = Sparse dependencies => exponentially fewer parameters Repeat until convergence Value lferation Step 1: Learn em plrlcal MDP model
® E.g., 20 binary state variables, 2 parents each; = Count outcomes s’ for each s, a
= The size of the largest factor determines the time and space complexity of VE DBN has 20 x 271 = 160 parameters, HMM has 220 x 220 =~ 10'? parameters Complexity of each iteration: O(S?A) = Normalize to give an estimate of T(S, a, S,)
= The elimination ordering can greatly affect the size of the largest factor.) .) = Discover each R(s Y when we experience (s, a, s’
* Eg, previous slide’s example 271 vs. 22 = Similar to likelihood weighting, weight ey TS Theorem: will converge to unique optimal values R(s,a,s") p (s,a,s')
e ’ samples based on the evidence ::: *le|e
* Wablelx) & i Step 2: Solve the learned MDP
Does there always exist an ordering that only results in small factors? = Particles that fit the evidence better get i 5 Problem 1: It’s slow — O(SZA) per iteration p2s:
= No! higher weights, others get lower weights (Ll

] = For example, use value iteration, as before
Problem with Value Iteration

* What happens if we repeat the v Observed Episodes (Trainin Learned Model
Inference in Bayes’ nets is NP-hard, however in polytree: Propagate-Observe procedure over s Problem 2: The “max” at each state rarely changes . : ¢ .
time? e Tl . Episode 1 Episode 2 T(s,a,s")
! o o 2 ws ° = The policy often converges long before the values ———y
For poly-tree BNs, the complexity of VE is linear in the BN size (number of It . ?X?Cth’ |'ke‘!hﬁ°d weighting (if we ol vz o|&) B, east; C.el B east, CL T:c' b D');().]s
CPT entries) with the following elimination ordering: mu_t'p y the Welg) oty . .) € east,D; -1 Greast; Dot T(C, east, A) = 0.25
e = Weights drop quickly... Observe s We need to do a mini-expectimax (one step) | . | D, exit, x, +10 D, exit, x, +10 ..
= Take Qas the root i . Episode 3 Episode 4 R(s,a,s
= Eliminate from the leaves towards the root m " Rather thar} tracking weighted samples, e T™(s) = arg;ﬂaxZ]T(s‘a,s')[R(s,a,s') +4V*(sN] - ,:,rm — - :mh - - e(ast,cl):l)
we resample R E . s 2 bigf R(C, east, D) =-1
= input: evidence e = Generate N new samples from our weighted ° i ; ; iEea TR e S AL R(D, exit, x) = +10
P 1€k 1T new This is called policy extraction, since it gets the policy implied by the values Assume:y =1 D, exit, x,+10 A, exit, x,-10 .
* Fori=l,2,..,n Rejection sample distribution
= Fori=1, 2, .., n (in topological order) . — = Each new sample is selected from the current {13 475 .
Samplegfrom Ll parenczb) population of samples; the probability is [| \ = Value iteration: find successive (depth-limited) values Pass|ve RL Model Free
= Sample X, from P(X, | parents(X,) = If x,not consistent with evidence proportional to its weight) 4 ‘ = Start with V,(s) =0
* Reject: Return, and no sample is generated in this cycle g 4
* ReUrN (Xy, Xy, s Xn) prior Sampling = Return (x, X, .., X,) SRR T ew } SRSt st
ansar g s . . . 2
Input: evid Likelihood weighting still h: ki Now the update is complete for this time ‘ e Vk+1(§) < mC?XZT(s}a’S,) [R(&% B0y Vk(SI)} At accordmg o DlreCt Evaluatlon
= Input: evidence ey,..,e; = Likelihood weighting still has weaknesses Lt W u I isti o s)) [1 1S i
* w=10 Lkeliood + The values of upstream variables are unaffected by step, continue with the next one Q-value iteration Every time you visit a state, write down what the
= fori=1,2,..,n downstream evidence S = But Q-values are more useful, so compute them instead sum of discounted rewards turned out to be
= if X;is an evidence variable + With many downstream evidence, we may = Start with Qy(s,a) = 0
-7 :szvf‘:‘ia‘\u:;tZ;i(x)) " mstly gt samples tht areineonistent with the = Given Q calculate the depth k+1 g-values for all g-states: = Average those samples
% else evidence and thus have very small weights . e —
= Sample x, from P(X, | Parents(x)) = get a few lucky samples with very large weights, MDPs are non-deterministic search prOblemS Qk+1(3aa) — ZT(s,a, s') [R(s,a,s') + v max Qu(s’,d")
" retumn Xy, Xy X), W which dominate the result = One way to solve them is with expectimax search s “ It wastes information about state connections
: . = We'll have a new tool soon = Policy iteration: an alternati h for value iterati
G|bb$ Sam Iln Exam Ie: P S r olicy iteration: an alternative approach tor value iteration
p g p (|) = Step 1: Policy evaluation: calculate utilities for some fixed (not optimal) policy EBCh State mUSt be Iea rned Sepa rately
o - . 2 = Step 2: Policy improvement: update policy using one-step look-ahead with resulting . k l . I
= Step 1: Fix evidence = Step 2: Initialize other variables For MDPs, we want an optimal po||cy ¥ SS>A converged (but not optimall) utilities as future values So, it takes a ong time to learn
= G=iive = Rendormly A i . . f h = Repeat steps until policy converges
- 7 H 7
pelicymelvesian action'toreachistate Policy leration We can’t use policy eval don’t know TR.
= Step 3: Repeat = An optimal policy is one that maximizes 2 = It's still optimall . .
. EZ:::T"ami"aw"un’ev}dencevariablex expected utility if followed = Can converge (much) faster under some conditions Temporal difference learning of values
ple X from P(X | markov_blanket(X))

d . m ik e . = (Policy still fixed, still doing evaluation!)
N N N R R = An explicit policy defines a reflex agent I-eztalr-tl\:/eitzwat;b\g(e.;id;tes (like value iteration) = Movethe Valie towardsthe sample
= Given V|7, calculate the depth k+1 values for all states:
= How to discount? - ; 4
Sample S- A(S| ¢, 1, -w) Sample C - P(C| 5,) Sample W~ P(W| s, 1) % Eachiimewe descend a level, we Vitpa(s) Z:T(SW(S), SHR(s,7(s),s") + V()]
Filtering: P(X;|e,.)

multiply in the discount once

Sample of V(s): sample = R(s,n(s),s") +~yV™(s')

E
= Repeat until convergence

Update to V(s): VT(s) «+ (L —a)V7(s a)sample
= belief state — posterior distribution over the most recent state given all evidence Discounting = Efficiency: O(S?) per iteration Policy Evaluation L2 () () () () + () BInp
= Why disc t? . T T
Most likely explanation: arg max, P()(0 i | e t) Z fscoun 2 bablvidoTs Idea 2: Without the maxes, the Bellman equations are just a linear system Same update: V7T(s) < V7 (s) + a(sample — V7 (s))
0t H : = Sooner rewards probably do have
v " . - i ili VT(s) = (s, ,s[R(s, ,s" Vr(s"
= Ex: speech recognition, decoding with a noisy channel higher utility than later rewards () = Y T, $DIRCs, m(s),57) + ¥V ()]

- i 7
Also helps our algorithms converge = Solvable with a linear system solver

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy... Don't know T R!

Q-value iteration
Qui1(s:@) « LT(5,0,8) [R(s,a,5) +7 maxQy(s',a)
8l @

Q-Learning: learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:
sample = R(s,a,s') +~ max Q(s',ad)
d
= Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

This is called off-policy learning 7

Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

= When to explore?
= Explore states that haven’t been sufficiently explored
= Eventually stop exploring
= |dea: select actions based on modified Q-value T
= Exploration function: takes a Q-value estimate u and i
a visit count n, and returns an optimistic utility, e.g. -
flu,n) =u+k/n
= Q-Update
Regular Update: Q(s,a) +a R(s,a,8') +~ m;?x(g(.q’.u’)
Modified Update: Q(s,a) <a R(s.a.5') +~ m:gx £,), N (S, a'))

Exploration Functions

This propagates the “bonus” back to states that lead to
under-explored states

Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

Minimizing regret goes beyond learning
to be optimal — it requires optimally
learning to be optimal

Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) = w1f1(s) + wafa(s) +... + wnfn(s)
Q(s,a) = w1 f1(s,a)twaf2(s,a)+. . .+wnfn(s,a)

Disadvantage: states may share features but actually be very different in value!

Q-learning with linear Q-functions:
transition = (s, a,r,s’)
difference = [r ey m”a,xQ(sC u’)] - Q(s,a)
Q(s,a) — Q(s,a) + «a[difference]

w; «— w; + « [difference] f;(s, a)

Exact Q’s

Approximate Q's

(based on online least squares)
Intuitive interpretation:

= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Idea: learn policies that maximize rewards, not the values that predict

them Policy Search
Policy search: start with an OK solution (e.g., approximate Q-learning),
then fine-tune feature weights to find a better policy

Using empirical rate will overfit the training data!

Why does overfitting occur?
= Training data is not representative of the true data distribution
= Too few training samples
= Training data is noisy
= Too many attributes, some of them irrelevant to the classification task

= The model is too expressive
= Ex: the model is capable of memorizing all the spam emails in the training set

Avoid overfitting
= Acquire more training data (not always possible)
= Remove irrelevant attributes (not always possible)
= Limit the model expressiveness by regularization, early stopping, pruning, etc.

Laplace’s estimate (extended): Laplace for conditionals:

* Pretend you saw every outcome kextra times » - Smooth each condition independently:

c(x)+k

N+ HX]| c(z,y) +k
c(y) + k|X|

Prapp(z) =
Prapr(@ly) =
= Kis the strength of the prior

In practice, Laplace often performs poorly for P(X|Y):
= When |X| is very large
= When |Y]| is very large

= Classify with current weights

If wrong: adjust the weight vector by
_ f+1 if w-f(z) >0 adding or subtracting the feature
YZ1-1 if wef(x) <0 vector.

w=wtyf

Convergence: if the training is separable, perceptron will
eventually converge (binary case)

= |f correct (i.e., y=y*), no change!

Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability

) k
mistakes < 52

LASSO (Least Absolute Shrinkage and Selection Operator)

L) =) O —wTx)?* +2) wl
i k

Ridge Regression

L) =) Qi —wix)? +2) w
2 k

“Ockham’s razor”: prefer the simplest
hypothesis consistent with the data

iy T i Y Yi

ny i, 5"12 (i zi)?
D VD ST D S
n 2?_1 3712 (Z«T_L m'i)Q

1=

What could “similar” mean?
= One option: small (squared) Euclidean distance

dist(z,y) = (@ =) T (@ —y) = 3 (z; — %:)°
i
= Many other options, often domain specific

For each point, re-assign to Move each mean to the average
closest mean: of its assigned points:

K-mean 1

* = = w, e,

i.a;=k

P25 #EASBE S 15 5 P B phi R0 0
Objective: argmaxg [; Dol P(y;=i,x|8) = X log P it P(y;=i,x|0)
Notation a bit

inconsistent
Parameters = 6=\

= E-step: Compute expectations to “fill in” missing y values
according to current parameters, 6

a; = argmindist(x;, cg)
k

Data: {x; | j=1..n}

* For all examples j and values i for y, compute: P(y;=i | lee)

= M-step: Re-estimate the parameters with “weighted” MLE
estimates

= Set® =argmaxg 2; 2. P(y=i | x;, 8) log P(y;=i,x|8)

Iterate: On the t'th iteration let our estimates be

01 = { w1, ...), 271“1, sz Z;m/), .)

E-step
Compute label distribution of each data point

Py = i.00) o mON (3@, 5,0) T

M-step
Compute weighted MLE of parameters given label distributions

3 p(y]. = |Xj'g(t)) [y — 0y — 0]

LD =
;P (yyr = t]1,00)

2,040 =

EM degrades to k-means if we assume
= All the Gaussians are spherical and have identical weights and
covariances
= i.e., the only parameters are the means
= The label distributions computed at E-step are point-estimations
= i.e., hard-assignments of data points to Gaussians
= Alternatively, assume the variances are close to zero

Can be used to learn any model with hidden variables (missing
data)
Alternate:
= Compute distributions over hidden variables based on current
parameter values
= Compute new parameter values to maximize expected log likelihood
based on distributions over hidden variables
min2 @ =Wy
y y'Dy

EM in General

,y€ER",y'D1=0

k — in>0 dl
2 d;

(D -W)y =Dy

1 1
L0 iy
D2(D — W)D"zDZy = ADZy
1
D2(D—-W)D2z= 2z

i€eA

1
11" %, =
2 € [L=1]%x {_1 ieB

y=1+x)—-b(1—x) T1-k

Output: weighted sum of the values, dependent on each query
« The weight is computed via the dot-product.

edki
A(Q K V) = ZWW
T 4

LayerNorm(x + Sublayer(x))

QK" _
A(Q K, V) = softmax (— 14 tput =
Ja) owPuE = e XY +E

MultiHead(Q, K,V) = Concat(heady, ..., head,)W°
where: head; = Attention(QW,%, KW, vw/)

PEpos,2i) = sin(pos/10000%/dmodet) o _ 0.8, o]
PE (pos2i+1) = €0S(p0s/100002H/4modet) pp_ 0 =

